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Streszczenie

Niniejsza rozprawaprzedstawia kompleksowy opis pięciu lat badańprowadzonych
w ramach eksperymentu LHCb (ang. Large Hadron Collider beauty experiment)
w CERN. Praca koncentruje się na opracowaniu i zastosowaniu technik uczenia
maszynowego w celu wzmocnieniu algorytmu do rekonstrukcji śladów córek,
rozpadów cząstek długożyciowych (tak zwane ślady downstream) i poprawy
wydajności systemuwyzwalania eksperymentu LHCb oraz analizę danych kalibra-
cyjnych detektora UT (ang. Upstream Tracker). Pierwsza część pracy podzielona
jest na dwa etapy - zwiększenie czystości próbek śladów SciFi (ang. Scintillating
Fibre detector) oraz polepszenia jakości śladów typu downstream.

W rozprawie analizowane są strategiewykorzystania tych nowych linii trygerowych
w celu maksymalizacji wydajności rekonstrukcji bez narażania danych fizycznych.
Druga część pracy koncentruje się na detektorze UT, umieszczonym przed mag-
nesem dipolowym, który ma kluczowe znaczenie dla precyzyjnych pomiarów
pędu oraz wydajności trygera jako całości. Prace dotyczące wzmocnienia algo-
rytmu do rekonstrukcji śladów typu downstream opierały się na opracowaniu
dwóch oddzielnych modeli uczenia maszynowego. Pierwszy model ma na celu
poprawę czystości próbki zawierającej segmenty śladów SciFi, które stanowią
podstawę do bardziej złożonej rekonstrukcji śladów typu downstream. Drugi
selektor ma na celu identyfikację śladów downstream i eliminację śladów kombi-
natorycznych (ang. ghost tracks), powszechnie nazywanych „śladami duchami”,
które nie odpowiadają żadnym rzeczywistym trajektoriom. Ta faza stanowi jeden z
najbardziej wymagających technicznie aspektów badań, obejmujący rygorystyczną
ocenę metryczną i ocenę wydajności modeli, a następnie ich integrację i wdrożenie
w ramach oprogramowania Gaudi oraz algorytmów rekonstrukcji śladów LHCb.

Drugi projekt ma na celu opracowanie metodologii monitorowania do analizy
i kalibracji detektora UT, co pomoże zoptymalizować stosunek sygnału do szumu
w celu lepszej rekonstrukcji hitów.

Słowa kluczowe: Ślady downstream, Uczenie maszynowe, Wyzwalacz wysok-
iego poziomu, Sieci neuronowe, Rekonstrukcja śladów

xxi





Abstract

This thesis presents a comprehensive account of five years of research conducted
within the LHCb experiment at CERN. The work focuses on developing and ap-
plying machine learning techniques to enhance track reconstruction and detector
performance. The work is organised into two phases, each addressing distinct but
related challenges in particle tracking and data analysis.

The thesis explores strategies to leverage these software triggers to maximise
reconstruction efficiency without compromising physics data. The second phase
focuses on the Upstream Tracker (UT), a detector positioned upstream of the
dipole magnet critical for precise momentum measurements.

The first phase focuses on improving downstream track reconstruction by devel-
oping two machine learning models. The first selector aims to enhance the quality
of SciFi track segments, which serve as the seeds for more complex downstream
track reconstruction. The second selector is designed to identify the downstream
tracks and eliminate combinatorial tracks, commonly called “ghost tracks,” which
do not correspond to real particle trajectories. This phase represents one of the
most technically demanding aspects of the research, involving rigorous metric
evaluation and performance assessment of the models, followed by their inte-
gration and deployment within the Gaudi software framework and the LHCb
track reconstruction algorithms. The second project aims to build a monitoring
methodology for analysing and recalibrating the UT detector, helping to optimise
the signal-to-noise ratio for improved track reconstruction.

Keywords: Downstream Tracks, Machine Learning, High-Level Trigger, Neural
Networks, Track Reconstruction
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Chapter 1
Introduction

1 Physics Motivation
High energy physics (HEP), also known as particle physics, is the field of science
dedicated to the exploration and study of the fundamental building blocks of
matter and the forces that govern them. The current theoretical framework strongly
depends on energy scales. On the macroscopic level, the dynamics of spacetime,
gravity, and everything associated with it explain the underlying mechanics of the
Universe; the General Theory of Relativity with remarkable precision. It is one of
the most widely accepted theories for explaining large-scale systems. However,
this classical framework cannot explain the quantum realm, and we need Quantum
Mechanics to explain that.

"It all starts with one simple question: How did it all begin?

One of the open-ended questions in science and the most puzzling mystery
for humankind is how it all started: the cosmic origins of celestial objects and the
Universe and everything within.

Big Bang Theory, one of the most widely accepted theories, describes that all
began from a quantum fluctuation, which was likely amplified during the phase
called cosmic inflation. This initial seed evolved over approximately 13.8 billion
years to grow [1] to the current state of the Universe that we observe (it is worth
noticing that the recent discoveries of the James Webb Space Telescope may strain
the classical cosmology). What existed before the Big Bang remains an open-ended
question yet to be understood. In popular opinion, it may have been one of several
significant events in the early Universe. It may not be the only event, and the
concept of time itself may have lacked meaning before it.
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One of the intriguing puzzles in the aspects of the current Universe is its com-
position. The visible Universe consists mainly of matter components, yet the corre-
sponding antimatter is almost absent. According to the current theories, matter
and antimatter should have been produced in equal amounts in the early Universe.
However, the antimatter part is conspicuously missing. If a perfect symmetry had
existed, they should have annihilated each other, leaving only the energy; no atoms,
no universe, no life. However, a slight excess of matter remained over antimatter,
about 1 in a billion matter-antimatter pairs, for reasons not yet fully understood.
This tiny imbalance is responsible for the matter-dominated Universe in which we
live. One proposed explanation for the matter-antimatter asymmetry is based on
violating Charge-Parity (CP) symmetry. Although the theoretical frameworks for
violating the CP are well established, experimental validation is still ongoing [2].
It is worth noticing that the LHCb (Large Hadron Collider beauty experiment)
was especially designed to explore this puzzle in the heavy quark sector.

Particle accelerators are one of the key frontiers in the experimental validation
of these theories. Colliding particles at extremely high speeds allow us to recreate
energy scales similar to those of the early Universe. Experiments such as those
conducted at the Large Hadron Collider (LHC) help to make precision measure-
ments and uncover and study phenomena beyond the Standard Model of Particle
Physics.

2 The Standard Model and the Limitations
The Standard Model(SM) of Particle Physics is a well-established theoretical frame-
work that describes the fundamental building blocks of matter and the forces that
govern their interactions, excluding gravity. Although it can explain all presently
known elementary particles, it is not a complete theory of nature. It fails to explain
several key phenomena, including the existence of dark matter and dark energy,
the accelerated expansion of the Universe, and it cannot incorporate gravity. SM
is built on the foundation of quantum field theory (QFT), and they have been
rigorously tested using high-precision experimental instruments like the LHC [3].
Elementary particles, the fundamental building blocks of all known matter, are
the constituents of the Standard Model. As shown in Figure [1], they are broadly
classified into two categories:
• Fermions: Fermions are the matter particles - they build up all the matter we

observe. There are 12 fundamental fermions, further split into two subcategories:
quarks and leptons.
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Each fermion carries 1
2 spin and is subject to the Pauli Exclusion Principle, which

prohibits identical fermions from simultaneously occupying the same quantum
state.

Quarks: Quarks are the strongly interacting particles, and they have six flavours
that we know so far. Up, Down, Charm, Strange, Top, and Bottom Quarks.
They possess a quantum entity color charge that leads them to have a strong
nuclear force mediated by gluon force carriers.

Leptons: Leptons come in three generations, the electron, muon, and tau, and
their neutral counterpart, the neutrino. They do not experience strong
interactions and participate in electromagnetic and weak interactions.

Figure 1: Standard Model of Particles [4]

• Bosons: Bosons are force carriers in the standard model — they mediate inter-
actions between fermions. They carry integer spin values and do not obey the
Pauli Exclusion Principle, allowing multiple bosons to occupy the same state.

Gauge Bosons: Gauge bosons mediate the fundamental forces described by the
Standard Model. The photon is the electromagnetic force carrier, the gluon
mediates the strong force between quarks, and the W± and Z bosons are
responsible for the weak nuclear force.

Higgs boson: The Higgs boson, commonly known as God’s particle, is a scalar
particle with spin 0. It is associated with the Higgs field. The Higgs field is a
quantum field that gives mass to theW and Z bosons and fermions through
spontaneous symmetry breaking. The Higgs boson was discovered at the
LHC in 2012, confirming a key prediction of the Standard Model [5].
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3 CERN and the LHC Experiment.
CERN, the European Organisation for Nuclear Research (originally Conseil Eu-
ropéen pour la Recherche Nucléaire), is one of the world’s largest and leading scien-
tific institutes in particle research. The scientific facility is located near Geneva,
Switzerland. CERN was established in 1954 by twelve Western EU countries to
conduct scientific experiments with global collaboration, hosting a community of
researchers worldwide. Its mission includes exploring fundamental questions in
physics, probing beyond the Standard Model, and advancing our understanding
of particle physics. CERN houses the Large Hadron Collider (LHC), the world’s
largest and most powerful particle accelerator. The LHC is a circular proton-proton
collider with a circumference of 26.7 kilometres, situated approximately 100 meters
underground, and spanning the border between France and Switzerland.
As the name suggests, the Large Hadron Collider (LHC) accelerates and collides
hadrons, specifically protons, at near-light speeds. At LHC, hadrons are used for
several reasons, including that protons are stable and easy to accelerate using
electromagnetic fields. Colliding protons allow us to access the internal structure,
quarks, and gluons (partons). Most importantly, the high energies involved in
these collisions can recreate conditions similar to those just after the Big Bang,
allowing the creation and study of rare or heavy particles or potential new physics
beyond the Standard Model.

The LHC hosts four major experiments: ATLAS (a toroidal LHC apparatus),
CMS (compact muon solenoid), ALICE (a large ion collider experiment), and
LHCb (LHC-beauty). The LHC is designed to accelerate protons and heavy ions in
two counterrotating beams that travel in opposite directions within separate beam
pipes. Each proton is accelerated to 6.5 TeV in proton-proton collisions, resulting
in a total centre-of-mass energy of 13TeV [7].

The final energy is achieved through multiple stages of a complex accelerator
chain. The protons travel through several stages before being injected into the LHC.
The beams collide at four designated interaction points, supplying data to all four
experiments and other experiments. The LHC operates with a bunch-crossing rate
of 40MHz, meaning that proton bunches collide up to 40 million times per second,
although only a small fraction of these events are recorded after the trigger systems
[8].
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Figure 2: LHC-Complex [6]

Figure [2] shows the LHC complex. The Step-by-step acceleration of protons in
the LHC begins with a linear accelerator. Historically, Linac2 accelerated protons
to 50MeV, but now it has been replaced by Linac4, which accelerates negative
hydrogen ions (H−) to 160MeV. These ions are then stripped of their electrons
to produce protons before injection into the Proton Synchrotron Booster (PSB).
The protons are subsequently accelerated through the Proton Synchrotron (PS)
and the Super Proton Synchrotron (SPS), reaching an energy of 450GeV before the
final injection into the LHC. At LHC, they are accelerated to a maximum energy of
6.5TeV per beam. Filling both beams takes approximately 4 minutes and 20 seconds,
followed by an additional 20 minutes to ramp the beams to their maximum energy
levels.

4 WLCG - Computing Grid and Dirac.
Due to the high collision rates and precision requirements, the LHC produces a
large volume of data. The experiments rely on a multi-level data acquisition and
processing system to handle this. CERN has a robust and well-structured frame-
work for managing computational resources, from data acquisition and storage to
a global distributed processing system of experimental data.
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An important key component in this computational infrastructure is the World-
wide LHC Computing Grid (WLCG). WLCG is a distributed computing system
designed to handle and store massive volumes of data generated by the LHC
experiments as shown in Figure [3].

Figure 3: WLCG Network [9]

WLCG comprises thousands of computational nodes distributed across the
globe, providing distinct serviceswithin theGrid. Globally, it is built and structured
in a four-level tier system.
Tier 0 Located at CERN and performs initial data processing, handling about 25%

of the total computational load.

Tier 1 Includes 14 large data centres, and is the primary backup support for Tier 0
[10]

Tier 2 Consists of 150 universities and research facilities, focusing mainly on sim-
ulation tasks and user-level data analysis.

Tier 3 Consists of many small, locally maintained computing resources.
A powerful middleware framework calledDIRAC(Distributed Infrastructure with

Remote Agent Control) orchestrates the efficient coordination of these distributed
infrastructures [11]. Dirac plays a central role in job scheduling, resource allocation,
and management across the Grid. Scalable, high-throughput distributed systems
are critical for an experiment like LHC. WLCG and Dirac together make it feasible.
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5 Upgrade I
Following the Long Shutdown 2(LS2), the LHCb experiment entered its Run 3
phase. It is a milestone, marking the beginning of Upgrade 1, in enhancing data
acquisition capabilities and precision measurements. The experiment was resumed
with the proton-proton collision at a centre-of-mass energy of√s = 14 TeV. One of
the significant upgrades happened in the detector read-out systems, transitioning
to a more robust software trigger system that replaced the old hardware trigger
systems. In Run 3, the LHCb experiment will operate at an increased instantaneous
luminosity of 2 × 1033 cm−2s−1. This is a significant improvement over Run 1 and
Run 2. This change can result in a collection of approximately integrated luminosity.
50 f b−1 during Run 3. Compared to the combined integrated luminosity of Run 1
and Run 2, it is 8 f b−1.

5.1 Instantaneous Luminosity

Instantaneous luminosity (L) is one of the improvements from Upgrade 1. It is the
measure that quantifies interactions per unit of area per unit of time. It quantifies
how often particles collide in the detector.
The instantaneous luminosity L is defined as:

L =
N · f

A
(1)

And for practical analysis, Integrated Luminosity (Lint) is preferred as a relevant
parameter. It is the total number of expected signal events for a given process. The
event rate is given by:

dN
dt

= L · σ (2)

Where:
• N is the number of particles per bunch crossing,

• f is the bunch crossing frequency,

• A is the effective transverse area of the beam overlap.

• σ is the cross-section for the process of interest.
This increased L leads to a higher average of visible interactions per bunch

crossing, called pileup. This directly increases the average event size by a factor of
3x. This scale-up requires a more robust trigger system. LHC is designed to handle
a maximum instantaneous luminosity of 1034 cm−2s−1, using 2808 bunches per
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beam. Each bunch contains on the order of 1.1 × 1011 protons [12]. In the case of
LHCb, it operates at a significantly reduced event luminosity. This design choice
ensures optimal vertex separation, reduced event multiplicity, and a better signal-
to-background ratio. This, in turn, improves the precision and the reconstruction
fidelity of time-dependent and rare decay measurements.

6 LHC-beauty Experiment
The LHCb experiment is one of the flagship experiments at the LHC. The LHCb
detector is a forward spectrometer with distinct geometric coverage as showed in
the Figure [4]. The LHCb experiment is designed to make precise measurements
and study particles produced within a slight angle relative to the beam line. As
the name implies, the experiment’s primary focus was on the detailed exploration
of beauty quarks, one of the six in the Standard Model.

Figure 4: LHCb Experiment [Side View] [13]

The central idea of LHCb is to investigate the asymmetry between matter and
antimatter in the Universe generated within the heavy quark sector. In the case of
CP violation, a combined symmetry of charge conjugation (C) transforms particles
into their corresponding antiparticle component and parity (P), which inverts the
spatial coordinates. The violation of this context is a vital element in this experi-
ment in deepening our understanding of the fundamental forces of nature.
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LHCb is designed with a unique structure with:
• Pseudo-rapidity (η) and Coverage:

η = − ln
(

tan
θ

2

)
, 2 < η < 5 (3)

The forward region is optimal for detecting heavy-flavor hadrons.

• Angular Acceptance:

10 mrad < θ < 300 mrad (bending plane)
10 mrad < θ < 250 mrad (non-bending plane)

Corresponds to the detector’s acceptance at a polar angle.

• Geometrical Coverage:

Solid angle coverage ≈ 4% of full solid angle

Optimized for heavy-flavor physics.

• Heavy Quark Detection:

Detection of ≈ 40% of all bb̄ and cc̄ pairs

• Hadron Detection Efficiency:

Detects > 25% of all hadrons produced in pp collisions

• Interaction Point:

Single-arm forward spectrometer design
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7 LHCb Tracking System
Charged particles’ trajectories are reconstructed using very precise momentum
measurements while traversing through the detector. This is achieved using a
combination of tracking detectors and magnetic deflections.

The LHCb tracking system consists of three main subdetectors: the Vertex
Locator (VELO), the Upstream Tracker (UT), and the Scintillating Fibre Tracker
(SciFi). A dipole magnet, located between the VELO and UT, introduces curvature
into the trajectories of charged particles, helping to estimate their momentum using
the Lorentz force [14].

7.1 Vertex Locator (VELO)
The Vertex Locator (VELO) is a hybrid pixel silicon detector. The upgraded VELO
detector is redesigned to operate for Run 3 at a much larger instantaneous luminos-
ity, about 5 times larger than compared to Run 1 and Run 2 conditions, and with a
bunch crossing of 30 MHz. Pixel sensors help mitigate and significantly reduce
channel occupancy and improve spatial resolution.

Figure 5: Vertex Locator

12



7. LHCB TRACKING SYSTEM

As displayed in Figure [5], VELO has a retractable geometry and lightweight
construction and is positioned close to the interaction point surrounding the re-
gion. It comprises 4.1 × 107 pixels, each with dimensions of 55 µm× 55 µm [15].
To ensure thermal stability and minimum noise, the detectors are cooled using
evaporating CO2 circulations through microchannel cooling systems embedded
within the sensor modules.

The primary function of the VELO is the reconstruction of the vertices. This re-
quires precise identification of primary interactions as well as displaced secondary
vertices originating from the decay of particles. Thus, one of the key aspects of
VELO is the ability to measure impact parameter (IP)—the transverse distance
between a reconstructed track and the associated vertex with high precision. Re-
tractable halves can reach as close as 5.1 mm from the beam line, which is critical for
accurate IP measurements. Considering the limited geometrical acceptance, VELO
is a crucial component of LHCb for reconstructing tracks that would otherwise fall
outside the detector’s acceptance region. VELO is housed in its vacuum enclosure,
separate from the primary beam vacuum to minimise scatter, multiple scattering,
and interactions with the residual gases. An aluminium RF foil further protects it.
These protections can further mitigate the interactions with the air molecules and
preserve the quality of the reconstructed tracks with improved vertex resolution.

7.2 Upstream Tracker (UT)

The Upstream Tracker (UT) is a four-plane silicon microstrip detector. It is strate-
gically positioned immediately downstream of the VELO and upstream of the
LHCb dipole magnets. This is an important configuration for enhanced track recon-
struction precision before the charged particles experience magnetic deflection. UT
plays a central role in improving the accuracy of momentum estimation. One of the
key aspects of UT is the distinguishing of true particle trajectories from combinato-
rial artefacts that do not originate from any corresponding real particles - called
Ghost Tracks. UT uses silicon microstrip technology that helps achieve high spatial
resolution, enables reliable identification of charged particle tracks, and minimises
false positives in the experiment. This is particularly important for maintaining
the integrity of the reconstructed tracks in high-occupancy environments.
The UT replaces its predecessor, Tracker Turicensis (TT), as part of Upgrade I.
These transitions have several motivations.

• Radiation Tolerance: High radiation levels are expected during Run 3. Because
they are positionedwithin the beam pipe region and are subject to high radiation
doses. However, the TTwas not designed to operate reliably under high radiation
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Figure 6: Upstream Tracker [16]

conditions. UT uses improved radiation-hardened sensors.

• Improved Granularity and Precision: The UT has higher granularity at the chip
level than the TT, leading to improved spatial resolution and more precise track
measurements.

• Read-out Capability: The Beetle chip, which formed the read-out backbone
of the TT, cannot support the required 40 MHz full detector read-out that was
required by Upgrade I, (the new DAQ architecture also supports triggerless
VELO readout) [17]. The UT uses SALT ASIC, which is specifically designed to
handle high data rates and perform real-time signal processing on the detector
side.
As the Figure [6] illustrates the UT structure, it maintains a detector geometry

similar to that of TT. It consists of four layers: X-U-V-X. The inner layers (U and V)
are tilted at a stereo angle of ±5◦ with respect to the vertical axis (Y) to improve
the resolution of the impact in the transverse plane. Sensors close to the beamline
are radiation hardened to have a high radiation tolerance to withstand the harsh
environment.
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7.3 Scintillating Fibre Tracker (SciFi)

The Scintillating Fiber Tracker (SciFi) is the main downstream tracking detector.
It is located after the dipole magnet. SciFi tracker plays an integral role in track
reconstruction strategies. It is designed to help reconstruct the trajectory of the
charged particles by detecting the light produced when they traverse the scintillat-
ing materials.

As the Figure [7]illustrates, The SciFi Tracker consists of three tracking stations,
each consisting of four detection planes arranged in X-U-V-X geometry. Similarly
to the case of UT, the inner stereo planes are tilted with respect to the vertical
axis for improved resolution and high-precision 3D track reconstruction. SciFi
Tracker replaces its predecessor. Like UT, SciFi is radiation hardened to enhance its
tolerance and sustain itself in high occupancy and harsh radiation environments.
SciFi can provide almost complete angular acceptance of the detector region and
achieve a spatial resolution of 80 µm [18].

Figure 7: SciFiTracker

Each detector plane is built from scintillating fibres with a diameter of 250 µm
and a length of 2.5 m. Scintillating fibres are thin, flexible strands emitting light
when charged particles traverse them. At the end of the fibre ribbons, the light
is then guided to the Silicon Photomultipliers (SiPMs) placed on top or bottom of
the detector, providing precise spatial and energy deposition information of the
charged particle.
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Each SiPM contains 128 individual pixels capable of detecting single photons.
They collectively help to capture the track trajectory, inferring the patterns and
number of photons detected. As a fun fact, the name SciFi originated from its
fictional-like concept and difficulty in building, and the feasibility of construction
was doubted at the time.

8 LHCb Data Infrastructure
The LHCb data processing infrastructure is built on the x86 microprocessor hard-
ware architecture with support of the GP-GPU chips. The Figure [8] shows the
dataflow in LHCb experiment. The digitised data from the detectors’ data acqui-
sition components is passed to High-Level Trigger I (HLT I), which is processed
in real time (synchronous to the beam). HLT I is operated within the Event Filter
Farm (EFF). The partially reconstructed data are then transferred to a buffer. This
buffer is used for the Real-Time Calibration and alignment of the detector hardware.
Once the calibration and alignments are completed, the events are processed by
High Level Trigger II for full event reconstruction.

Figure 8: LHCb Data-flow [19]

This real-time processing approach essentially eliminates the need for tradi-
tional offline reconstruction and RAW data storage (some percentage of full RAW
data is stored for reference and calibration purposes). This is a great challenge and
a significant shift in computational loads, making it possible to move the offline
processing power toward simulation tasks.
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9 High-Level Trigger (HLT)
In Run 1 and Run 2, LHCb operated with a hybrid trigger system comprising a
hardware-based trigger (L0) and a software-based HLT [20]. The data flow was
considered in two main streams.

Persistent Stream: The full event information that is processed offline.

Turbo Stream: The real-time processed data derived from trigger levels with re-
duced size (only essential objects that triggered the event are retained).

40 MHz bunch crossing rate

450 kHz 
h±

400 kHz 
µ/µµ

150 kHz 
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb Run 2 Trigger Diagram

(a) Run 2 : Trigger

30 MHz inelastic event rate 
(full rate event building)

Software High Level Trigger

10 GB/s to storage

Full event reconstruction, inclusive and 
exclusive kinematic/geometric selections

Add offline precision particle identification 
and track quality information to selections 

Output full event information for inclusive 
triggers, trigger candidates and related 
primary vertices for exclusive triggers

LHCb Upgrade Trigger Diagram

Buffer events to disk, perform online 
detector calibration and alignment

(b) Run 3 : Trigger

Figure 9: Trigger Configurations in Run2 and Run3 [21]

In 2017, around 50% of the data was already being processed via Turbo Stream,
and from Run 3, the experiment has fully transitioned to the online Turbo Stream
model [22]. Figure [9 shows the comparison between the Run 2 trigger and Run 3
trigger systems. This real-time processing model output contains all the necessary
physics information for later analysis, and only a minor fraction of the RAW data
is stored for specialised studies.
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It was not an easy, but a necessary transition, which enabled a significant
overhaul of the trigger systems. The L0 trigger in the earlier version operated at 1.1
MHz with a limited latency of 4 µs. This was a significant bottleneck, considering
the LHC operated at a 40-MHz bunch crossing rate. From being operational in
Run 3, the L0 trigger has been entirely replaced by a fully software-based trigger
architecture. This new, modern, robust trigger system can handle an effective input
rate of 30 MHz [23]. The upgraded trigger systems consist of two components:

Low-Level Trigger (LLT) This is an optional throttlingmechanism that existed for
Run 2. It is a simplified FPGA-based filter designed to pre-select events based
on selective conditions, like high-transverse-energy clusters in calorimeters or
high-transverse-momentum tracks in muon systems. In fact, this system can
reduce the load on the main software trigger by a factor of 2, with minimal
loss of physics data. This acts as a backup mechanism that can be used to
preserve efficiency in hadronic channels.

High Level Trigger (HLT) This is the major shift in the key components of the
trigger systems. HLT follows a hierarchical architecture.

• HLT 1: Performs real-time partial event reconstruction, including track
finding and initial physics selections, with a strict time budget and syn-
chronous with data taking.

• HLT 2: After real-time calibration and alignments, execute a full event
reconstruction. It helps with the final output used for physics analysis and
works asynchronously.

High-Level Trigger 1 (HLT1) High-Level Trigger 2 (HLT2)
Vertex identification using impact pa-
rameter (IP)

Uses exclusive algorithms for specific
decay reconstruction

Track association and transverse mo-
mentum reconstruction using for-
ward tracking

Full reconstruction of decays within
detector acceptance

No particle identification Inclusive trigger selections with PID
Performs online calibration and align-
ment

Implements Turbo stream returning
fully reconstructed data

Table 1: Duties of HLT1 and HLT2 in LHCb
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HLT 1 has strict timing constraints that allows for only partial track reconstruc-
tion [24]. This process is inspired by Run 2, making HLT a strong focus on real-time
calibration and alignments. Alignments are performed using the data collected
during each fill, and the calibration is continuously evaluated on a per-run basis,
making it possible to perform a complete reconstruction of the event at HLT 2.

The new trigger system is supported by a modular read-out architecture com-
prised of the following components: Event Builder(EB), Timing and Fast Control
System (TFC), Experiment Control System (ECS), and Event Filter Farm (EFF).
These structures deliver seamless, flexible, and scalable solutions for real-time
event processing. After the software trigger, the event rate reduced from 30-40
MHz to about 10 GB/s of data written to the storage. Compared to Run 2, the
final throughput was just 0.6 GB/s due to hardware limitations. This new system
provides significantly higher efficiency with greater flexibility in data handling.

10 Thesis Strategy and Contributions
In this research, a two-stagemachine learning pipeline is deployedwithin the HLT2
trigger system. The High-Level Trigger (HLT) provides a stable and robust track
selection and reconstruction framework. With particular emphasis on downstream
tracks originating from the decays of long-lived particles. The improved selection
of long-lived tracks has an entirely new meaning for the upgraded detector, since
it may potentially help in identifying processes beyond the Standard Model. The
primary objective of this work is to improve Downstream Track reconstruction
in the LHCb Experiment. It is addressed in two parts: selecting true seed tracks
for reconstruction and correctly identifying true downstream tracks. These form
the core contributions of the work presented here and will be discussed in the
following chapters. As an extension of detector calibration efforts, the project also
explores and implements recalibration techniques and monitoring methods, which
constitute the final phase of this thesis.
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Chapter 2
Tracking of Charged Particles in LHCb

Track Reconstruction of a charged particles is a very complex experimental task. It
involves interpreting the local (low-level observables) signals generated within
the active material of the sub-detectors as the particle traverses them. These signals
help to derive the particle trajectory it leaves behind. These tracks are then used to
reconstruct the high-level observables, such as the impact parameter, the momen-
tum, and other key variables, which are essential for physics selections performed
on the trigger level.

1 Track Topology in LHCb
As charged particles cross the detector, they produce a variety of track segments.
These segments are broadly classified based on the sub-detectors where the parti-
cles leave signals. Figure [10] shows classifications in track types. The classification
reflects the origin, energy, and history of the interaction between the detectors, etc.

VELO Tracks: These tracks leave signals exclusively in the VELO detector. VELO
tracks do not providemomentum information since they are located upstream
of the magnetic field region.

T-Tracks: Also known as SciFi Tracks, these are formed solely from hits in the
SciFi tracker. Considering the geometry of the SciFi tracker, these tracks serve
as seed candidates for reconstructing more complex track types.

Upstream Tracks: These tracks produce signals in both VELO and UT, but not
in SciFi Tracker. Typically made from low-momentum particles that do not
reach the downstream tracking stations.
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Figure 10: Track Types : LHCb [25]

Long Tracks: These tracks leave hits in all three tracking stations, providing the
best momentum resolutions.

Downstream Tracks: These tracks originate from the decay of long-lived particles
and leave hits in UT and SciFi Tracker, but not in VELO.

2 Downstream Tracking and its Challenges

Long-lived Particles(LLPs) apart from the standard ones (K0
s and Λ0) can also rep-

resent new particles beyond the SM. Unlike most known particles, LLPs have
relatively long lifetimes. They can travel a measurable distance before decaying,
often producing displaced vertices. They do not leave any signals at VELO, but at
UT and SciFi Tracker. Making the long-lived displaced vertices an experimental
signature that can hint at new physics phenomena.

To study LLPs beyond the SM, we can refer to known particles within the SM.
Neutral kaons like K0

S and Lambda baryons like Λ0 are particularly useful due to
their well-understood behaviour for benchmark reconstruction validations. Having
no signals at VELO poses additional challenges in reconstructing the origin vertex
with high precision, on top of the other existing challenges in track reconstructions.
It makes the study of LLP decay more complex. In the context of systematic errors
and uncertainties, the track reconstruction precision measurements are mitigated
by multiple techniques, which include alternating polarities to help reduce biases.
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Track reconstruction of the charged particles consists of three main steps:

Pattern Recognition This is the initial step of track reconstruction, where the goal
is to associate individual detector hits (local, low-level observables) into a
segment originating from a single particle. Because of the large number of
particles produced in each collision and, consequently, the huge number of
hits that must be associated with each reconstructed particle, the pattern
recognition is a highly non-trivial task. One must deal with hits that are cre-
ated by the detector noise and real ones that may overlapwith hits originating
from a different particle. This leads to exponential growth of complexity in
accurately associating hits. Pattern recognition involves identifying and reject-
ing unwanted combinatorial tracks that are noise and do not correspond to
an accurate trajectory by retaining the hits likely to originate from a particle.

Track Fitting Once we have the sets of hits associated with each reconstructable
particle, the next step is to refine this by fitting the track parameters. For this,
we widely use algorithms like the Kalman Filter, one of the well-suited algo-
rithms for handling the challenges posed by multiple scattering and energy
loss caused when particles interact with the detector material. This involves
detailed calculations of the particles propagating through the detector’s mag-
netic field and material layers, making it one of the most computationally
intense parts of the process.

Clone Killing Once the track fitting is completed, this step helps remove ambigu-
ous signals and overlapping tracks that can be constructed. The clone killing
step helps identify and remove redundant tracks by retaining good-quality
track trajectories for further studies.

Having no signals for daughter tracks of the long-lived particles at VELO poses
additional challenges in reconstructing the decay vertex with high precision, on top
of the other existing challenges in track reconstructions. This makes the study of
LLP decay more complex. In the context of systematic errors and uncertainties, the
track reconstruction precision measurements are mitigated by multiple techniques,
including alternating polarities to help reduce various detection asymmetries.
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3 Software Infrastructure
At the LHC, the hardware infrastructure is deeply integrated with a layered soft-
ware stack to ensure the efficient and seamless operation of the experiments. This
integration is particularly vital in the case of the LHCb experiment due to the
real-time data processing requirements and high data throughput. The LHCb
software stack enables an end-to-end workflow from data acquisition using full
detector information in real-time to offline physics analysis. The Figure [11] shows
the main projects within the LHCb software stacks:
• Gaudi: The core software framework that orchestrates the execution of algo-

rithms in both the online (real-time trigger) and offline (analysis and reconstruc-
tion) environments.

• Ganga: A front-end for job submission and monitoring, facilitating task man-
agement across the computing Grid [26].

• Simulation Stack (Pythia8/Geant4): Used for generating Monte Carlo data,
including event generation and detector simulation.

• Moore: The framework used to implement and test trigger algorithms, specifi-
cally for HLT2. Activate the real-time event selection during data collection.

• Rec: A reconstruction support framework tightly coupled with Moore, used for
detector-level track, particle reconstruction, and real collision data.

• DaVinci: A post-trigger analysis framework, used primarily for physics analysis.
It allows for the reconstruction and selection of decay channels of interest.

Figure 11: Software Stack at LHCb [27]
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3.1 Gaudi Framework

Gaudi is a modular and extendable framework designed for event data processing
and algorithm execution [28]. Initially implemented in C++98, the framework has
been substantially upgraded to C++11 and subsequent standards. The LHCb Event
Filter Farm (EFF) exploits both x86-64 processors as well as GP-GPU chips. For the
CPU computations, it leveragesNon-UniformMemory Access (NUMA) architectures
to optimise parallel performance. Using the task-based scheduling model, Gaudi
employs a multithreading model that supports concurrent event processing. This
allows algorithms to be executed in parallel whenever dependencies permit.

The central component of the Gaudi framework is the transient event store (TES).
It serves as an in-memory data exchange layer between algorithms. TES ensures
type-agnostic data storage using standard STL containers, such as std::vector,
and is designed to be immutable and thread-safe, enabling safe concurrent access.
During Run 2, several performance bottlenecks were identified, including blocking
I/O operations, suboptimal offloading to coprocessors, limited RAM scalability,
etc. These constraints were mitigated in Run 3. This was achieved with the help of:
• Adoption of a concurrent data processing paradigm through simultaneous

multithreading.

• Major refactoring of the core algorithms to ensure thread safety.

• Implementing improved dynamic load balancing strategies, eliminating the
need for complete process restarts.
Together, these established a foundation for real-time data processing, substan-

tially reducing the computational cost per event.

3.2 Ganga: Grid Interface

Ganga is a job management tool by LHCb and ATLAS. Provides a unified environ-
ment for submitting, monitoring, and managing computational tasks across het-
erogeneous distributed resources across the grid. Enabling Ganga helps seamlessly
prototype analyses locally and scale them to a grid with minimal modifications
in the configuration files. The necessary job splitting, resubmission, and resource
allocations are made behind the scenes for the user, making it an essential tool for
high-throughput production data and simulations.
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3.3 Simulation Tools
The experiments rely onMonte Carlo simulated data for various reasons, including
validating reconstruction algorithms, designing trigger algorithms, and optimising
algorithms.
Three popular tools that are designed for the complete chain of particle interaction
and detector responses are:

Pythia Generates the initial hard processes and subsequent parton shower using
QCD-based models [29]

EventGen Helps simulate the decay of unstable particles and takes into account
sophisticated models to generate CP-violation effects in the final states

Geant4 The tool propagates particles through the detailed detector geometry, con-
sidering material interactions, energy losses, secondary particle productions,
etc. [30]

3.4 Moore
Moore Project serves as the framework for the LHCb trigger application and is
responsible for filtering the events that arrive at an input rate of 40 MHz collisions
down to an output rate of around 100 kHz. LHCoperateswith themachine collision
rate of 40 MHz while LHCb operates at 30 MHz visible interaction rate. The high-
level trigger in LHCb consists of two stages:

HLT1 : Partial reconstruction of tracks using Allen and executed on GPUs.

HLT2 Full reconstruction of tracks using Moore and executed on CPUs.

The Figure [12] shows the HLT 2 architecture design. Moore is built on top of
the Gaudi framework and operates in a hybrid implementation strategy: the core
functionalities are implemented using C++ for performance, and the trigger logics
and the workflow controls are done using configuration packages provided as
Python option files. Thismodular design helps in flexible reconfiguration and rapid
development of trigger strategies. The Python modules help test configurations,
tools, and dataflows without modifying the core algorithms.
Moore produces two analysis-ready datasets:

Turbo stream : This consists of 60-70%

Full Stream : This is the complete event data stored for calibration and rare analy-
sis.
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Figure 12: HLT2 Architecture Design [31]

This is the first time we have a complete real-time trigger system that solely
depends on the decisions made by the software triggers and does not store most
of the RAW data for later processing. Moore is designed to work by executing the
trigger lines of interest and writing events into different streams based on the lines
it fires.

3.5 Rec Modules
The LHCb stack, the software component of the experiment, consists of a series of
interdependent algorithms designed to perform specific, designated tasks. This
highly modularised framework is designed to execute high-performance compu-
tational tasks most optimally. The Rec frameworks provide the complete recon-
struction logic required by Moore to perform real-time trigger decisions. Its core
functionalities include track reconstructions, particle identifications, and integra-
tion with Monte Carlo truth tools for validation and performance studies. In the
context of this thesis, two main algorithms, along with several associated ones
within the Rec framework, were considered for development.
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3.5.1 Hybrid Seeding Algorithm

Hybrid Seeding Algorithm is a stand-alone reconstruction procedure developed to
identify and label hits to build SciFi tracks. These tracks function as seeds for
further track reconstruction. In contrast to other algorithms, it does not require
external input from additional detectors and can reconstruct tracks solely with
the hits from the SciFi tracker (thus, in this context, it is a stand-alone process).
This track reconstruction strategy builds the ground for the reconstruction of other
track types mentioned earlier, by extending them upstream through the detector
while accounting for the effects of the magnetic field. In the experiment system,
z-axis is measured along the beam direction, x-axis points outward from LHC ring
centre, and y-axis shows the direction pointing upwards.
To form the tracks, the algorithm follows the following steps, and the functions
are mentioned for reference:

Initialisation: Preparation of required prerequisites, including the data structure
to hold the hit data from the SciFi tracker.
[ModPrHits and PrFTHandler]

Core Parametrisation: This is the algorithm’s core. Using the hits from the T1 and
T3 stations, we can form a doublet of hits in the SciFi tracker. The algorithm
considers three different momentum ranges: low, medium, and high trans-
verse momentum, and further splits the detector geometry into two parts: top
(y>0) and bottom(y<0), to help solve the problems in different parameter
sets and reduce the complexity.

• Case 1: Tight Tolerance – High Momentum Tracks: X–Z projection is
almost a straight line.

• Case 2: Medium Tolerance.

• Case 3: Loose Tolerance – Low Momentum Tracks: X–Z projection shows
significant parabolic curvature.

Based on themomentum condition, the doublets can be formed into a straight
line for high-mass particles and a parabolic equation for low-mass particles.
This approach starts with high momentum tracks with the least parabolic
curvature and the highest quality of tracks, then eliminates the used hits and
narrows the search space. Once this is done, based on the tolerance window,
a search for the third hit is initialised, and the closest point is picked.

X-Z Projection Finding: This is one of the most computationally intensive steps
in the algorithm. This step tries to form a 2D track in the non-bending (X-Z)
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plane in every parametrised evaluation cycle. Once the hits are found and
fitted to a cubic corrected parabola, the χ2 value is evaluated for the track
quality. If the value is high, the track is rejected, and for a lower value χ2, the
track is considered.
[Hybrid::SeedTrackX]

X-Z Clone Killing: Removing any copy of tracks before it goes for the next steps is
essential. This step ensures that no duplicate 2-dimensional track candidates
are removed.

Stereo Hits Addition : Using the formed 2D projections, these steps add hits from
the UV planes to form 3D tracks.

S = x cos α + y sin α, (4)

where α is the stereo angle of the detector.
Instead of this form, we use a more robust pattern recognition method called
the Hough Transform. In simple terms, this method considers all possible
candidates and shapes possible and picks the best possible track candidates
from the noisy environment. In this context, it forms the clusters of hits
formed in the detectors that belong to the same track, creating a peak in the
Hough space. Using these hit clusters and the 2D tracks, we can form the 3D
SciFi tracks.
[Hybrid::SeedTrack]

Hits Flagging : This is one of the essential steps to reduce the complexity of track
reconstruction exponentially. After each step, every used hit is tagged and
removed to be used in further reconstructions. This prevents it from being
used in subsequent cases, helping to reduce the search space drastically.

Track Recovery : This step can be considered as a safety check to recover any
missing tracks in the reconstruction. This is achieved if any strong track
candidate at any point of reconstructionwas removed from the final candidate
selection for any reason.

Final Clone Removal : This step involves removing any final duplicated 3D tracks
in the reconstruction sequence that can be removed before storing the SciFi
tracks.

Output Track Conversion : This step involves converting the final tracks to reusable,
stand-alone SciFi Tracks
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3.5.2 Long-lived Tracking Algorithm

The Downstream Tracking algorithm undergoes an intensive computational pro-
cess to address the complexities introduced in Run 3 from the increased data
volume and precision demands. The increased precision requirements require
meticulous reconstruction of the seed tracks, leveraging signals from the SciFi
tracker to accurately identify and initiate (track seeding) the track reconstruction.
Subsequently, these reconstructed track segments are extrapolated to the Upstream
Tracker (UT) detector, allowing the algorithm to discern and isolate the distinct
characteristics of Downstream Tracks.

Run 3 conditions increase the complexities of Downstream Tracking and in-
troduce increased computational tasks. The algorithm now handles an increased
volume of data, participating in the computation of numerous additional vertices,
etc. Moreover, the increased precision mandates significantly removing combina-
torial tracks, reflecting the algorithm’s commitment to delivering accurate and
reliable results. The Long Lived Tracking Algorithm is initiated at the SciFi Tracker
from the SciFi tracks (seeds). Three stations on the SciFi Tracker provide the first
track segment, which will then be extended to the UT Detector. In the case of MC
samples, the algorithm also checks for the initial conditions to be met:
• The track should not originate from an electron

• The track should have at least 70% matching hits

• The hits should be associated with a charged particle.

• The track should not have VELO hits associated.
The Pattern Recognition Algorithms search for clusters in two X-Layers of the

UT Tracker, and Clusters from the U-V Layers, showed in Figure [6] are added.
The signals from both trackers are then fitted using track χ2.
Later, a high-threshold bit flag will be associated to reduce the spillover impact
on the reconstruction process. This flag will be associated with each cluster if it is
generated in collisions that differ from the current one (the spill-over detection
algorithm is run at the previous stage and helps reject hits originating in previous
or next bunch crossing). Clusters associated with High Threshold Bits will be
rejected. As a final step, a Multivariate Classifier is deployed to select the best final
Downstream Tracks.
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There are a few conditions associated with selecting the right Downstream Tracks,
which are as follows:

Initialisation and Loading of Evaluation Models : The algorithm’s initialisation
involves initialising necessary data structures similar to Hybrid Seeding Al-
gorithms. On top of that, in this case, we have a more sophisticated statistical
model implemented in the algorithm for the track selection. At this stage, the
algorithm initialises the necessary weight parameters for the models.

Iterating through seed tracks As mentioned, SciFi tracks act as seed tracks for
reconstructing Downstream Tracks.

Extrapolation : For each seed track, a simple object is created that takes the state
of the seed at the last station and extrapolates to UT upstream, and stores it
as a lightweight internal track model.
[PrDownTrack]

Pre-selection: In this stage, the hits are collectedwithin themomentum-dependent
window definedwithin the UT detector. Stage of a track composed of the posi-
tion and the direction of the track and obtained from [State::Location::EndT]

[getPreSelection]

Combinatorial Search : Based on the last step, a combinatorial search is performed
in search of track patterns. This is more of a brute force approach, since the
pre-selected tracks are fewer compared to the overall noisy environment.
[createTrackCandidates]

Track Fit : The algorithm uses a simplified fit method to form the track at this
level.
[simplyFit]

Final Selection with MLP : A Multi-Layer Perceptron (MLP) model is trained
and deployed to evaluate track quality rather than having intricate cuts on
the statistical values [32]. The track is accepted based on the probability that
the track originates from real decay.

Output Conversion : This is the final stage where the best tracks are selected and
saved for further analysis. [Downstream Track]

3.5.3 Reconstructed Tracks Monitoring Algorithms

One of the other important components of the offline analysis is the RecoDumpers.
The algorithm PrTrackRecoDumper is a consumer module that produces detailed
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information about the reconstructed tracks and stores them in ROOT ntuples using
Moore for offline analysis. This monitoring algorithm is particularly significant in
the framework of this thesis, as it provides comprehensive event-level information,
including the ground truth. This can be used to develop predictive models based
on computational intelligence (Machine Learning) to identify the true particle
tracks.

The algorithms operate on the reconstructed track container and the MC parti-
cles key table, which contain information about true Monte-Carlo particles associ-
ated with the reconstructed tracks. They also have access to the complete collection
of detector hits and the event number for bookkeeping. The algorithm uses these
inputs to produce a single ntuple file, where each entry corresponds to an individ-
ual reconstructed track. The algorithm loops over every track in the input container
and proceeds as follows:

MCmatching : Use the link table to find the MC particles associated with the
reconstructed track; If a goodmatch is found, the isMatched variable is flagged
as true.

Variables of Interest : All predefined variables are set and called. e.g., Kinematical
Variable, Fit Quality, Origin, MCTruth, etc.

Associating with Hits Information : Iterate through the LHCb-IDs on the track
and find the original hits from the detector hit container.

Fill Trees : This is the final step, where the collected information is saved to the
output ntuple file.

3.6 DaVinci Framework
DaVinci is the central component of the offline physics analysis framework, which
is optimised for post-trigger data processing. DaVinci performs the full reconstruc-
tion of signal channels, refines offline selection criteria, and produces analysis-ready
n-tuples. It acts as a bridge between trigger selections and offline analysis.

DaVinci is built upon Gaudi and follows a similar architecture to the other com-
ponents, like Moore. It consists of core algorithms written in C++ and configurable
option files in Python for modularity and efficiency. DaVinci uses persisted candi-
dates from HLT2 or Sprucing with additional minimal context as input, avoiding
the requirement of rerunning full offline reconstruction.
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Chapter 3
Data-Driven Approaches in HEP

Artificial Intelligence (AI) and Machine Learning (ML) have become an integral
part of research and computational analysis in recent years. As in many other
domains, AI andmachine learning demonstrate significant potential in high-energy
physics. They offer solutions to complex problems, ranging from simulations to
real-time triggers and physics selections. The complexity of simulations, detector
designs, and large-scale numerical calculations has increased, especially with the
added challenges of Upgrade 1. This has created a need for more robust problem-
solving approaches. Today, improved hardware technology and larger volumes of
data make such approaches feasible and exciting research. Traditional statistical
methods struggle with non-linear relationships and high-dimensional data [33].
In contrast, modern ML methods excel at pattern recognition. They can address
the challenges facing traditional approaches.

1 How Do Machines Learn?
Machine learning is a computational paradigm that elevates traditional problem-
solving to more advanced data-driven methods. At its core, machine learning
allows machines to learn intricate patterns and build creative predictive models.
This happenswithout the need for explicit rule-based coding.Machine learning can
extract previously hidden insights from large datasets by combining statistics and
probabilities with advanced computational machines. Recent years have witnessed
a significant shift, driven by machine learning and artificial intelligence. Two
primary factors have driven this change: the exponential growth in data production
and the advancement of computational hardware [34]. The abundance of data and
the increase in computational power have propelled advances.
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1.1 Supervised Machine Learning
Supervised Machine Learning uses the labelled data for training. Each input variable
is coupledwith a corresponding output or value. The objective is to learn amapping
from the variables to the label in a multi-dimensional space.
The central idea is to learn a mapping function

f : X −→ Y (5)

that represents the data in the feature space. This function is later used for accu-
rate predictions on new data points. Supervised ML is broadly divided into two
categories.

Regression Problems are a core task in supervised machine learning in modelling
a relationship from input feature space to predict the output as a continuous value.
Classification Problems are probability-based problems; the model predicts the class
to which a data point belongs. Based on a variable threshold parameter, the class
of a data point is decided.

1.1.1 Linear Regression

Linear Regression Models are among the most widely used approaches in supervised
machine learning problems, mainly due to their simplicity and interpretability.
They provide the foundation for regression and classification problems, making
them a key component in predictive modelling [35]. A model response plot for a
simple linear model is showed here at Figure [13] The central assumption of any
linear modelling is that the relation between the input and output is linear and
can be expressed as a weighted sum of the inputs.

For linear regression to yield valid and interpretable results, the following assump-
tions must be made:
• Linearity: The relationship between independent and dependent variables is

linear.

• Independence: The observations are independent.

• Homoscedasticity: The variance of the residuals is constant across all levels of
the independent variables.

• Normality: The residuals follow a normal distribution with a zero mean.

• NoMulticollinearity: The independent variables are not highly correlated.
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Figure 13: Linear Regression Models [36]

The Figure [13] illustrates the model response for linear regression and can be
represented as:

Y = β0 + β1X + ϵ, (6)

whereY is the dependent variable, X is the independent variable, β0 is the intercept,
β1 is the slope coefficient, and ϵ is the error term. The goal of training the model is
to find the optimal values of β0 and β1 that minimise the prediction error.

1.1.2 Logistic Regression Models

Logistic Regression is a statistical method used for classification problems, where
the target variable can take only two or more distinct classes. They use a sigmoid or
soft-max function to map the linear combination of input variables to probabilities.

The linear composition of this problem is expressed as:

z = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βnxn (7)
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To model the probability of a particular class, a logistic function, also known as
the sigmoid function, can be used, defined as:

ϕ(z) =
1

1 + e−z (8)

Where:
• z is the input to the function (can be a linear combination of features),
• ϕ(z) is the output of the sigmoid function, bounded between 0 and 1.

Figure 14: Logit Function [37]

The sigmoid function in, Figure [14] maps any input with real values to a value in
the interval (0,1), making it suitable for estimating probabilities in binary classi-
fication problems. Logistic regression assumes a linear relationship between the
dependent variable, the independent variables, and the log-odds (also called the
logit). Here, odds represent the ratio between the probability that the event will
occur and the likelihood that it will not. The logarithm of the odds or logit is simply
the natural logarithm of these odds.

log
(

p
1 − p

)
= β0 + β1X1 + β2X2 + · · ·+ βnXn (9)

where:
• p is the probability of the event of interest,
• Xi are the predictor variables (i = 1, 2, . . . , n),
• β0 is the intercept term,
• βi are the coefficients associated with each predictor variable.
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The objective is to find coefficients β0, β1, . . . , βn that maximise the likelihood
of the data and minimise the prediction errors. Like other linear models, logistic
regression is valued for interpretability, simplicity, and computational efficiency.
The learned coefficients reveal each feature’s relative importance and direction
of influence on the outcome. Nevertheless, despite these advantages, logistic re-
gression is limited by its linear decision boundary, making it not preferred for
modelling complex or non-linear relationships between features. It is also designed
for binary classification; multinomial or softmax regression extensions are needed
for multi-class tasks.

1.1.3 Nearest-Neighbor-Algorithms

Nearest-Neighbor-Algorithms are a step above linear models in their complexity. The
predictions are based on the distance metrics from the data point of interest to
the closest labelled data points. The most popular algorithm in this case is the
K-Nearest-Neighbours Algorithm or KNNAlgorithm. It uses various distance met-
rics, including Manhattan, Euclidean, and cosine similarity. Here, the assumption
is that similar input data points produce similar output data points.

KNN is a non-parametric method that can be used for both regression and
classification. They do not have assumptions about the underlying probability
distribution in the data, but similar data points are expected to produce similar
outputs. Examines and identifies similar data points around the instance and pre-
dicts the value or label based on the point. The essential key parameter to use is "k",
which represents the number of data points to consider when evaluating the new
value of the prediction. In classification, the new label is typically determined by a
majority vote system, while in regression, it is often the average of the neighbours’
target values. Due to the inherent complexity of distance measurement calculations
for individual data points, they are rarely used in large datasets.

1.1.4 Naive Bayes

Naive Bayes is a generative model that connects statistics and probability with
advanced computational models. It is based on Bayes’ theorem, considering that
all input feature spaces are conditionally independent. The theorem calculates the
conditional probabilities and describes the probability of any event based on prior
knowledge of conditions that could be relevant to the event.
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It can be mathematically represented as

P(A|B) = P(B|A) · P(A)

P(B)
(10)

where:
• P(A|B) is the probability that event A occurs given that B has happened,

• P(B|A) is the probability that event B occurs given that A has happened,

• P(A) and P(B) are the independent probabilities of events A and B, respectively.
The assumptions based on the theorem are less likely to be accurate in practice.

Naive Bayes has been in practice for a long time across various sectors, and its
application in the context of Machine Learning makes it even more helpful.

1.1.5 Decision Trees

ADecision Tree is a parametric model and one of the most popular Machine Learn-
ing Algorithms. They represent the decision-making process as a hierarchical
structure of nodes and branches, which resembles an inverted tree as shown in
the Figure [15]. It works by recursively partitioning the input feature space into
smaller regions based on the similarities between categories. The learning process
of these models involves selecting the right features and split points that best
divide the prior category into more segregated subgroups. It uses splitting criteria
such as Gini impurity (GI) and entropy to separate the categories for classification
problems and MSE reduction for regression problems.

Figure 15: Decision Tree Basic Structure [38]
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The algorithm recursively divides the data until pre-defined conditions are
met. They inherently redefine the workflow of predictive model building. They are
interpretable models that require no feature scaling and can handle continuous
and categorical values. One of the main challenges is their tendency to overfit
when the tree grows too deep. Pre-defining the depth, or "pruning" techniques,
pre-defining multiple trees helps minimise overfitting and avoid memorising the
patterns. Combining multiple randomly generated decision trees and aggregating
the results is a common practice, known as a Random Forest Model. This ensemble
learning technique offers several advantages over Decision Trees. The aggregation
of the trees improves precision and resilience compared to using a single Decision
Tree.

1.1.6 Boosting Algorithms

Boosting is another ensemble method that combines many weak learners to create
a more stable and accurate machine learning model. This iterative learning process
involves multiple models in different subsets of data, focusing on the mistakes
made by the last model. The final model is a weighted sum of all the models,
making it more effective in predictive analysis. AdaBoost (Adaptive Boosting),
Gradient Boosting (GBM), XGBoost (Extreme Gradient Boosting), Light GBM, and
Catboost are some of the most popular boosting algorithms currently widely used
[39]. Boosting models show a trend in producing scalable solutions for massive
systems and provide GPU-based training, making it easier to develop for large
datasets.

1.2 Unsupervised Machine Learning

Unsupervised Machine Learning is a type of ML problem involving no actual or
labelled training data, meaning no explicit target variable is provided. In this case,
the algorithms used are to discover underlying patterns or structures within the
data with minimal instructions. This can be achieved using various methods, such
as exploring the inherent structure and relationships between data points in a
multi-dimensional space. The most popular methods are clustering and Dimen-
sionality Reduction. Unsupervised learning is used in synthetic data generation,
Generative Adversarial Networks (GANs), Principal Component Analysis, and
other applications.
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1.2.1 Clustering

The most popular methods in unsupervised machine learning aim to partition
datasets into smaller subsets (clusters) as shown in the Figure [16 that share
similarities. They are centroid-based methods, where a randomised centroid is
generated, and clusters are formed based on the distance between the centroid and
the data instances. The objective is to find that the data point should be close to
the centroid of a similar cluster and far from the centroids of other clusters.

Figure 16: Simple Clustering

K-Means Clustering : It is a centroid-based approach to identifying the underly-
ing patterns within the data by grouping similar data instances.

Hierarchical clustering : This method uses agglomeration or division methods to
build a hierarchy of clusters.

DBSCAN : Density-Based Spatial Clustering of Applications with Noise, this
method groups points based on density, which is robust to noise and non-
spherical clusters.

40



2. NEURAL NETWORKS

1.2.2 Dimensionality Reduction

Dimensionality reduction is used in Machine Learning to deal with redundant or
noisy datasets. It helps reduce the number of input variables’ feature dimensions by
minimising information loss. High-dimensional data is often complex to analyse;
dimension reduction helps overcome this challenge.

Principal Component Analysis (PCA) : One of the most popular feature extrac-
tion methods is reducing the dimensionality while maintaining a high vari-
ance. PCA is a statistical protocol that reduces dimensions by creating an
uncorrelated feature space.

Auto-Encoders : Neural networks designed to compress and reconstruct data.

1.3 Reinforcement Learning
Reinforcement learning is a slightly different paradigm compared to the first two
types of learning. Here, learning focuses on training agents to make decisions,
interact with environmental parameters, and improve after each iteration through
feedback loops. Feedback can be rewards or penalties for positive and negative
decisions, referred to as cost functions.

Reduction learning algorithms are designed to optimise the agent’s strategies to
maximise cumulative rewards over time, resulting in themost favourable outcomes.
RL is driven by a trial-and-error strategy when making future decisions.

2 Neural Networks
At the foundation level, artificial neural networks are designed to mimic the struc-
ture and functioning of the human brain—the idea of artificial neural networks for
computation dates back to the mid-20th century. The first node, Perceptron, was
introduced by Frank Rosenblatt in 1958. Implementing back-propagation in the
1980s enabled the development of multilayer perceptrons, also known asmultilayer
neural networks or MLPs, that are trained more efficiently [40]. However, one of
the breakthroughs of NN in mainstream science and industry happened in 2012,
when working on a neural network architecture called AlexNet, a deep convolu-
tional neural network developed by Alex Krizhevsky and his team, achieving a
dramatic breakthrough in the image recognition domain, beating other model
performance at the time with significant margins [41]. Deep research in this field
took a long time to gain popularity, primarily due to hardware limitations, the
large-scale requirements, and the scarcity of data.
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2.1 Perceptrons to Deep Neural Networks Architecture
The design of neural networks is inspired by the human brain, which has a struc-
ture of interconnected layers of nodes or neurons as shown in Figure [17]. Neurons
process the data through weighted connection layers. Each neuron processes a
weighted sum of its inputs and passes it to the connected neurons. They are trig-
gered based on non-linear activation functions like step or sigmoid functions. By
stacking many such neurons, they act as a complex system that can compute and
approximate more complicated functions.

Figure 17: Basic Neural Network Structure [42]

A basic network of connected nodes (also called a feed-forward neural network)
consists of three such layers.

Input layer : Taking in raw data features.

Hidden layer Intermediate layer of nodes that transform the input data through
activation functions and respective weights.

Output layer : The final nodes responsible for the final predictions, such as proba-
bilities.

During training, the model learns and adjusts the weights and biases of the con-
nected layers. Loss functions help minimise errors during the training process. The
model utilises back propagation in the feedback loop for computing loss gradients
concerning the weights and improves the model’s training. Each type of problem
requires a specific architecture to achieve better model performance.
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Non-linear activation functions like ReLU are crucial in neural networks, as they
enable the learning of complex relationships within the data [43]. ReLU activates
the connection when the input is positive and remains inactive when the input
is zero or negative. This feature improves computational efficiency and mitigates
vanishing gradient problems.
ReLu is represented as:

f (x) = max(0, x) =

x if x > 0,

0 if x ≤ 0.
(11)

Other popular activation functions include the Sigmoid function, the hyperbolic
tangent function (Tanh), the softmax, and the leaky ReLU.

3 Model Building and Evaluations
Most machine learning algorithms are designed to identify patterns in data and
improve their performance over time [35]. At a basic level, they create a mathe-
matical function that maps the input features to the output. Training occurs when
the algorithm examines all training data and determines the optimal settings to
map the features. The original data are usually split into two sets: one for training
the model and one for evaluating how well the model performs.

These are key parameters while building or evaluating a machine learning model.

Loss Function Helps measure how well the model’s predictions align with the
target values. Model training aims to minimise the loss function and improve
the predictions.
e.g., mean squared error (MSE), mean absolute error (MAE), cross-entropy
(CE) loss, etc.

Optimisation Algorithms : They help in minimising loss functions. For example,
the gradient descent algorithm attempts to find the minimum of a function by
taking small steps in the direction of the gradient vector. The algorithm aims
to find the global minima and avoid the local minima. In a multi-dimensional
feature space, finding the global minima presents challenges, and the com-
plexity of the model and the optimisation algorithm is chosen based on the
hyperspace complexity.
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Regularisation Techniques : Penalty functions that prevent the model frommem-
orising the patterns and build a more general mapping of feature space.
This is called Over-Fitting of the model. Regularisation adds a penalty to the
loss function, preventing it from growing in complexity, and improving the
model’s generalisation for better performance when evaluating unseen data.
E.g.: Lasso (L1) and Ridge (L2) techniques, dropout, etc.

Evaluation metrics Themetrics used after training to evaluatemodel performance.
They are chosen based on the type of problem. In cases where continuous
values are the target, metrics such as R2 or RMSE are widely used. If the
model tries to predict classes, accuracy, precision, recall, and the F1 score are
generally considered.

3.1 Confusion Matrix
Confusion metrics are essential for assessing the model’s performance, as they
categorise the predicted outcomes against the actual outcomes. The model aims to
have a maximum number of correctly classified data points.
Outputs from the confusion matrix can help fine-tune the model.

Figure 18: Confusion Matrix for Binary Classification
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A confusion matrix for binary classification contains True Positives (TP), where
the model correctly predicts a positive. It also contains True Negatives (TN), where
the model correctly predicts a negative. False Negatives - FN (Type II Error) occur
when the model incorrectly predicts a negative outcome instead of a positive one.
False Positives - FP (Type I Errors) occur when the model incorrectly predicts
a positive result instead of a negative one. We can use the confusion matrix to
evaluate a model using the following metrics:

Accuracy: Measures the overall performance of the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Recall (Sensitivity / True Positive Rate): Indicates the proportion of actual pos-
itives correctly identified.

Recall = TP
TP + FN

(13)

Precision: Measures how many of the predicted positives are actually correct.

Precision =
TP

TP + FP
(14)

Specificity (True Negative Rate): Shows the proportion of actual negatives cor-
rectly identified.

Specificity =
TN

TN + FP
(15)

False Positive Rate (FPR): Indicates how often a negative instance is incorrectly
classified as positive.

FPR =
FP

TN + FP
(16)

F1 Score: Harmonic mean of precision and recall, balancing performance for un-
even class distributions.

F1 Score = 2 × Precision× Recall
Precision+ Recall (17)
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3.2 ROC Curve
The Receiver Operating Characteristic (ROC) allows for assessing binary classifi-
cation models [44]. As it shows in Figure [19], it shows the balance between True
Positive Rates (TPRs) on the Y-axis and False Positive Rates (FPRs) on the X-axis.
ROC gives vital clues:

Point (0,0) : A model with no positive outcomes

Point (1,1) : A perfect model

Line (Y=X) : A random guessing model with 50:50 probabilities.

Figure 19: ROC Curve [45]

The area representing the upper side of the y = x line indicates a good model,
whereas the area below the line suggests a model worse than random guessing,
often due to labelling problems. ROC serves as a valuable metric for pinpointing a
classifier’s operating point and holds information not affected by the imbalance of
the target variable.

4 Interpretability of Models
Most complex ML models act as a black box, making understanding the reasoning
behind their decisions difficult [46]. Linear models are easier to interpret but lack
the possibility of non-linear activations. In many cases, it is equally important to
have an interpretable model. Methods like SHAP provide the interpretability of
complex algorithms and their decisions.
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Figure 20: Interpretability and Performance of Machine Learning Algorithms

4.1 SHapley Additive exPlanations(SHAP)
SHapley Additive exPlanations, or SHAP, stands out as a potent andwidely utilised
method for comprehending machine learning models and their outputs [47]. It
operates on the principles of cooperative game theory, leveraging Shapley values
to function effectively. These Shapley values facilitate understanding the model’s
response to each distinct feature.

5 ML Strategy and Real-Time Constraints
This project deployed a cascade machine learning model approach to improve
Downstream Track reconstruction. The following chapters present a detailed anal-
ysis of these models, focusing specifically on their application to the research use
case. The objectivewas to implement and test two separateMLmodels, each trained
for this particular scenario, as part of a combined two-stage approach. Deployment
of the models required strict operational constraints, which are also considered
in the study. Due to the scope and volume of the work, some additional studies
conducted during the project are not discussed here.

In summary, the research followed a systematic workflow, covering model
selection, training data preprocessing, speed and performance constraints, and the
choice of libraries and model architectures. Subsequent chapters present only the
key results that contributed directly to the final solutions.
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Chapter 4
Stage One Selection: Enhancing SciFi
Track Purity

1 Objectives
SciFi Tracks serve as the foundation track segment in reconstructing the Down-
stream Track. The first selection stage in the research focuses on enhancing the
quality of these SciFi tracks, as their improvements directly influence the overall
performance of subsequent track reconstruction. SciFi tracks are reconstructed
using a standalone algorithm that relies solely on hits recorded in the SciFi Tracker.

SciFi tracks are crucial elements used as Seed track segments for all other track
reconstruction procedures, including Downstream Tracks. Ensuring all the true
tracks are selected and the combinatorial track segments are rejected is a signif-
icant step in improving SciFi segments’ purity and, subsequently, Downstream
Tracks’ quality. Any improvements in their selection and quality translate to better
efficiency and track quality across all the track reconstruction algorithms using
them as Seed Tracks. A primary challenge is distinguishing accurate tracks from
combinatorial tracks called Ghost Tracks, which are false, non-physical tracks
that do not match any real track trajectories. Selecting true tracks and removing
Ghost Tracks is crucial to achieving high reconstruction quality, but this process
is computationally expensive. Without effective separation, track quality drops
significantly.
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The SciFi Track Classifier is a core machine learning model developed in this
thesis to improve seed track purity in track reconstruction, and it is a crucial step
in improving Downstream Track reconstruction. This model is built by learning
the detector responses and reconstruction features. Using these learned charac-
teristics, the method can strengthen existing algorithms’ robustness and improve
performance and efficiency in reconstructing Downstream Tracks.

2 Methodology
The training data set comprises over one million Monte Carlo (MC) simulated
tracks. It focuses on the decays of K0

s (short-lived neutral kaons), which are par-
ticularly relevant for the model’s development. Each SciFi track is represented by
eight features that capture key selection criteria.

Using the data set described above, the training process utilisesMoore to pro-
duce tracks and configure the trigger conditions for selection. Various classification
methods are evaluated to maintain an incremental development of the tracking
pipeline. Following this approach, the implementation of the improved Down-
stream Tracking may be started with a simple benchmark baseline model, such as
logistic regression. These initial linear models are valued for their interpretability
and help set a comparison standard for more advanced methods. The process then
explores more sophisticated classifiers to improve performance further. The goal
is to optimise the model to balance computational efficiency and accuracy in track
reconstruction. Ultimately, a classifier is selected and fine-tuned to outperform the
baseline in all metrics and be suitable for deployment with the Gaudi framework.
Throughout, model performance is measured through training and validation
cycles using Key Performance Indicators (KPIs) relevant to track reconstruction:
efficiency, algorithm throughput, ghost ratio, etc.

3 Introduction to the SciFi Track Data
The classifier is trained on datasets with over one million SciFi track segments.
These approximately correspond to about 50k simulated events of decay samples
K0

s using the Moore framework. The events are produced in the MC simulation
environment, providing accurate information about the track segments and pro-
ducing ground-truth information regarding the track type: a True or Ghost Track.
This labelling is crucial for supervised learning approaches. Within the data set
used for training, the ratio of Ghost Tracks to true tracks is significantly high, while
the Ghost Track ratio is relatively small compared to the true track as shown in
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Figure [21]. The true tracks produced in the detector are consistent and more as
compared to the combinatorial track signals that are produced due to random
signals in the detector. This combinatorial tracks poses significant challenges in
track reconstruction.

Figure 21: SciFi Track Types Ratio

Model training and evaluation is done with the event in Table [2] is considered:

Description Notes
Decay K0

S → π+π−

ProductionID 00230966
File Type SIM
Event Type 30000000 [MinBias]
BKCondition Beam6800GeV-2024.Q1.2-MagDown-Nu5.7-

25ns-Pythia8
BKPath [’MC/2024/Beam6800GeV-2024.Q1.2-

MagDown-Nu5.7-25ns-Pythia8///30000000/’]
DDDb dddb-20240427
CondDb sim10-2024.Q1.2-v1.1-md100
ConfigVersion 2024

Table 2: SciFi Track Event Metadata

4 Feature Space
The model is constructed and trained using eight key variables, which can be
broadly categorised into kinematical, geometric, and statistical parameters. To-
gether, these variables capture and provide complementary aspects of the track
characteristics.
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Figure [22] represents the training data distribution based on their quantiles. It
helps in getting a clear idea regarding the distribution and possible outliers.

SciFi Hits: The number of hits that construct the seed track.

Tx: The trajectory slope in the X–Z plane.

Ty: The trajectory slope in the Y–Z plane.

X-Position: The X-coordinate of the seed position.

Y-Position: The Y-coordinate of the seed position.

Pseudo-rapidity (η): An angular variable that describes the angle of the track
relative to the beam axis.

Phi (ϕ): The azimuthal angle of the particle around the beam line.

Chi2PerDoF: A statistical measure that assesses how well a model fits the ob-
served data. It is normalized by degrees of freedom.

Figure 22: Boxplot: Variables used for SciFi Track Classifier

4.1 Spatial Distribution of Track Hits
Figure [23] represents the spatial distribution of SciFi track hits in the detector
plane. It helps visualise the SciFi tracks’ detector coverage and hit density. It can give
hints about regions that are prone to combinatorial Ghost Tracks. The isMatched
represents the true hits and Ghost Tracks, marking the region more susceptible to
combinatorial Ghost Tracks.
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Figure 23: SciFi Hits Spatial Distribution

4.2 Momentum Distribution of SciFi Tracks
The Figure [24] displays the momentum component of the SciFi tracks in the
transverse plane. Even though SciFi Tracker does not measure absolute momentum
directly, it is possible to compute Px and Py proxies from the angle of tracks. It
helps assess the coverage of track momenta in the dataset and identify the regions
of high or low density.

Figure 24: SciFi Track Momentum Distribution
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5 Linear Model - Logistic Regression
Linear models are frequently used as a starting point in developing classification
algorithms due to their simplicity and interpretability. The coefficients in a linear
model directly quantify the contribution of each input to the final prediction.
However, linear models have significant limitations: they cannot capture non-linear
relationships or complex intrinsic patterns within the data.

Figure 25: Pearson Correlation Matrix of SciFi Track Data

Such patterns are often crucial for distinguishing true tracks from Ghost Tracks
in this context. Given these setbacks, the Logistic RegressionModel, a linear model,
is employed here as a baseline to benchmarkmore advanced non-linearmodels. The
Pearson correlation coefficient is used as a metric to understand the relationships
among variables. Figure [25] displays the Pearson Correlation Coefficient of the
feature space, providing information on their linear relationships. Some variables
show significant dependencies among the track variables from the heat map.
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5.1 Model Evaluation
Model evaluation is a critical step in the workflow, providing a quantitative assess-
ment and insight into the classifier’s performance. Understanding how the trained
model performs on unseen track data is essential. In this section, we discuss several
key evaluation matrices used to assess the performance of the logistic regression
model. In the case of differentiating between true tracks and Ghost Tracks, the
prediction of the model will be calculated using a sigmoid function to evaluate the
probability. By default, the model predictions will be based on the 50% threshold;
any probability value falling below the threshold will be considered a Ghost Track,
and the values above the threshold will be treated as true tracks.

5.1.1 ROC Curve

The ROC curve is the graphical tool discussed earlier that helps to evaluate the
discriminating power of a classifier across different decision thresholds. The fol-
lowing ROC curve [26] illustrates the model performance for varying thresholds.
The AUC score for model performance shows 95%, making this a good model for
classifying the track segments in SciFi.

Figure 26: Logit SciFi Selector: ROC and AUC

5.1.2 Confusion Matrix

The confusion matrix illustrates the classification results of the model. Each track
is classified according to the predicted probability predicted by the model based
on the threshold probability. Figure [27] represents the model classification with a
threshold of 50%, showing a clear distinction between tracks.
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Figure 27: Logit SciFi Selector: Confusion Matrix

5.1.3 Weight Co-efficients

Feature importance measures the contribution of each input variable to the model’s
output. Not all features have equal impact, so evaluating their importance helps
identify the most significant variable. In linear models, the magnitude of a feature’s
coefficient reflects its influence on model decisions. Figure [28] shows the variables
used for model training and their coefficients. In this case, the number of SciFi hits
has the highest influence on the model prediction, followed by χ2/do f .

Figure 28: Logit SciFi Selector: Feature Importance
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5.1.4 Model Response

The model response histogram, also known as the probability distribution plot,
visualises the predicted probability distribution of each class as output by the
classifier and the known track type. Two datasets are used to evaluate the impact
of data imbalance: one raw and unprocessed dataset, and one processed and
upsampled to an equal proportion of each track type. The following figure [29]
illustrates how the model’s predictions align with the known track types from the
raw, unsampled dataset. The figure [30] represents the upsampled data for better
visualisation. In either of the cases, the separation is very distinct, making it a good
classifier.

Figure 29: Logit SciFi Selector: Model Response (Unbalanced)

Figure 30: Logit SciFi Selector: Model Response (Balanced)
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5.2 Results and Interpretation

As the logistic regression model provides direct mapping from the input vari-
ables to the probability of the type of track, the following Table [3] represents
the weighted input for the predictions of the true tracks model, and Table [4]
represents the known Ghost Tracks.

Table 3: True SciFi Track Weighted Inputs

Features Coefficient
(β)

True Track
(Raw)

True Track
(Scaled)

Weighted
Input

nFTHits 1.687 12 0.707 1.194

tx -0.081 -0.268 -0.884 0.071

ty -0.009 0.021 0.336 -0.003

ovtx_x 0.162 -1055.846 -1.293 -0.21

ovtx_y -0.014 173.193 0.342 -0.005

eta -0.636 2.024 -0.442 0.281

phi -0.028 3.062 1.496 -0.042

chi2/ndof -1.023 0.294 -0.487 0.489

Table 4: Ghost Track Weighted Inputs

Features Coefficient
(β)

Ghost Track
(Raw)

Ghost Track
(Scaled)

Weighted
Input

nFTHits 1.687 10 -2.017 -3.402

tx -0.081 -0.306 -1.004 0.081

ty -0.009 0.195 3.099 -0.027

ovtx_x 0.162 348.226 0.405 0.066

ovtx_y -0.014 1640.88 3.285 -0.047

eta -0.636 1.74 -0.78 0.496

phi -0.028 2.574 1.257 -0.035

chi2/ndof -1.023 3.153 4.893 -5.008
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logit(p) = β0 + β1X1 + β2X2 + · · ·+ βkXk (18)

Table 5: Decision: SciFi Track Types Decision Summary

Metric True Track Ghost Track

Intercept (β0) 2.349 2.439

Sum (Σ) 1.785 -7.877

Y-value (Σ + β0) 4.134 -5.528

Probability (p) 0.984 0.004

Table [5] summarises the coefficients obtained and their probability calculation
for true and Ghost Tracks. In this case, a higher probability above 50% can indicate
a higher probability that the track is a true track, and a probability below the
threshold will be classified as a Ghost Track.

5.2.1 SHAP Analysis for Logit Model

While coefficients measure the average effect of each variable across the entire
dataset, SHAP (Shapley Additive exPlanations) provides a more detailed exami-
nation of each variable’s impact on individual predictions. The plots [31] and [32]
show each feature’s full distribution of SHAP values. This visualises the contribu-
tion of each variable to the prediction changes for different data points. It helps
identify the importance of variables and the direction of their effects on probability
predictions. The bar plot displays the absolute SHAP values for each feature. This
lets features be ranked by the overall importance of the feature in model prediction.
Here, similar to the linear coefficient, the number of hits in the SciFi tracker and
the χ2/do f show the variables most influenced.
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Figure 31: Logit Model SHAP Value Distribution

Figure 32: Logit Model Average Shap Values

62



6. MODEL COMPARISON

6 Model Comparison
Once the baseline benchmark is established with the linear model, the next step is
to explore other popular models to assess their performance on the same dataset
under similar conditions. This phase considers other non-linear models and the
baseline benchmark for a fair comparison.

The ROC curve and AUC scores are selected as evaluation metrics to ensure
a consistent and fair model comparison. These metrics are robust to the class
imbalance in the track types, supporting the comparative analysis. Table [6] shows
the models that are considered and the corresponding scores, and the bar chart
illustrated in Figure [33].

Table 6: ML Model Benchmark for SciFi Selector

Model Names ROC [%] F1 [%]

Logistic 95.29 93.94

DecisionTree 86.65 97.40

RandomForest 97.09 98.36

GradientBoosting 97.35 96.77

AdaBoost 96.58 94.87

KNN 92.92 97.16

MLP 97.29 97.43

Catboost 97.10 97.81

Based on iterative testing and evaluation, Catboost by Yandex achieved superior
performance compared to alternative models ProkhorenkovaCatboost2017. Its
scalability, GPU support, and deployment APIs made Catboost the preferred
choice for the SciFi track classifier.

7 Catboost Model
Analysis of variousMachine Learning Algorithms shows that Boosting Algorithms,
especially Catboost, consistently perform better with complex datasets. These
algorithms are called ensemble methods as they combine several weaker models to
form a more accurate and robust model. Boosting algorithms work iteratively, with
each new model fixing the errors of the previous one and leading to improvement.
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Figure 33: SciFi Selector: Model Comparison Chart

Building on these strengths, Catboost utilises gradient and ordered enhancement
to improve prediction accuracy and minimise overfitting. It handles categorical
variables well and supports GPU training, ONNX integration, etc. These features
make Catboost a top choice for the SciFi track classifier, in addition to improved
model evaluation metrics.

7.1 Hyper Parameter Tuning and Optimisation

Every machine learning model depends on its hyperparameters, which define it.
Imagine them as the tuning knobs on the radio. These settings cannot be learned
from the data used for training. In general, they can be derived from various
variables, such as the depth of trees, the number of iterations, and the learning
rate. Fine-tuning the model with the optimal hyperparameters is crucial, as poor
choices can significantly impact the model’s performance.

7.1.1 Optuna

The traditional search for the best parameter values usually involves searching in
different regions of the feature space, but it is often inefficient and costly. Optuna
is an open-source tool that addresses this inefficiency using Bayesian Optimisation
and Tree-structured Parzen Estimators (TPE). It quickly identifies and converges
promising hyperparameter regions, delivering faster and better performance. Build-
ing on these capabilities, Optuna employs a trial mechanism in which each trial
involves training the model with a distinct set of hyperparameters and evaluating
its performance on a validation data set. This feedback loop suggests that improved
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hyperparameters should be used in each iteration. After a thorough hyperparame-
ter search for the model using Optuna, the parameters chosen for the final model
are as in the Table [7].

Parameter Description Value
loss_function Objective function to optimize Logloss
eval_metric Evaluation metric used for validation AUC
task_type Execution mode (CPU/GPU) GPU
use_best_model Whether to use the best iteration on

validation
True

learning_rate Step size shrinkage to prevent overfitting 0.08
iterations number of boosting iterations (trees) 945
depth Depth of individual trees 6
l2_leaf_reg L2 regularization coefficient 7.85
min_data_in_leaf Minimum samples required in a leaf 69
bagging_temperature Controls sampling randomness for

bagging
0.95

border_count number of splits for numerical features 107

Table 7: SciFi Track Catboost Model Hyper-parameters

7.2 Model Evaluation
The following section presents a similar analysis as the linear model benchmark,
with a fine-tuned Catboost model as the SciFi track classifier and its performance.

7.2.1 ROC Curve

Regarding the ROC curve and the AUC score, the Catboost models outperform
linear models by a significant margin. This figure [34]clearly represents the effect
of working point optimisation and how the non-linear models learn compared to
the linear models discussed earlier in the chapter.

7.2.2 Confusion Matrix

As with previous confusion matrices for linear models, the following Confusion
Matrix illustrate in Figure [35] shows the model’s performance on unseen data.
In this case, two working points are assessed to learn the impact of changing the
threshold for track type identification. Reducing the cut-off point from 50% to 40%
keeps the maximum number of true tracks while minimising Ghost Tracks.
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Figure 34: Catboost SciFi Selector: ROC Curve and AUC

(a) With 50% Threshold (b) With 40% Threshold

Figure 35: Catboost SciFi Selector: Confusion Matrix
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7.2.3 Feature Importance

In the case of the influence of variables on model predictions, SciFi hits still show
high decision power compared to the other variables. The bar graph showed in
Figure [36] shows this expected behaviour, considering that the quality of the track
sample is higher with the higher number of hits in the SciFi tracker.

Figure 36: Catboost SciFi Selector: Feature Importance

7.2.4 Model Response

The separation between the track types was good in the case of the linear model
for the SciFi classifier. In the case of Catboost, a non-linear model, it can learn
more intrinsic patterns within the tracks and their patterns. Figure [37] represents
the upsampled track data with inherent imbalance, and figure [38] displays the
upsampled balanced data. It is essential to note that the imbalanced data will be
evaluated at runtime; the balanced dataset reveals that the model prioritises the
minority class, in this case, Ghost Tracks.
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Figure 37: Catboost SciFi Selector: Model Response (Unbalanced)

Figure 38: Catboost SciFi Selector: Model Response (Unbalanced)
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7.3 Results and Interpretation

Interpreting advanced non-linear models is not easy. In this case, we rely on SHAP
analysis to understand the variables’ dependence on each other when calculating
the model predictions.

7.3.1 SHAP Analysis for Catboost Model

Similar to the previous SHAP Analysis for Logit Model, the Figure [39] show case
the Shapley Summary and the model variable dependencies in the case of Catboost
Model. Here, similar to the case of feature importance plot, the number of SciFi
hits shows the highest valuable variable in model training.

(a) SHAP Value Distribution

(b) Average Shap Values

Figure 39: Catboost Model SciFi Selector: Shap Analysis
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7.4 Conclusion: SciFi Track Classifier
This concludes the model development for the first stage of the track selector. The
SciFi (seed) tracks presented a significant class imbalance in the training dataset
due to the nature of the problem, which posed a significant challenge for effective
model learning. For the initial benchmark, logistic regression was employed and
achieved an AUC score of approximately 95%, demonstrating baseline model
performance and interpretability. However, a fine-tuned Catboost classifier was
implemented to push the model performance further. This approach improved the
AUC score beyond the baseline logistic regression and provided a more robust
framework for handling the complex nonlinear relationships in the dataset.

The feature importance analysis revealed that the number of hits in the SciFi
tracker strongly influences the model’s decisions, highlighting its critical role in
discriminating between track types. In conclusion, the SciFi track classification task
for the first stage of the track selector is successfully finalised with the Catboost
model providing a solid foundation for the subsequent stages of the track selection
pipeline.
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Stage Two Selection: Selecting Down-
stream Tracks

1 Objectives

The previous chapter focused on purity optimisation of SciFi segments as Seed
Tracks for Downstream reconstruction. The selection process has two stages: refin-
ing Seed Tracks and selecting the best Downstream Track by precisely rejecting
ghost tracks, which is a computationally intensive task.

As discussed earlier, Downstream Tracks result from the decay of Long-lived
Particles. These particles travel longer distances and do not leave signals on the
VELO tracker. To address this, SciFi tracks are propagated upstream through the
detector to find matching hits in the UT, allowing the reconstruction of the Down-
stream Track. This process presents challenges, particularly the risk of forming
combinatorial track segments a.k.a. ghost tracks that are difficult to distinguish
from true Downstream Tracks. The Downstream Track Classifier is the second and
more complex stage. It uses a machine learning model to tag and select Down-
stream Tracks for improved reconstruction. The classifier aims to evaluate the
likelihood of being a true track, accepting it, and rejecting as many ghost tracks as
possible. This step is crucial in the real-time trigger system to minimise signal loss.

In summary, the second-stage selection acts as a strong, decisive filter for improv-
ing the quality of Downstream Track reconstruction. It is built upon the selected
seed tracks from the Hybrid Seeding algorithm. Together with this two-stage strat-
egy, the thesis explores approaches to progressively reducing the combinatorial
background and improving the overall track quality of Downstream Tracks.
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2 Methodology
The development of the second-stage selection follows a plan closely aligned with
the first-stage SciFi track selection. In this case, similar methods are implemented to
maintain consistency while improving performance across all metrics. The choice is
motivated by the similarity in the underlying problems. Using a uniform approach
is easier to explain and more straightforward to evaluate within the chapter.

As in the first stage, a linear model is initially built as a reference. Linear mod-
els are easier to interpret and help understand track selection factors and their
influences. This model is a baseline for comparison with other models used for
Downstream Track selection. Linear models are not expected to perform competi-
tively due to the complexity of the problem. However, they help establish a point
of reference and interpretability. Next, test other popular machine learning algo-
rithms and frameworks. They are scored on two goals: to maximise the number of
correctly identified true Downstream Tracks and to minimise the number of com-
binatorial ghost tracks. The final model selection will use a fine-tuned non-linear
approach. It was chosen after comparing it with other models across all evaluation
metrics and is based on seamless integration with the Gaudi framework.

3 Introduction to the Downstream Track Data
The models are trained on nearly one million Downstream Tracks produced with
MC Truth using simulation data to maintain uniformity across model building
and evaluation. The tracks for the model training were produced using theMoore
Framework with 50k of simulated events. The ground truth of the track type is
important for the supervised classification problem.

Figure 40: Downstream Track Types Ratio
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Figure [40] illustrates the imbalance of track types in the training data, which
complicates the identification of true tracks among ghost tracks. This arises from
the complexity of Downstream Track reconstruction and the relative rarity of such
events. For the training and evaluation of the ML models, the following event is
considered:

Description Notes
Decay K0

S → π+π−

ProductionID 00230966
File Type SIM
Event Type 30000000 [MinBias]
BKCondition Beam6800GeV-2024.Q1.2-MagDown-Nu5.7-

25ns-Pythia8
BKPath [’MC/2024/Beam6800GeV-2024.Q1.2-

MagDown-Nu5.7-25ns-Pythia8///30000000/’]
DDDb dddb-20240427
CondDb sim10-2024.Q1.2-v1.1-md100
ConfigVersion 2024

Table 8: Downstream Track Event Metadata

4 Feature Space
The Downstream Track classifier is designed to work with 11 variables gathered
from the SciFi and UT detectors. The variables sourced from SciFi and UT include
kinematic and geometrical measurements and statistical values such as χ2. To-
gether, these features capture intrinsic patterns and statistical parameters from
track trajectories. Figure [41] represents the distribution of the downstream train-
ing data, including its median, quantile, and potential outliers. This information
helps to understand the nature of the data and improve the pre-processing of track
information during model training.

P: Track Momentum.

Pt: Track Transverse Momentum

Tx: The trajectory slope in the X–Z plane.

Ty: The trajectory slope in the Y–Z plane.

X-Position: The X-coordinate of the track position.
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Figure 41: Boxplot : Downstream Training Data

Y-Position: The Y-coordinate of the track position.

UT Hits: The number of hits in Upstream Tracker.

SciFi Hits: The number of hits from the Seed Tracks.

Chi2PerDoF: A statistical track quality measure.

Pseudo-rapidity (η): Angular variable representing the angle of the track relative
to the beam axis.

Phi (ϕ): The azimuthal angle of the track with respect to the beam line.

4.1 Spatial Distribution of Track Hits
Figure [42] represents the spatial distribution of the Downstream Tracks. It helps
identify the regions that may be more prone to combinatorial tracks. Similar to
the spatial distribution of SciFi tracks, isMatched represents the MC association
of tracks with a particle. The figure shows a clear overlap of the tracks, making it
difficult to differentiate between them.
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Figure 42: Downstream Hits Spatial Distribution

4.2 Momentum Distribution of SciFi Tracks

The Figure [43] illustrates the distribution of the momentum component of the
Downstream Tracks in the transverse plane.

Figure 43: Downstream Track Momentum Distribution

This plot helps to evaluate the coverage of track momentum and its distribution,
and highlights how the tracks are distributed across different momentum ranges.
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5 Linear Model - Logistic Regression

In this section, Logistic Regression is used as the baseline benchmark, reflecting
the strengths and limitations of linear models. To examine feature dependencies,
Pearson’s correlation was applied (Figure [44]), illustrating the linear relationships
between variables.

Figure 44: Pearson Correlation Matrix of Downstream Track Data

5.1 Model Evaluation

Model evaluation and understanding model outputs are easier for linear models
than non-linear ones. Since similar evaluation principles were outlined in the
previous chapter, the model evaluation follows a similar approach. The model
uses the training data and produces outputs that can be translated to probabilities
using the sigmoid function. The output probability allowed the likelihood that a
track is true downstream to be quantified.
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5.1.1 ROC Curve

The ROC curve [45] displays the model’s performance for varying thresholds.
According to the expectation that linear models cannot capture complex patterns,
the ROC curve and the AUC score for the model’s performance indicate relatively
low performance. This requires implementing more sophisticated ML models.

Figure 45: Logit Downstream Classifier: ROC and AUC

5.1.2 Confusion Matrix

The confusion matrix [46] shows the model’s classification results. From the ROC,
it is expected to have a poor-performing linear model to identify true Downstream
Tracks. Confusion Matrics shows how they classify with the fixed threshold of
50%.

Figure 46: Logit Downstream Classifier: Confusion Matrix
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5.1.3 Weight Co-efficients

Representing the linear coefficients for the linearmodel and illustrating their impact
on the model predictions is relatively straightforward.

Figure 47: Logit Downstream Classifier: Feature Importance

Figure [47] shows the linear coefficients for each variable, with the transverse
momentum and the number of UT hits having the most significant influence on
the model predictions.

5.1.4 Model Response

The model response histogram illustrates how well predictions map track type
from the feature space. As with earlier examples, it is crucial to examine howmodel
predictions correspond with known track types and address the imbalance in track
type distribution. To illustrate these points, figure [48] shows the raw unprocessed
data, while [49] represents the upsampled data that has an equal number of true
and ghost tracks. Examining these visualisations, we observe that the track types
and their predictions overlap in both cases, causing the classifier to underperform
and accurately distinguish between true and ghost tracks.
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Figure 48: Logit Downstream Classifier: Model Response (Unbalanced)

Figure 49: Logit Downstream Classifier: Model Response (Balanced)
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5.2 Results and Interpretation

This section includes the weighted input evaluation and probability calculations
to complete the model’s interpretation. Both a true track and a ghost track are
considered. Table [9] shows the weighted input for true Downstream Tracks. Table
[10] presents the known ghost tracks of MC Truth. Table [11] summarises the
probability calculation for each track type and the threshold dependency.

Table 9: True Downstream Track Weighted Inputs

Features Coefficient
(β)

True Track
(Raw)

True Track
(Scaled)

Weighted
Input

p -0.167 5909.818 -0.300 0.050

pt 0.742 428.278 -0.204 -0.151

tx 0.190 -0.069 -1.005 -0.191

ty 0.043 0.022 0.333 0.014

ovtx_x -0.156 -154.245 -0.965 0.151

ovtx_y -0.047 51.722 0.332 -0.016

eta -0.185 3.316 -0.333 0.061

phi -0.004 2.836 1.568 -0.006

chi2perdof -0.233 0.294 -0.429 0.100

ndof 0.210 12.000 0.644 0.135

nUTHits 0.584 4.000 -0.172 -0.101
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Table 10: Ghost Downstream Track Weighted Inputs

Features Coefficient
(β)

Ghost Track
(Raw)

Ghost Track
(Scaled)

Weighted
Input

p -0.167 26774.692 1.047 -0.175

pt 0.742 362.705 -0.313 -0.232

tx 0.190 -0.010 -0.138 -0.026

ty 0.043 0.009 0.135 0.006

ovtx_x -0.156 -26.337 -0.163 0.025

ovtx_y -0.047 24.775 0.158 -0.007

eta -0.185 4.995 1.933 -0.357

phi -0.004 2.418 1.336 -0.005

chi2perdof -0.233 0.236 -0.561 0.131

ndof 0.210 12.000 0.644 0.135

nUTHits 0.584 3.000 -2.342 -1.367

logit(p) = β0 + β1X1 + β2X2 + · · ·+ βkXk (19)

Table 11: Decision: Downstream Track Types Decision Summary

Metric True Track Ghost Track

Intercept (β0) 0.338 0.338

Sum (Σ) 0.047 -1.874

Y-value (Σ + β0) 0.385 -1.535

Probability (p) 0.595 0.177

The probability output in this example shows a probability of 0.595 for a true
track and a probability of 0.177 for a ghost track.
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5.2.1 SHAP Analysis for Logit Model

The calculated probability values are still around the default threshold, which
can influence the track classification. The following SHAP analysis can help to
understand the importance of features and their directions for the linear model.
The Figure [50] show each feature’s full distribution of SHAP values, illustrating
Transverse Momentum and Number of UT Hits as the most important features in
the model output.

(a) SHAP Value Distribution

(b) Average Shap Values

Figure 50: Logit Model Downstream Selector: Shap Analysis
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6 Model Comparison
The baseline model could not capture complex patterns within the data; the next
logical step is to explore other ML algorithms to identify a better-performing
model. To facilitate this comparison, the Table [??] presents several popular models
alongside their ROC and F1 scores, which serve as primary evaluation metrics.
This is followed by a bar graph [51], which visualises the performance of these
models under similar conditions.

Table 12: ML Model Benchmark - Downstream Classifier

Model Names ROC [%] F1 [%]

Logistic 75.04 77.08

DecisionTree 66.48 86.88

RandomForest 81.20 92.08

GradientBoosting 80.11 84.08

AdaBoost 78.30 84.01

KNN 70.51 85.45

MLP 85.00 89.00

Catboost 85.72 90.48

Figure 51: Downstream Classifier: Model Comparison Chart
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These comparative results highlight that Catboost demonstrated superior per-
formance and consistency across multiple runs, similar to the SciFi track classifier.
Moreover, Catboost showed potential for seamless integration with the Gaudi
framework, further supporting its selection as a scalable solution.

7 Catboost Model

Catboost is the primary classifier for enhancing the SciFi seed and UT hits asso-
ciation algorithm due to its ability to handle complex Downstream Track data. It
outperformed other models by a large margin. Its learning process, which com-
bines weak learners to capture complex patterns, makes it well-suited for further
tuning as the final classifier.

7.1 Hyperparameter Tuning and Optimisation

Catboost performs optimally with the correct hyperparameters, including tree
depth, learning rate, number of iterations, and regularisation terms. These settings
shape the learning and capacity of the model. Tune them carefully to balance bias
and variance, thus improving model performance and stability.

Parameter Description Value
loss_function Objective function to optimize Logloss
eval_metric Evaluation metric used for validation AUC
task_type Execution mode (CPU/GPU) GPU
devices Device index for GPU execution 1
auto_class_weights Automatic class weight balancing Balanced
use_best_model Whether to use the best iteration on

validation
True

learning_rate Step size shrinkage to prevent overfitting 0.24
iterations number of boosting iterations (trees) 922
depth Depth of individual trees 8
l2_leaf_reg L2 regularization coefficient 10
min_data_in_leaf Minimum samples required in a leaf 55
bagging_temperature Controls sampling randomness for

bagging
1.65

border_count number of splits for numerical features 243

Table 13: SciFi Track Classifier Hyper-parameters

84



7. CATBOOST MODEL

As with the first Catboost model, a thorough hyperparameter search is per-
formed using Optuna. Table [13] shows the parameters selected for the final model.

7.2 Model Evaluation
This section evaluates the fine-tuned Catboost model as a Downstream Track
classifier. Every model has a limit on the improvements it can achieve. Considering
the complexity of the track reconstruction using only the SciFi seeds andUThits (no
VELO information), the following metrics demonstrate the model’s performance
in handling such objects.

7.2.1 ROC Curve

Figure [52] shows the ROC curve for the fine-tuned Catboost model. The AUC
score of 85% represents a significant improvement over the linear model. It is not
a perfect model from the ROC curve perspective, indicating that the complexity
lies within the data structure. Applying a more complicated model or using a
larger data set is not a way to improve the performance in our case. First of all,
the algorithm must conform within the limits of a real-time LHCb trigger system
with a memory footprint that is as small as possible and a response time as fast as
possible. Then, increasing the training sample may have an adverse effect on the
generalisation since the Monte-Carlo events do not reproduce the data features
accurately. Thus, it was concluded that the achieved result is satisfactory and much
better than the current trigger baseline algorithm.

Figure 52: Catboost Downstream Classifier: ROC Curve and AUC
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7.2.2 Confusion Matrix

The Confusion Matrix in Figure [53] shows two different threshold points, 0.5
and 0.4, as a reference. An improved confusion matrix indicates a boost in model
performance in identifying patterns and learning from them. For the first threshold,
one can see that the trained and optimised model is able to recognise both the true
and ghost tracks. Lowering the threshold seems to increase the track reconstruction
efficiency significantly, but it comes with the cost of a significant misclassification
rate of the ghost tracks as true ones. The variation of model classification with
varying working points is essential to fine-tune the model performance later in the
thesis.

(a) With 50% Threshold (b) With 40% Threshold

Figure 53: Catboost Downstream Classifier: Confusion Matrix

7.2.3 Feature Importance

The evaluation metrics show significant improvements in the performance of the
Catboost model. The bar plot shown in figure [54] displays the feature importance
for the model.

As expected, the number of UT hits influences the predictions the most. Also,
there is no significant disproportion in the importance of features among them-
selves, which indicates that the model uses all the input features to make decisions.
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Figure 54: Catboost Downstream Classifier: Feature Importance

7.2.4 Model Response

The fully trained model can be used to obtain response plots for balanced and
unbalanced data. The results indicate significant improvements compared to the
benchmark model. While the predicted true and ghost tracks overlap, there is still
a distinct separation between them that cannot be achieved by the baseline model.
Thus, it is evident that the non-linear model, like Catboost, can learn complex
patterns within the data. The plot [55] indicates the raw unprocessed data, while
figure [56] shows the response of the model if the track type ratio is balanced.
Note how the model prioritises the minority class and improves overall model
performance.
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Figure 55: Catboost Downstream Classifier: Model Response (Unbalanced)

Figure 56: Catboost Downstream Classifier: Model Response (Balanced)
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7.3 Results and Interpretation
Understanding the model’s output and its impact on data selection is crucial.
Complex models are challenging to interpret, making explanations of results
difficult. A SHAP analysis that identifies variable dependencies in the model
output can be used again to address this.

7.3.1 SHAP Analysis for Catboost Model

However, when these interpretability methods are applied, discrepancies may be
observed. For example, the importance of the feature and the SHAP values do not
align in their rankings. According to the importance of the Catboost feature, the
most influential variable is the number of UT hits. In the case of SHAP analysis, it
is ranked third, with Y and Tx ranked as the most influential variables at the track
level. The SHAP metric and feature importance may differ because they measure
slightly different things, often on various scales. SHAP explains predictions by
attributing each feature’s marginal contribution to the model output, while Cat-
boost feature importance can mean split-based impact or permutation impact on
our loss metric. These target different quantities, so rankings need not match. It
is more important to compare the consistency of both explainability procedures,
which in this case is clear. Figure [57] show the summary plots.

(a) SHAP Value Distribution (b) Average Shap Values

Figure 57: Catboost Downstream Classifier: Shap Analysis
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7.4 Conclusion: Downstream Track Classifier
This concludes the chapter on model development and building the second stage
of the cascade track selector. As a baseline, the initial benchmarks from logistic
regression were suboptimal. However, with a fine-tuned Catboost model, we were
still able to achieve a very good model that shows clear improvement compared to
the baseline one. At this stage, two frozen snapshots of these models were saved
for integration with the Gaudi framework.
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Chapter 6
Final Models Integration and Perfor-
mance Evaluation

1 Scope
This chapter outlines the integration and commissioning pipeline for the two-stage
machine learning selection models developed in the previous chapters with the
existing LHCb track reconstruction framework. It describes integration methods
and evaluation procedures for incorporating these models into tracking algorithms,
guided by strict constraints and iterative evaluation of latency, throughput, effi-
ciency loss, and ghost-ratio improvement to quantify the impact of physics.

As mentioned before, Moore is the High-Level Trigger application responsible
for trigger analysis and event handling in offline reconstructions. Reconstruction
algorithms include PrHybridSeeding and PrLonglivedTracking algorithms, as detailed
in Chapter 2. The objective is to integrate these cascade classifiers into these algo-
rithms and assess their performance. This chapter provides a technical overview,
test procedures, and results, with comparisons to baseline benchmarks.

2 Software and Hardware Stack
Model training and evaluation are performed on two separate computing nodes to
simplify the process and take advantage of the computing nodes’ specific capa-
bilities. The local node (that is similar to those used in the trigger farm) is used
primarily for training, while an Lxplus node at CERN is used for model integration
studies (real operation environment).
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The local machine is preferred for training due to its dedicated NVIDIAQuadro
RTX 6000 support and unrestricted access. Table [14] compares the hardware
specifications of the computing nodes.

Parameter LHCb D2 (bare metal) Lxplus (VM)
OS AlmaLinux 9.4 Red Hat Enterprise Linux 9.6

(Plow)
CPU 2× AMD EPYC 7F72 16 vCPUs, AMD EPYC-Milan
RAM 250 GB 57 GB
Disks ∼87 TB RAID6 + 1.5 TB

NVMe
160 GB root + 150 GB
/var/tmp

GPU 2× NVIDIA Quadro RTX
6000

Virtio virtual GPU

CUDA 12.5 No CUDA support
Compiler GCC 11.5.0 GCC 11.5.0

Table 14: Hardware and system specification comparison between D2 and Lxplus.

The other important information for the reproducibility of the results is the
LHCb software stack used for the analysis. Table [15] lists the versions and releases
of the various frameworks and components used. At the time of this study, the
most recent stable versions of the software stack were used, ensuring compatibility
with the experiment’s detector configuration and reconstruction workflows.

Framework Version / Tag
Moore v58r3
Rec v39r3
DaVinci v66r4
Allen v7r3
LbCom v38r3
LHCb v58r3
Gaudi v40r0
Detector v3r5
LCG / ROOT 106c / 6.32.10
Compiler GCC 13
Platform x86_64_v3-el9-gcc13+detdesc-opt+g

Table 15: LHCb software components and versions used in this work.
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3 Design and Dataflow

This work has implemented two methods to integrate the machine learning model
into the LHCb tracking framework. Each has distinct advantages and use cases,
and both were carefully designed with the LHCb tracking group.

The first method uses a standalone C++ model, directly integrated with the
tracking algorithmsPrHybridSeeding andPrLongLivedTracking. This enables iterative
development, prototyping, and easy retraining and reevaluation of parameters. The
C++ codebase fits the existing LHCb software and is mainly used for comparative
studies and rapid experimentation. The second method, in contrast, utilises ONNX
Runtime, which is provided as an external dependency by the LHCb software stack.
In this approach, the runtime removes the need for a dedicated inference engine,
allowing ONNX Runtime to handle inference directly. It should be stressed that
developing and implementing such a pipeline is not trivial since it requires direct
binding of a Python-based machine learning model, developed in a completely
stand-alone environment, with the C++ runtime.

To summarise these approaches, in both methods, track data is passed to the
model for inference, where probabilities are evaluated, and decisions are made.
The ONNX Runtime is the preferred integration method discussed in this thesis
due to its ability to integrate seamlessly within the stack’s existing algorithms.
This makes the ONNX models easy to swap and requires no extra dependencies.
Meanwhile, the C++ integration offers a flexible and transparent environment for
fast development and testing. Together, these complementary solutions facilitate
rapid prototyping and robust deployment of machine learning models within the
LHCb reconstruction workflow.

4 Model Selection and Integration

Catboost was chosen for both selection tasks due to its strong performance and easy
deployment. The built-in model saving allows a conversion from Python to C++
and ONNX formats. In C++, the model produces raw scores that can be converted
to probabilities with a sigmoid function. This flexibility allows for updates or
retraining without significant changes in the reconstruction algorithm. This is
especially important for the maintenance and further refinement of the model. For
ONNX integration, the model provides predictions and probabilities as separate
branches. However, the ONNX Runtime in the LHCb stack was designed for
single-entry MVA outputs. Extra preprocessing was needed to remove the second
branch and produce a single probability output for downstream inference. This
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step ensures compatibility with the production evaluation pipeline and matches
the C++ workflow results.
These two separate processes will not lead to significant differences in the model
response since they are independent of the inference engine used. In the following
sections, ONNX Runtime was chosen as the primary method for model selection.
This choice simplifies the chapter’s presentation and the reproducibility of the
results.

5 Threshold Optimisation
Track selection is directly influenced by the choice of working point, determined
by applying a threshold cut to the classifier output. Model responses were com-
puted for various threshold values using the Moore framework to identify optimal
thresholds, with evaluations of more than 1,000 events. This approach enables
systematic balancing of true track retention and Ghost Track rejection.

Figures [58] and [59] illustrate how adjusting threshold values affects track
selection in the case of both algorithms. The primary objective is to find a working
point that keeps as many true tracks as possible while reducing the number of
Ghost Tracks. This optimisation is carried out separately for each classifier in the
analysis.

Figure 58: Threshold Optimization to Determine the Working Point of the SciFi Track
Classifier in the Tracking Algorithm
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Figure 59: Threshold Optimization to Determine the Working Point of the Downstream
Track Classifier in the Tracking Algorithm

In these Figure [58]and [59], the dark blue bars represent the total number of
true tracks. The red stacked bars indicate the total number of Ghost Tracks. The
ratios of true and Ghost Tracks to the total number of reconstructed tracks are
noted in the plots. The green line displays pseudopurity, an additional metric that
shows improvements over the baseline, which is set at a threshold of 0.0, where no
model-based selection occurs.

The pseudopurity for a given track type is defined mathematically as follows:

Pseudopurity[γ] = Rtracks − Rbaseline
Rbaseline

× 100 (20)

Here, R is defined as the fraction of true tracks that equates to the total number
of tracks shown in the plots. This metric highlights the relative improvement in
track purity from applying selection criteria.

A threshold of 0.2 was selected for both classifiers. This implies that any track
with a classifier-assigned probability below 0.2 is considered a Ghost Track and
excluded from the reconstruction process. This point of operation provides a
balanced trade-off between signal retention and background rejection, resulting
in improved pseudopurity while maintaining high track-reconstruction efficiency.
All subsequent results and analyses presented in this work are interpreted within
the context of the 20% threshold, ensuring consistency in the evaluation.
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6 Benchmark Analysis: Baseline and Fine-Tuned
Model

In the previous section, the analysis using low event statistics helped to identify
a working point in the range of varying probability thresholds. The following
sections evaluate and study this fine-tuned model implementation in detail.

Table 16: Comparison of Baseline, C++ Implementation, and ONNX Implementation
metrics.

Metric Baseline C++ Model ONNX Model
Overall run time [Event/s] 2.28887 2.42699 2.29775
Total Time (40k Events) 17,475,863 16,481,352 17,408,353
Total Seed Tracks 4,245,176 4,017,458 3,625,892
Ghost Tracks 170,215 21,978 6,329
Ghost Ratio [%] 4.01 0.55 0.17
Hybrid Tracking Algorithm
Average Time [µs]

1576.521 2218.108 7276.340

Total Downstream Tracks 2,723,937 2,455,890 2,266,303
Ghost Tracks 303,085 140,097 126,058
Ghost Ratio [%] 11.13 5.70 5.56
DS Tracking Algorithm
Average Time [µs]

1966.830 2906.976 7602.41

The results from the Moore logs show that the runs with the integrated models
show a significant reduction in ghost ratio compared to the baseline as shown in
Table [16]. From the overall runtime and the algorithm-specific average time, it is
observed that the C++ implementation method uses no heavy resources; in the
case of ONNX, it changes, still producing good overall performance. At the time of
writing this thesis, the support of ONNX Runtime is relatively new to the project.
This still requires some more optimisations to reduce the computations and time.
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7 Track Reconstruction KPI Evaluation
Two primary key performance indicators (KPIs) are used to assess the quantitative
impact of the models on track reconstruction: Track Reconstruction Efficiency and
Ghost Ratio. Together, these KPIs offer a comprehensive view of each model’s
performance and reliability in track reconstruction.

7.1 Reconstruction Efficiency
Track reconstruction efficiency is a key metric used to assess the quality of a recon-
struction algorithm. It is the relationship between the number of tracks correctly
reconstructed by the algorithm and the total number of reconstructible tracks. A
reconstructible track is one that, based on the data and detector acceptance, could
be reconstructed by an ideal algorithm.

Mathematically, it can be expressed as follows:

Reconstructed Track Efficiency =
NReconstructed Tracks
NReconstructible Tracks

(21)

Based on this metric, figure [60] shows the efficiency of the SciFi track re-
construction relative to the baseline performance of the standard reconstruction
algorithm. In parallel, figure [61] highlights the corresponding results for Down-
stream Tracks, allowing a direct comparison between tracking strategies. The new
cascade filter presents a lower overall track finding efficiency; however, this is
expected since it is more restrictive than the baseline one. As we see in the next
section, this small reduction will bring huge changes in the ghost rate. The impact
of the lower efficiency can be carefully studied as a function of the working point
of the trained models.

The previous results are based on the standalone C++ implementation to
maintain stability during evaluation rather than the ONNX-based approach. In
summary, the observed metrics reveal a slight reduction in efficiency compared
to baseline, which is expected due to the increased complexity inherent in the
problem.
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Figure 60: Track Reconstruction Efficiency of SciFi Tracks for Baseline and Model
Integrated Configurations as a Function of Transverse Momentum

Figure 61: Track Reconstruction Efficiency of the Downstream Tracks for Baseline
and Model Integrated Configurations as a Function of Transverse Momentum
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7.2 Ghost Ratio
The ghost ratio is another vital KPI used in the analysis to evaluate track reconstruc-
tion. The ghost ratio serves as a direct measure of model discrimination capabilities.
It is defined as the fraction of combinatorial tracks produced in reconstruction to
the total number of reconstructed tracks:

Ghost Ratio =
NGhostTracks
NTotalTracks

(22)

Figure 62: Reduction in Ghost Ratio in the SciFi Tracking for Baseline and Model
Integrated Configurations as a Function of Transverse Momentum

Figure 63: Reduction in Ghost Ratio in the Downstream Tracking for Baseline and
Model Integrated Configurations as a Function of Transverse Momentum
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Building on this definition, figure [62] presents the reduced ghost ratio for
SciFi tracks. Figure [63] follows, highlighting the reduction in the Ghost Tracks
downstream. Together, these figures demonstrate that the new cascade models,
developed as part of this thesis, reject Ghost Tracks much more effectively than
the baseline approach. The fine-tuned cascade model with optimised working
point can complete the removal of the ghost SciFi segments virtually. The effect on
full Downstream Tracks is less pronounced (figure 63), since the first stage of our
model already removed the fake SciFi segments, but nevertheless is still significant.

8 Comparison of Kinematical Variables
The previous section evaluated the model’s performance under different condi-
tions. Building on this analysis, the next step is to compare the distribution of
kinematic variables resulting from model-integrated reconstructions against those
from the baseline reconstruction. This approach allows us to observe any significant
distortions in the distributions of variables after integrating the model.

To illustrate any possible effects, each figure presented in the [64] shows four
histograms: total tracks for both the baseline and model scenarios, and Ghost
Tracks for both cases. This approach offers a direct visual comparison of how
model integration affects both tracks. As can be seen, the new enhanced filters do
not introduce any changes in the shapes of the key kinematical variables associated
with the reconstructed tracks.
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8. COMPARISON OF KINEMATICAL VARIABLES

(a) Momentum (b) Transverse Momentum

(c) Eta (d) Phi

(e) SlopeX (f) SlopeY

Figure 64: Kinematical–Geometric Values Distribution of Reconstructed Downstream
Tracks

101



CHAPTER 6. FINAL MODELS INTEGRATION AND PERFORMANCE
EVALUATION

9 DaVinci

As the final step of the new cascade filter impact analysis, this work extends to the
DaVinci framework to validate the reconstruction performance with the classifier
within the LHCb reconstruction environment. Figure [65] shows the invariant
mass distribution comparison for a sample of selected K0

s particles in the baseline
and the reconstruction with the model integrated. This additional physics-related
performance is a key element of evaluating the developed algorithm.

Figure 65: Invariant Mass Distribution Comparison: Produced using DaVinci for base-
line particles reconstructed with baseline and with incorporating the integrated model
changes

The reconstructed mass peak has no biases, and its width is almost identical to
that reconstructed by the baseline algorithm. There is also no change in shape. The
main advantage of the new models lies in a significant reduction of the time spent
by the trigger code in processing Ghost Tracks. The peak obtained by the baseline
algorithm using the polluted Downstream Tracks is not significantly different
from the one reconstructed using the purified tracks because of the sophisticated
kinematic decay fitting procedure. Also, further studies of the new filtering cascade
model may lead to improving physical performance, for instance, by providing
better mass resolution but with more substantial cuts on the tracking efficiency.
Moreover, the line selecting just K0

s particles may not tell the whole story. To study
this in more detail, one would require a more complicated decay with K0

s particles
in the final state. However, such studies are out of the scope of this thesis.
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10 Conclusion
This chapter discusses in detail the impact of two models built and integrated with
the Downstream Track reconstruction for improved performance. The efficiency
and ghost ratio trade-off was the most interesting performance indicator evaluated
in this thesis. None of the models built during this work is perfect; they still
show flaws, and there is always room to improve them. The current pipeline in
this chapter shows a substantial improvement in reducing combinatorial tracks
produced in the detector. Selectively picking Downstream Tracks will help in other
analyses, as the downstream process now has to deal with fewer and cleaner tracks.
The current tuning of the cascade models reproduces almost perfectly the K0

s state
compared to the baseline algorithm. More complex studies regarding the tuning
of the new filter’s working point may lead to better physics performance, but they
require the fully commissioned algorithm and real data.
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Chapter 7
Upstream Tracker and Calibration

1 Scope of Research
The Upstream Tracker (UT) is a four-plane detector built with silicon microstrip
sensors positioned upstream of the LHCb dipole magnet (towards the VELO detec-
tor). As a part of the LHCb spectrometer, the UT is crucial for precise momentum
estimation in HLT triggers. It provides precise hit information in the bending plane
(X axis in the LHCb coordinate system) before the dipole magnet, making it a
critical component in helping to minimise ghost tracks.

Silicon sensors in the UT need regular recalibration to maintain an optimal
signal-to-background ratio. The calibration process requires taking special data
samples on a regular basis, both with the colliding beams (end-of-fill samples) and
with no particles present (noise runs). This chapter discusses methods to improve
pedestal benchmarks for UT sensors and reduce the noise hits. The pedestal offset
in silicon sensors typically refers to the baseline signal present even without a
particle hit, caused by electronic noise, leakage current, or various common-mode
effects (like a pick-up from the circulating beams). Each readout channel has
its own individual offset, which, if uncorrected, can mimic low-energy hits and
significantly degrade the sensor’s resolution. To mitigate this, experiments perform
regular calibration runs to measure baselines, subtract them in digital processing,
and apply common-mode corrections, since pedestals can drift with temperature,
radiation damage, or electronics and silicon bulk ageing. The pedestal correction
is considered the most essential part of the daily calibration for the UT detector.
Precise adjustment and monitoring of these values improve the signal-to-noise
ratio by reducing background interference.
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The following chapter offers an overview of the detector and the system’s cur-
rent state. Topics include signal optimisation, on-chip data processing, approaches
to forecasting pedestal variations over time, etc.

2 Detector Layout and DAQ Systems
The UT detector was already described in detail Chapter 1, thus, in this section,
we only briefly discuss the detector’s most relevant features to aid in explaining
the calibration data analysis presented in this Chapter. The UT has four active
measuring planes arranged sequentially along the beam axis. They are called UTaX,
UTaU, UTbV, and UTbX, where U and V are, so called, stereo coordinates necessary
to obtain 3D hit information out of 1D measuring strip channels.

The detector employs a complex approach to data acquisition and processing.
When a charged particle traverses the detector, it ionises the silicon bulk and pro-
duces an analogue current signal [48]. The microstrips collect the charge from the
local silicon region. They serve as the primary channel for data acquisition. The
strips connect to the SALT ASIC. Each of which can process 128 such stip-channels
simultaneously. Several SALT ASICs can be combined to form a hybrid that can
process up to 1024 channels. There are two types of hybrids: VERA, which has 4
ASICs, and SUSI, which has 8 ASICs.

A UT module combines a silicon sensor and a hybrid support. These modules
connect to eLinks, which deliver serialised data from SALT to GBTx for packaging
and transmission to further processing steps performed off the detector. The UT
tracker has four sensor types. Type A is the most commonly used, accounting for
approximately 92% of the planes. Types B, C, and D are placed primarily near the
beam pipe for greater granularity.

2.1 The SALT ASIC
The Silicon ASIC for LHCb Tracking (SALT) is a custom-developed readout
chip designed to handle high-density and high-volume data quickly and reliably
from UT. It operates at a 40 MHz clock rate and can do 128-channel readouts
simultaneously. SALT is fabricated using radiation-hard 130nm CMOS technology
(TSMC), optimised for the LHCb experiment.
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Figure 66: SALT ASICs Diagram

SALT helps significantly to reduce the detector data volume by performing on-
chip data preprocessing before transmission. SALT ASIC comprises two functional
components:

Analogue Component: This block helps translate analogue signals to digital sig-
nals. It consists of

• Charge-Sensitive Amplifier
• Fast Shaper with a peaking time of 25ns
• Signal-to-Differential Signal Converter
• Fully differential 6-bit SuccessiveApproximationRegister (SAR)Analogue-

to-Digital Converter (ADC)

The fast shaper facilitates bunch-crossing separation, which the differen-
tial converter improves signal quality by converting single-ended signals to
differential forms.

Digital Component: This block houses a Digital Signal Processing (DSP) unit and
is responsible for on-chip signal processing and data reduction. DSP helps
with the following

• Channel Masking: Disable noisy or non-functional channels.
• Pedestal subtraction: Optimise the baseline offsets per channel
• Mean CommonMode Subtraction: Eliminates external noise by subtracting

the average signal from all channels.
• Zero Suppression: Retain the signal based on a threshold, which helps to

reduce data.
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This digitised data is transmitted through e-Links using Scalable Low Voltage
Signalling (SLVS) interface technology. This interface is connected downstream of
the DSP to ensure efficient low-noise readouts at high bandwidth. A key feature of
SALT is its on-chip data preprocessing, which mainly involves three types.

2.1.1 Pedestal Subtraction

For a channel, pedestals represent the baseline signal in the strip in the absence of
a particle hit. The RAW ADC values will include these pedestal values for each
channel, which must be carefully removed to obtain an accurate detector signal.

2.1.2 Common-mode-Subtraction

In addition to pedestal correction, SALT can execute common-mode subtraction
(CMS), a digital method for correcting detector noise that may affect a collection
of channels (non-local effects) such as temperature variations or power supply
interference. By calculating and removing the average offset shared across multiple
channels for each event, CMS ensures that these common fluctuations do not
influence the measurement of individual signals. At the moment, the SALT chip is
capable of executing a simple linear offset correction. Together, Pedestal Subtraction
and CMS form a complementary approach to reduce readout noise and improve
accuracy.

Signal = ADCraw − Pedestal − CMSo f f set (23)

2.1.3 Zero Suppression

Following noise reduction, data efficiency becomes essential. In the Physics stream,
most strips do not register hits in an event. Transmitting data from all 128 chan-
nels within SALT when no hits is inefficient. By applying zero suppression, a
channel event is recorded only if its value exceeds a set threshold. This approach
significantly reduces the data sent downstream, improving efficiency.

In summary, SALT ASICs form the backbone of the UT readout system, provid-
ing 128-channel readout, on-chip digital processing, and channel masking for bad
channels before passing the data downstream.
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3 Pedestal Calibration
SALT ASICs form the backbone of the UT readout system, providing 128-channel
readout, on-chip digital processing, and channel masking for bad channels before
passing the data downstream. Pedestal calibration is an important step in optimizing
the signal-to-noise ratio.

Monitoring and calibration tools like Vetra decode non-zero suppressed (NZS)
data from the UT detector and help recalibrate the detector. Using non-zero sup-
pressed run data from a RAW ADC for calibration runs is essential. The Physics
stream contains empty channels, but theNZS data provides a complete distribution.
Calibration is typically performed by injecting a test pulse or at the end of fill runs.
The results of these runs are stored and used for the zero-suppression threshold.

This chapter explores two approaches to pedestal calibration studies in UT.
The first examines the observed pedestal value for a calibration run and uses
KL Divergence Statistics with a baseline benchmark calibration run to find their
similarity in distribution. The second method studied involves forecasting pedestal
values for the forthcoming calibration run using LSTM. This project intends to
build a foundation for potential future extensions.

3.1 Pedestal Calibration Data
In this study, 51 NZS runs were collected using Vetra, a UT analysis tool built
on Gaudi. Calibration Run Number [ 298593 ] is considered the benchmark
calibration run for reference.

Given the data granularity, the UTaX plane is used as a test case for the subse-
quent analyses. Figure [67] shows the transition from channel-level tomodule-level
analysis, illustrating the mean-averaged pedestal values per module for the bench-
mark run in the UTaX plane.

To understand the patterns of pedestal distributions, Figure [68] presents the
pedestal values per channel for three consecutive runs after the benchmark run,
providing a visual basis for comparison, and Figure [69] shows the density distri-
bution of pedestal values as a starting reference for comparison.
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Figure 67: Average Pedestal Values, calculated per module, in UTaX measuring plane
for the Benchmark Run. The presented projection follows the physical layout of the
modules in the plane UTaX

Figure 68: Absolute Pedestal Values per Channel for three consecutive runs after the
benchmark run.
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Figure 69: Pedestal Value Distribution Histogram : Benchmark Runs and Three Con-
secutive Calibration Runs

4 KL Divergence Evaluation
In the scope of this work’s calibration studies, the Kullback-Leibler divergence
(KL divergence) is considered a method for comparing two calibration runs. The
purpose is to find a reliable and easier-to-implement quantitative measure for
comparing similarities or dissimilarities in 2D distributions of the average pedestal
values between two runs.

The goal is to create a single quantity that indicates when a recalibration is
needed based on distribution changes between runs. Such a metric would be vital
for creating an automatic and autonomous (not requiring a human operator) soft-
ware procedure capable of triggering a new calibration and parameter update. The
analysis is done at a module level for each UT plane. The divergence is measured
relative to a baseline benchmark run, with the run number 298593 serving as the
reference. This benchmark is assumed to serve as a reliable reference for identifying
any need for recalibration or significant differences in distribution compared to
the current run.

Given two probability distributions between two runs, P(x) and Q(x), the KL
divergence can be mathematically represented as

DKLP(||Q) = ∑
n

P(x).log
P(x)
Q(x)

(24)

P(x): Pedestal distribution from benchmark run

Q(x): Pedestal distribution from new run
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The figure illustrates the variation in the KL divergence between the benchmark
and specific runs. Red indicates the highest divergence from the benchmark, while
blue indicates a module with low KL divergence.

(a) Benchmark (b) Run 1

(c) Run 2 (d) Run 3

Figure 70: KL Divergence Calculation with Benchmark Run Probability Distribution
per Stave for UTaX and the next three consecutive calibration runs

The first UT plot in [70] represents a self-comparison of the benchmark, which
naturally results in zero values for the metrics. In addition to this, the overall prob-
ability can also be considered for further analysis. Examining the KL divergence
value makes it possible to assess the calibration requirement and gain insight into
the underlying probability distribution, without extra steps.

5 LSTM-Based Pedestal Forecasting
This is a more challenging approach that was initiated during the course of this
research. The goal is to build a neural network that captures and remembers the
time dependence of the pedestals across runs. Each calibration run serves as a
snapshot in time. The objective is to train a model that learns from past run events’
history and forecasts future events before the next run. This approach enables
thresholds to be set in advance, facilitating the anticipation of calibration needs. A
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capable model that captures these intrinsic patterns facilitates anomaly detection
when new runs do not align with the forecast calibration data.

5.1 Long Short-Term Memory (LSTM)

LSTM is a Recurrent Neural Network (RNN) type that retains temporal depen-
dency between time steps. It is designed to handle both vanishing and exploding
gradient problems and perform well with sequential data. Unlike other neural
networks, the LSTM has a memory cell orchestrating memory transfers.

Figure 71: LSTM Memory Unit

As shown in figure [71], a unit memory cell consists of three main gates:

Input Gate: Determines the extent to which new information is stored by process-
ing the current input and the previous hidden state.

Forget Gate: Decides which information should be retained or discarded from the
memory cell.

Output Gate: Calculates the amount of information from the memory cell trans-
mitted to the next step for further processing.

5.2 Model Architecture and Training

The LSTMmodel learns the temporal dependencies between the calibration runs to
predict the next run. For consistency, the model is trained to predict 16x16 modules
in the UTaX plane, resulting in 256 modules. This study uses 51 calibration runs,
divided into two groups. The first 40 runs are for training the model, and the
remaining 11 are for testing. Sequences of 10 calibration runs are used to predict
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the next in a rolling fashion to forecast pedestal values in the upcoming calibration
run.

The architecture for the LSTM model is as follows:

input_size = 256: Number of input features corresponding to the flattened se-
quence of modules in one plane (all 16x16 modules).

hidden_size = 128: the hidden state vector’s size determines the memory capacity
within an LSTM layer.

num_layers = 2: Number of stackedLSTM layers, allowing the extraction of deeper
patterns from sequential data.

dropout = 0.3: Dropout rate to prevent overfitting.

num_epochs = 1000: Model training cycles in the entire training dataset.

loss_function = MAE: Mean Absolute Error, a statistical measure of the differ-
ences between prediction and true values.

optimiser = Adam: Adam (Adaptive Moment Estimation), an algorithm that ad-
justs learning rates during training.

5.2.1 Loss Function : MAE

The MAE (or L1) loss function targets the magnitude difference between true
values and predictions, not directions.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (25)

n: Total number of data points.

yi: The actual (observed) value.

ŷi: The predicted value from the model.

The mean absolute error (MAE) is evaluated over 1000 iterations during train-
ing. Figure [72] shows how the training loss decays over iterations.
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Figure 72: LSTM Forcasting Model Training Loss Over 1k Iterations

5.3 Model Forecast
As described earlier, the test dataset includes 10 calibration runs for model predic-
tion and one additional run for evaluation. The trained model uses the 10 historical
runs to forecast the subsequent run, which is then compared against the known
evaluation run.

Each run contains 256 mean pedestal values, applied sequentially to predict
the following UTaX plane sequence of 256 modules. Figure [73] illustrates the
evaluation run along with the 10 calibration runs used in forecasting and the
corresponding predictions generated by the LSTM model.

Figure 73: LSTM Forecast for the upcoming calibration run based on 10 historic
calibration runs
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To better understand figure [73], the gray lines indicate the sequence of past
calibration data used for the predictions, and the vertical grid separates the different
calibration runs. The blue line represents the true pedestal values observed, while
the red lines show the model output.

Figure 74: Difference in true value and model prediction [Absolute]

Figure [74] illustrates the absolute difference between the true calibration val-
ues and the predicted values of the model, which can help identify any significant
deviations from themodel forecast. The initial model gives a reasonable approxima-
tion of the average pedestal values. In order to improve it further, it requires more
data and more capacity (the initial model may be too simple). The prospective
work may include more sophisticated recurrent models such as Mamba. The goal
is to train a robust model to learn the temporal dependencies and evaluate the
results. This serves as an extension to the future scope of research.
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Chapter 8
Conclusion

1 Summary of Research

The most significant achievement of this thesis is developing and demonstrating a
study that significantly enhances the downstream track reconstruction in High-
Level Trigger (HLT) systems for the LHCb experiment. The results and conclusions
presented here are particularly important in the context of LHC Upgrade I, specifi-
cally in enabling the transition to a robust, fully software-based trigger system. My
approach also shows promise for tuning intelligent models beyond Upgrade I.

In the LHCb experiment, the real-time trigger system plays a central role in
selecting the most relevant events from an immense flow of collision data. The
algorithms implemented at this stage are exceptionally balanced both in terms of
memory footprint and speed of execution, as even minor modifications can have
far-reaching consequences for efficiency and physics reach. Within this demanding
environment, I contributed to the development of the tracking procedure for recon-
structing the daughters of long-lived particles decaying beyond the vertex detector
by designing and integrating additional machine learning–based filters. These
enhancements were implemented with great care to preserve the stability of the
system, while at the same time improving its ability to discriminate significantly
the ghost tracks. The work demonstrates how advanced data-driven methods can
be safely and effectively incorporated into one of the most sensitive components
of the LHCb data processing chain. The obtained new algorithm is able to almost
completely remove the ghost from the SciFi track sample (seed segments) and
significantly reduce the ghost contamination in the downstream track sample. The
main impact of the enhanced algorithm, using the current working point tuning,
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is related to the reduced time of processing in the HLT trigger. On the physics
performance level, we see that the new algorithm is able to reproduce the K peak
without any biases or distortions. Future work, after the commissioning of the new
algorithm within the HLT stack, may be devoted to retuning the working point of
the cascade filters to improve further the physics performance. It can be done at the
cost of decreasing the reconstruction efficiency and needs more detailed studies
using the full reconstruction of a selected signal decay with K in the final state.

Beyond the software trigger and the study on Downstream Tracking, the thesis
also aimed to develop a calibration and monitoring tool to optimise the Upstream
Tracker (UT) signal-to-background ratio, which directly influences the overall
improvement in tracker DAQ. This part of the thesis used the real physics data col-
lected by the LHCb experiment during the proton-proton collisions and dedicated
UT calibration noise runs.

2 Results and Findings

This research explores and tests multiple machine learning models to evaluate dif-
ferent classes of events. The most effective strategy in this context is the adoption of
a two-stage track selection method to improve the performance of the downstream
tracking algorithm. The results presented in this thesis are obtained under specific
conditions and test cases described in detail in earlier chapters. Intermediate steps
and results are explained, and the final results are derived after integrating the
models with reconstruction algorithms.

The two-stage selection strategy enhances the reconstruction of downstream
tracks and the associated SciFi track segments, which serve as their seeds. This
method primarily aims to remove the combinatorial tracks, referred to as ghost
tracks, that arise during track reconstruction. In the case of both stages, two differ-
ent integration approaches are explored for model deployment: a C++ standalone
implementation and an ONNX Runtime–based deployment. The results are com-
pared with the baseline benchmark run, with no additional models discussed in
the thesis that are not integrated. In the first-stage selection, the standalone imple-
mentation achieves a ghost track reduction of approximately 87%. At the same time,
the ONNX-based approach signals a reduction of 96% ghost tracks produced at
the time of SciFi reconstruction compared to the baseline benchmark. The second-
stage selection operates in a noisier environment during the final downstream
reconstruction. Here, both deployment methods achieve a ghost track reduction of
approximately 50–60% relative to total ghost tracks produced in the baseline run.

In the context of UT calibration, KL divergence is set to be a robust evaluation
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metric. It helps in effectively comparing pedestal value distributions between a
benchmark run and the current run, which helps assess the detector’s recalibration
requirements. Furthermore, an LSTM-based approach extends this analysis by
forecasting future pedestal values based on historical run data. Both approaches
are discussed in detail in earlier chapters.

3 Limitations of Current Approach
The results obtained in the work are the culmination of multiple methods im-
plemented in due time with this research. The evaluation metrics showed a con-
sistent trade-off between the efficiency of track reconstruction and the purity of
reconstructed tracks. This balance indicates that the proposed two-stage selection
method concludes a balanced method for removing ghost tracks generated in the
detector without losing many true tracks in the process.

One of the key constraints in deploying machine learning–based models for
track reconstruction is their impact on track selection and overall throughputs.
In order to tackle this, two different deployment strategies are considered, pri-
marily focusing on a comparative study and the ease of implementation of a new
trained model in the reconstruction selection. Even though both integration meth-
ods showed a significant reduction in the ghost ratio, they differ in computational
time and efficiency. The C++ standalone method is an easy-to-implement pro-
totyping solution with resources similar to the baseline. In contrast, the ONNX
runtime currently faces performance bottlenecks. However, ONNX still shows a
better integration method due to its modularity and ease of implementation in the
LHCb stack. The performance overhead makes ONNX the secondary choice for
integration in the present study, despite its otherwise promising generality and
flexibility.

4 Future Explorations
The evaluation and metrics presented in this work are not a final solution to the
challenges of track reconstruction in the LHCb experiment. Instead, the contribu-
tions made here consolidate and lay a solid foundation for future developments
in this direction. The two-stage track selection method explored in this thesis
demonstrates promising results for downstream tracks and has the potential to be
extended to other reconstruction streams within the experiment.

The recent integration of ONNX Runtime support into the Moore framework
provides a new layer of flexibility and introduces additional possibilities for ex-
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ploring other ML-based track selection methods. In this work, Run 3 data were
evaluated through two distinct integration pathways: a C++ standalone and an
ONNXRuntimemethod. From the consolidated results, the deployedmodels point
the way toward the possibilities of further improvements. For instance, retraining
the models with a broader and more diverse range of track reconstruction events
could strengthen generalisation, and fine-tuning the models even further may
make capturing more complex patterns in event data possible. In addition, the
strict time constraints, the throughput requirements, and other constraints of the
LHCb experiment remain a critical area of focus. Techniques such as model prun-
ing, compression, and the design of lightweight architectures could significantly
reduce inference latency, potentially a solution for the high-throughput production
environments.

Parallel to the downstream reconstruction studies, this thesis investigated meth-
ods for improving UT calibration strategies. The forecasting model built for the
pedestal prediction using an LSTM-based model shows good results, although it is
not optimised as a highly reliable model for the operations. The framework and the
pipelines are being built and can be further improved with the models. With access
to larger datasets and the adoption of more advanced neural network architectures,
the predictive capabilities of this approach can be substantially improved in future
work.

5 Remarks
While the present research provides a reliable and strong candidate for improving
downstream track reconstruction in the LHCb experiment, it establishes a solid
foundation. The work presented here represents a comprehensive account of the
models, evaluation strategies, and integration techniques explored throughout
the study. Earlier attempts at model design and enhancement strategies further
revealed promising directions for extension and refinement.

In summary, this research provides both a conclusive summary of improve-
ments observed in downstream track reconstruction with the aid of a machine
learning-based track selection approach and acknowledges the future possibilities
of further improvements.
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