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Abstract

Majorana zero modes, arising in topological superconductors, are promising building blocks
for fault-tolerant quantum computation due to their non-Abelian exchange statistics and
intrinsic robustness against decoherence. Planar Josephson junctions have emerged as a
versatile platform for engineering Majorana zero modes and studying topological supercon-
ductivity. This thesis investigates the underlying physics of Andreev bound states, Majorana
zero modes, and transport properties of Josephson junctions. First, Andreev bound state
spectra of junctions in a perpendicular magnetic field are investigated. It is shown how the
vector potential produces the relative phase shifts in the spectra, providing a transparent
explanation of experimental tunneling spectroscopy measurements. Building on this, the in-
terplay between spin–orbit coupling and magnetic field in Josephson junctions is studied with
the demonstration of how nonlocal conductance can serve as a reliable probe of topological
superconductivity. Realistic device limitations, such as phase slips in junctions embedded in
superconducting loops, are shown to hinder the emergence of Majorana zero modes at low
magnetic fields. To address this issue, it is proposed to elongate the junction, which widens
the accessible phase interval and reduces the magnetic field required for the topological
transition. This work contributes to the study of Josephson junctions as a promising platform
for realizing Majorana zero modes, by exploring their transport properties, and by guiding
experimental implementations.





Streszczenie

Stany zerowe Majorany, powstające w topologicznych nadprzewodnikach, stanowią obiecujące
elementy budulcowe odpornych na błędy komputerów kwantowych dzięki swoim nieabelowym
statystykom wymiany oraz wewnętrznej odporności na dekoherencję. Planarne złącza Joseph-
sona rozważane są jako wszechstronna platforma do realizacji stanów zerowych Majorany
i badania topologicznego nadprzewodnictwa. Niniejsza rozprawa analizuje fizykę stanów
związanych Andreeva, stanów zerowych Majorany oraz właściwości transportowych złącz
Josephsona. W pierwszej kolejności badane są widma stanów związanych Andreeva w złączach
poddanych prostopadłemu polu magnetycznemu. Pokazano, w jaki sposób potencjał wektorowy
wywołuje względne przesunięcia fazowe w widmach, dostarczając przejrzystego wyjaśnienia
eksperymentalnych widm spektroskopii tunelowej. Następnie analizowane jest współdziałanie
sprzężenia spin-orbita i pola magnetycznego w złączach Josephsona, przy czym wykazano,
że nielokalna konduktancja może pełnić rolę wiarygodnej sondy topologicznego nadprzewod-
nictwa. Wykazano również, że realistyczne ograniczenia urządzeń, takie jak przeskoki fazowe w
złączach osadzonych w pętlach nadprzewodzących, utrudniają pojawianie się stanów zerowych
Majorany przy niskich polach magnetycznych. Aby rozwiązać ten problem, zaproponowano
wydłużenie złącza, co poszerza dostępny przedział fazowy i zmniejsza wymagane pole mag-
netyczne dla przejścia topologicznego. Niniejsza praca wnosi wkład do badań nad złączami
Josephsona jako obiecującej platformy do realizacji stanów zerowych Majorany, poprzez analizę
ich właściwości transportowych oraz wspieranie rozwoju implementacji eksperymentalnych.
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Chapter 1

Introduction

1.1 Overview of the research

Classical computers, such as those in our laptops or even the world’s fastest supercomputers,
are highly effective for many tasks, but they face fundamental limitations when dealing with
complex quantum problems. This limitation arises from the exponential growth of the Hilbert
space with system size [1]. For instance, simulating a system with just a few dozen particles
already requires a classical computer to process an exponentially large number of configurations
[2].

An illustrative example is provided by spin chains, such as those described by the Ising or
Heisenberg models, which consist of one-dimensional arrays of spin-1/2 particles. Since each
spin has two possible basis states, the Hilbert-space dimension grows exponentially as 2N for a
system of N spins [3].

Due to this exponential growth, exact diagonalization is only feasible for very small clusters,
typically up to about 20 spins, beyond which the method is no longer feasible [4, 5]. Fermionic
lattice systems such as the Hubbard model, where each site may be empty or occupied by an
electron with spin, exhibit the same exponential complexity, further underscoring the limitations
of classical approaches to quantum many-body problems [6, 7].

To overcome these limitations, new approaches are being explored, most notably quantum
computing. Quantum computers encode and manipulate information using quantum bits (qubits)
[2]. Unlike classical bits, qubits can exist in superpositions of states, offering the potential
to solve problems that are intractable for classical computers [8–10]. Qubits can be realized
in various physical platforms, such as electron spins or superconducting circuits, but they are
highly sensitive to environmental noise, which can easily lead to errors.

One way to fix errors in quantum computers is quantum error correction, which spreads
information across many physical qubits to make a single, more reliable logical qubit. However,
this method requires a lot of extra qubits, sometimes more than 1000 physical qubits for just
one logical qubit, which is a big challenge. A different approach is to use topological qubits,
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Introduction

which store information in pairs of Majorana zero modes (MZMs) that are spatially separated.
These are naturally protected from errors because they’re less affected by disturbances, making
them a great option for building stable, fault-tolerant quantum computers [11].

In particular, the quantum information encoded in MZMs is topologically protected: it is
stored non-locally in the fermion parity degrees of freedom that are shared between spatially
separated Majoranas. This non-local encoding makes the information inherently robust against
local perturbations and common sources of decoherence. Moreover, logical operations can
be implemented through the braiding of Majoranas, and due to their non-Abelian exchange
statistics, the resulting transformations depend only on the topology of the exchange path rather
than microscopic details such as trajectory or timing [12, 13]. Topological superconductors
(TSCs) are the natural host materials for MZMs [14]. In contrast, trivial superconductors lack
such topological features and do not support MZMs. The presence of MZMs in topological
superconductors makes them particularly promising for applications in topological quantum
computing.

A well-known example is the spinless p-wave superconductor, which supports MZMs, but
unfortunately such superconductors do not occur naturally, particularly as two-dimensional
materials. Scientists came up with an idea to host MZMs using s-wave superconductors
(abundant in nature). This can be realized by placing a one-dimensional semiconducting
nanowire with strong spin-orbit coupling in proximity to an s-wave superconductor and applying
an in-plane magnetic field, leading to the emergence of MZMs[15, 16]. In a pivotal study,
Mourik et al. [17] provided a strong signature for MZMs, they observed zero-bias conductance
peaks (ZBPs) in tunneling spectroscopy measurements, a characteristic that matches theoretical
predictions for MZMs. Despite these findings, further studies indicate that ZBPs alone are not
conclusive evidence of true MZMs; as elaborated in Sec. 1.5.1.

An alternative and promising platform for hosting MZMs are Josephson junctions (JJs),
particularly those incorporating two-dimensional electron gas (2DEG) heterostructures, which
are a highly effective platform for hosting MZMs and achieving topological superconductivity
[18, 19], with a more detailed discussion provided in Sec. 1.5.2.

This thesis begins with a collaborative study, in which we provided a theoretical explanation
of recent experimental observations of Andreev bound states (ABSs) in planar JJs [20]. As
discussed earlier, planar JJs have been proposed as potential hosts of MZMs [19, 21, 22],
whose location and coupling can be tuned by the vector potential [21]. In such junctions, the
magnetic vector potential induces counterpropagating currents, generates Josephson vortices,
and produces the characteristic Fraunhofer interference pattern in the critical current [21, 23].
Understanding the properties of the ABS spectrum is, therefore, a prerequisite for realizing
MZMs in JJs.

In this work, shown in Chapter 5, our main focus was to investigate how the magnetic vector
potential influences ABSs in planar JJs. Experimentally, tunneling spectroscopy was performed
at both ends of the junction, revealing distinct ABS spectra: both edge probes detected ABSs
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1.2 Bogoliubov-de Gennes formalism for superconductivity

localized near the tunneling barriers. To interpret these findings, we developed a toy model
that, despite its simplicity, captures the essential physics of ABSs under the influence of the
magnetic vector potential. The model and further numerical calculations show that the local
superconducting phase difference induced by the vector potential has equal magnitude but
opposite sign at the two ends of the junction. This phase shift directly governs the spatial
localization of the ABSs, which under strong magnetic fields tend to localize next to the barriers.
In this way, the model provides a transparent physical explanation of the tunneling spectra and
successfully reproduces the experimental observations. This finding also allows us to estimate
the relative positions of localized ABSs, enhancing our understanding of phase-controlled
topological superconductivity in planar JJs.

Magnetic field, superconductivity, and spin-orbit coupling (SOC) are the three key ingredi-
ents required to study MZMs. In planar JJs, the superconducting phase difference provides an
additional knob for controlling the topological transition [19, 24].

Building on this understanding, Chapter 6 presents our study of spin effects in the system
and their role in the emergence of topological superconductivity. Although both local and
nonlocal spectroscopy have been performed on planar SNS junctions in the tunneling regime,
clear signatures of the topological transition have remained elusive [25, 26]. In this work [27],
we theoretically investigate how nonlocal conductance measurements can reveal hallmarks of
topological superconductivity.

In realistic devices, the phase bias is typically imposed by threading magnetic flux through a
superconducting loop embedding the SNS junction [20, 28]. Such loops have finite inductance
and induce phase slips. These phase slips skip large regions of phase space near π , which is the
most crucial region for realizing MZMs. As a result, they strongly hinder the emergence and
detection of MZMs at low magnetic fields.

As we learned from the previous work, MZMs cannot be realized at low magnetic fields
because phase slips prevent access to the crucial region near π [27, 29]. Consequently, experi-
ments typically require large in-plane magnetic fields to extend the topological phase. However,
large fields suppress superconductivity. In Ref. [30], detailed in Chapter 7, we addressed these
limitations by proposing an alternative route to stabilize and extend the topological phase in
planar junctions. We demonstrated that elongating the junction can significantly widen the phase
interval over which topological superconductivity emerges, thereby reducing the magnetic fields
required for the transition.

1.2 Bogoliubov-de Gennes formalism for superconductivity

One of the most remarkable phenomena in condensed matter physics is superconductivity,
which was discovered by Kamerlingh Onnes in 1911 [31]. However, the first microscopic
theory, known as the BCS theory [32, 33] was developed later in 1957 by Bardeen, Cooper,
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and Schrieffer. They discovered that two electrons near the Fermi surface, with opposite
momentum and opposite spins (k↑ and -k↓) form a Cooper pair. This pairing happens because of
electron-phonon coupling.

The BCS Hamiltonian in the second quantization, describing the pairing of electrons into
Cooper pairs, is given by:

ĤBCS =∑
k,σ

εk c†
kσ

ckσ −∑
k,k′

Vkk′ c
†
k↑c

†
−k↓c−k′↓ck′↑, (1.1)

where, εk = h̵2k2

2m −µ is the free electron term, m represents the effective mass, µ is the chemical
potential. The second term represents the scattering process in which a Cooper pair with mo-
menta (k,−k) is scattered into another pair with momenta (k′,−k′), with a scattering amplitude
Vkk′ and c†

kσ
and ckσ are the creation and annihilation operators for an electron with momentum

k and spin σ(↑ or ↓). The mean field approach is essential, as it accounts for the coherent ground
state of the BCS Hamiltonian, where operator pairs such as c−k′↓ck′↑ produce non-zero average
values. Single-particle excitations exist in states that are separated from the condensate at the
Fermi energy EF by an energy gap, known as the pair potential ∆. These excitations, referred to
as Bogoliubov quasiparticles, consist of both electron and hole components, denoted by uk and
vk, respectively. They are described using the Bogoliubov–de Gennes (BdG) equations within
the framework of the mean-field approximation [34].

⎡⎢⎢⎢⎢⎣

H ∆

∆∗ −H

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

uk

vk

⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣

uk

vk

⎤⎥⎥⎥⎥⎦
. (1.2)

H is the one-electron Hamiltonian defined as

H = − h̵2

2m∗
∇2+V(r)−µ, (1.3)

where µ is the chemical potential and m∗ is the effective electron mass, and V(r) is the external
potential. For a homogenoues superconductor with V(r) = 0, the vector (uk,vk) can be written
as: ⎡⎢⎢⎢⎢⎣

uk

vk

⎤⎥⎥⎥⎥⎦
= eι k⃗⋅r⃗

⎡⎢⎢⎢⎢⎣

u
v

⎤⎥⎥⎥⎥⎦
. (1.4)

Here u and v given by

u2 = 1
2
⎛
⎝

1+
√

E2−∆2

E2

⎞
⎠
, (1.5)

v2 = 1
2
⎛
⎝

1−
√

E2−∆2

E2

⎞
⎠
, (1.6)
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1.3 Josephson junction

where the energy eigenvalues for Bogoliubov quasiparticles in the BCS theory are:

E = ±
⎡⎢⎢⎢⎢⎣
( h̵2k2

2m∗
−µ)

2

+∆
2
⎤⎥⎥⎥⎥⎦

1/2

. (1.7)

In the spectrum (Figure 1.1), we observe two branches, electron-like and hole-like excitations,
and a gap opened between them.

k

E Δ

Fig. 1.1 Analytical BdG spectrum E(k) showing electron-like and hole-like branches.

1.3 Josephson junction

1.3.1 DC Josephson effect

After the formulation of the BCS theory, Brian Josephson, a Ph.D. student at Cambridge Univer-
sity, predicted the quantum-mechanical tunneling of pairs of electrons between two different
superconductors separated by a thin insulating layer. He predicted that a dissipationless current
(supercurrent) would flow, driven by the phase difference between the two superconductors, φ

I = Icsin(φ), (1.8)

where Ic is the maximum Josephson current that can flow and is called the critical current of the
junction. It is known as the DC Josephson effect and has since been confirmed by numerous
experiments [35]. It is now well established that the Josephson effect arises more generally
whenever two superconductors are connected by a weak link; this can be not only an insulator
but also a metal or a semiconductor. For I < Ic the Josephson current is perfectly dissipationless.
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1.3.2 AC Josephson effect

Josephson further predicted that if a constant voltage Vb is applied across the junction, the
superconducting phase difference evolves as

dφ

dt
= 2eVb

h̵
, (1.9)

so that φ(t) = φ0+ 2eVb
h̵ t. Consequently, the Josephson current becomes an alternating current of

amplitude Ic and frequency ω = 2eVb/h:

I(t) = Ic sin(φ0+
2eVb

h̵
t) , (1.10)

an effect known as the AC Josephson effect [35, 36].

1.4 Andreev reflection and Andreev bound states

1.4.1 Andreev reflection

In the case of normal reflection, an electron is reflected as an electron at interfaces with vacuum
or insulating materials. However, this behavior changes at a normal–superconductor (NS)
interface. When a right-moving electron in the normal region, with energy less than ∆ reaches
the right NS interface, as shown in Fig. 1.2(a). It cannot enter the superconductor because
there are no quasiparticle states available below the energy gap. Instead, the incoming electron
is reflected as a hole with reversed spin and wave vector. This process, known as Andreev
reflection [37], is accompanied by the injection of a Cooper pair into the superconducting
region. To describe a one-dimensional NS interface, we restrict the single-particle Hamiltonian
of Eq. 1.3 to the case of 1D and a δ -function barrier at the interface,

V(x) =U0 δ(x), (1.11)

with strength U0. It is convenient to parameterize the interface transparency by the dimensionless
Blonder–Tinkham–Klapwijk (BTK) barrier strength [38],

Z = U0

h̵vF
, vF =

h̵kF

m∗
, kF =

√
2m∗µ

h̵
, (1.12)

where m∗ is the effective electron mass. In the clean limit (U0 = 0), one has Z = 0 and the
interface is perfectly transparent. On the normal side (x < 0), only propagating electron and hole
states are retained.

For subgap energies ∣E ∣ < ∆, the superconducting side (x > 0) does not support propagating
quasiparticles; instead, the Bogoliubov–de Gennes solutions have complex momenta corre-

6



1.4 Andreev reflection and Andreev bound states

sponding to evanescent modes that decay over the superconducting coherence length. Transport
in this regime therefore occurs entirely through reflection at the interface.

e

h
EF

N S

Δ

(a)

N S

Δ Δ

(b)

S

Fig. 1.2 A schematic illustration of Andreev reflection is shown. At the NS interface, an incoming
electron is reflected as a hole (retro-reflected), while a Cooper pair is transmitted into the superconductor,
as shown in Figure (a). Figure (b) represents a S–N–S junction; the reflected hole reaching the left
interface undergoes another Andreev reflection.

In the normal region, the scattering state for an electron incident from the left is written as

ψN(x) =
⎡⎢⎢⎢⎢⎣

1
0

⎤⎥⎥⎥⎥⎦
eιkex+b

⎡⎢⎢⎢⎢⎣

1
0

⎤⎥⎥⎥⎥⎦
e−ιkex+a

⎡⎢⎢⎢⎢⎣

0
1

⎤⎥⎥⎥⎥⎦
eιkhx, (1.13)

where a and b are reflection coefficients. The electron and hole wavevectors are

ke =
√

2m∗(µ +E)
h̵

, kh =
√

2m∗(µ −E)
h̵

, (1.14)

which, in the limit E ≪ µ , both approach the Fermi momentum kF =
√

2m∗µ/h̵. In the super-
conducting region (x > 0), the wave function is

ψS(x) = c
⎡⎢⎢⎢⎢⎣

u
v

⎤⎥⎥⎥⎥⎦
eιqx+d

⎡⎢⎢⎢⎢⎣

v
u

⎤⎥⎥⎥⎥⎦
e−ιqx, (1.15)

where c and d are transmission coefficients, and (u,v) are the BCS coherence factors defined
in Eqs. (1.5)–(1.6), normalized such that ∣u∣2 + ∣v∣2 = 1. For ∣E ∣ < ∆, the momentum in the
superconductor is complex,

q = kF ± ικ(E), κ(E) =
√

∆2−E2

h̵vF
, (1.16)

so the solutions describe evanescent quasiparticles. Applying boundary conditions at x = 0 yields
the scattering amplitudes and allows one to define the corresponding probabilities in the BTK
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formalism [38]:

A(E) = ∣a(E)∣2, B(E) = ∣b(E)∣2, C(E) = ∣c(E)∣2, D(E) = ∣d(E)∣2. (1.17)

Probability conservation imposes

A(E)+B(E)+C(E)+D(E) = 1. (1.18)

For subgap energies ∣E ∣ < ∆, there are no propagating states in the superconductor, implying that

C(E) =D(E) = 0, (1.19)

and therefore
A(E)+B(E) = 1. (1.20)

In the clean limit of a perfectly transparent interface (Z = 0), the BTK result simplifies to

A(E) = 1, B(E) = 0, C(E) =D(E) = 0, ∣E ∣ < ∆, (1.21)

which corresponds to perfect Andreev reflection: each incident electron is retro-reflected as
a hole with unit probability. This confirms that subgap transport occurs entirely through
Andreev reflection at an ideal NS interface, providing the microscopic basis for the doubling of
conductance compared to the normal state [39–41].

1.4.2 Andreev bound states

Let us attach another superconductor on the left side of the NS junction. This gives rise to
an SNS junction composed of a left superconductor with pairing potential ∆ and the right
superconductor with pairing potential ∆eιφ .

Let us revisit the case of a right-moving electron with energy ∣E ∣ < ∆. At the NS interface,
this electron undergoes Andreev reflection and is converted into a left-moving hole, which
results in the addition of a charge 2e to the right superconductor. As the hole propagates to
the SN interface, it is reflected as a right-moving electron, extracting a charge 2e from the left
superconductor as shown in Fig. 1.2(b). This entire process leads to the net transfer of a Cooper
pair from the left to the right superconductor, and discrete states emerge whose energies depend
on the superconducting phase. These states are known as ABSs [42].

The condition for the formation of bound states in one dimension, where the total phase
acquired during one cycle is a multiple of 2π , is given by ABS energies [43, 44]:

−2arccos
E(φ)

∆
±φ + 2E(φ)

∆

LN

ξ0
= 2πn, n = 0,±1, . . . (1.22)
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1.4 Andreev reflection and Andreev bound states

Where LN is the length of the normal region, i.e., the distance between the two superconductors,
and ξ0 = h̵vF

∆
is the superconducting coherence length, which defines the two spatial limits of the

SNS junctions.

LN ≪ ξ0⇒ short SNS junction, (1.23)

LN ≫ ξ0⇒ long SNS junction. (1.24)

In the short junction limit, i.e., LN → 0, the third term can be neglected, and the two degenerate
Andreev levels are given by:

E(φ) = ±∆cos(φ/2). (1.25)

Here, we have considered ballistic SNS junctions. When the normal region N has a finite
transmission τ , the ABS energies are:

E(φ) = ±∑
i

Ei(φ) = ±∑
i

∆

√
1−τi sin2(φ/2). (1.26)

The ground-state energy is obtained by summing over the negative energy Andreev levels, i.e.,

EGS(φ) = −∑
i

Ei(φ). (1.27)

The power dissipation at the junction, P, is then given by

P = dEGS(φ)
dt

= −∑
i

∂Ei(φ)
∂φ

dφ

dt
. (1.28)

From the AC Josephson effect (see Eq. 1.9), we know that dφ

dt =
2eVb

h̵ . Substituting this into the
above expression and recognizing that P = I(φ)Vb, we obtain the expression for the persistent
current in the ground state, known as the supercurrent I(φ):

I(φ) = −2e
h̵
∑

i

∂Ei(φ)
∂φ

. (1.29)

By substituting Eq. 1.26 in Eq. 1.29, current-phase relation (CPR) can be expressed as,

I(φ) = e∆

2h̵
∑

i

τi sin(φ)
√

1−τi sin2(φ/2)
(1.30)

From Fig. 1.3(a), we observe that for τ < 1 the spectrum exhibits an avoided crossing at φ = π

and the CPR becomes sinusoidal.
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Fig. 1.3 (a) ABS energy levels for a single-channel JJ for different transparencies, (b) represents the
corresponding CPR.

In the low transmission limit (τ << 1),1 the CPR approaches I = Ic sin(φ), where Ic = e∆

2h̵∑i τi,
which corresponds to the DC Josephson effect (see Eq. 1.8). This is the case for a Superconduc-
tor–Insulator–Superconductor (SIS) junction. In contrast, for the high transmission limit (τ = 1),
the equilibrium CPR is

I(φ) = 2Ic sin(φ

2 ) sgn(cos(φ

2 )). (1.31)

This CPR is 2π-periodic and exhibits a discontinuity at φ = (2n+1)π , where n ∈Z.

1.5 Majorana-bound states and Majorana zero modes

Ettore Majorana was an exceptional Italian theoretical physicist who mysteriously disappeared
in 1938, shortly after completing his groundbreaking work on what are now known as Majorana
fermions. The circumstances of his disappearance remain unknown, with rumors ranging from
accidental drowning or suicide to retreating into a monastery or starting a secret life in South
America. Interestingly, Majorana fermions themselves remain elusive to this day, making both
the man and the particles he predicted equally mysterious and intriguing.

Majorana proposed that there could exist neutral fermions described by real solutions to the
Dirac equation, particles that are their own antiparticles. Mathematically, this implies that the
Majorana operators are Hermitian [45]:

γ
†
j = γ j, (1.32)

The anticommutation relations of Majorana operators satisfy the following relations [45]:

{γa
i ,γ

b
j } = 2δi jδab, γ

†
j

2
= γ j

2 (1.33)

1For plotting the CPR, only negative-energy ABSs are considered.
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1.5 Majorana-bound states and Majorana zero modes

Any fermionic operator that satisfies the above conditions is a Majorana fermion operator. Here
γa

j = c j +c†
j , γb

j = ι(c†
j −c j), that is, the linear combination of fermionic operators.

In condensed matter systems, it is possible to engineer quasiparticle excitations that obey
the desired properties of Majorana operators. These emergent excitations behave as their own
antiparticles, differ fundamentally from conventional fermions, and are described theoretically
within the Majorana formalism. They belong to a class of topological objects known as non-
Abelian anyons [46]. Unlike ordinary fermions or bosons, these anyons obey exchange statistics
unique to two dimensions, where particle exchanges correspond to braid group operations rather
than simple permutations.

Among condensed matter platforms, superconductors provide a natural setting for realizing
Majorana-like excitations. Their low-energy excitations, the Bogoliubov quasiparticles, are
coherent superpositions of electron and hole states with amplitudes u and v, reflecting the particle-
hole symmetry of the superconducting state. In general, the electron and hole contributions
(Eq. 1.5) and (Eq. 1.6) are unequal, with the quasiparticle energy given by Eq. 1.7.

To realize a Majorana excitation, one needs to identify a neutral state that is an equal
superposition of an electron and a hole. Such an excitation is described by a self-adjoint
Majorana operator, which creates a mid-gap state, a quasiparticle sitting exactly at zero energy
within the superconducting gap. These zero-energy excitations are not purely electrons or holes;
rather, they are effectively half of each, giving them an exotic, anyonic character. Because
condensed matter systems are built from electrons and holes, a single Majorana mode is only
half of a fermion; two such modes must combine to form a conventional fermionic state,
corresponding to either an occupied or an unoccupied level.

To be classified as a MZM, a Majorana operator γ j must commute with the system’s
Hamiltonian; that is,

[H,γ j] = 0. (1.34)

This condition implies that the corresponding excitation has zero energy. These modes are
often found at the edges of topological superconductors or bound to defects [47, 48, 48] and are
commonly referred to as MZMs or Majorana-bound states (MBSs).

The realistic behavior of MZMs in superconducting systems deviates from ideal conditions.
The commutator between the Hamiltonian H Majorana operator γ j is approximately given by
[49–51]:

[H,γ j] ≈ e−x/ξ , (1.35)

with x denoting the separation between two MBSs and ξ the correlation length associated with
H. For infinite separation, that is, x ≈∞, this relation aligns with the ideal condition of Eq. 1.34.
One can define the fermion occupation number operator N̂ j in terms of Majorana operators as:

N̂ j = c†
jc j =

1
2
[1+ ιγ

a
j γ

b
j ] . (1.36)
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The expectation values of this operator yield:

⟨ j∣c†
jc j∣ j⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∣ j⟩ is occupied,

0, if ∣ j⟩ is empty,
(1.37)

leading to

⟨ j∣2c†
jc j −1∣ j⟩ = ⟨ j∣ιγ

a
j γ

b
j ∣ j⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∣ j⟩ is occupied,

−1, if ∣ j⟩ is empty.
(1.38)

Since N̂ j does not commute with H in superconducting systems, the number-parity operator is
defined as [52–54]:

P = (−1)N̂ = −ιγ
a
j γ

b
j . (1.39)

It obeys {γ j,P} = 0 for the Majorana operators, while [H,P] = 0, holds for the Hamiltonian.
Consequently, the expectation value determines the parity [55]:

⟨ j∣ − ιγ
a
j γ

b
j ∣ j⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if ∣ j⟩ is occupied (odd parity),

1, if ∣ j⟩ is empty (even parity).
(1.40)

This allows the eigenstates of H to be classified into even and odd parity states [56]. Supercon-
ductors that host midgap MZMs are referred to as topological superconductors. Spinless p-wave
superconductors are theoretically ideal hosts for MZMs, while in two dimensions it has not
been observed in nature. To address this, researchers proposed an alternative using conventional
s-wave superconductors, which are readily available. In this approach, a one-dimensional
semiconducting nanowire with strong spin–orbit coupling is placed in proximity to an s-wave
superconductor, and a magnetic field is applied.

1.5.1 Majorana zero modes in nanowires

Let us consider a one-dimensional single-channel nanowire with SOC and Zeeman interaction,
whose BdG Hamiltonian is given by: on the basis Ψ = (ψe↑,ψh↓,ψe↓,−ψh↑)T (where e and h
correspond to electron and hole components with spin up ↑ or down, ↓, respectively) is

HBdG =
⎛
⎝

h̵2k̂x
2

2m∗
−µ
⎞
⎠

σ0⊗τz+Ezσz⊗τ0−ασyk̂x⊗τz+∆σ0⊗τx. (1.41)

where k̂x = −ι∂ /∂x, Ez = 1
2gµBB, σi and τi with (i = x,y,z) are the Pauli matrices that act on the

spin and electron-hole degree of freedom, respectively, where σ0 is (2×2) identity matrix.
Following experimental studies on InSb nanowires with NbTiN superconducting contacts,

we model the system using commonly adopted parameters: Landé g-factor g = 50, effective mass
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1.5 Majorana-bound states and Majorana zero modes

m∗ = 0.014me, chemical potential µ = 3meV, superconducting gap ∆ = 1meV, and spin–orbit
coupling strength α = 40 meVnm [15, 16]. These parameters are consistent with those reported
in experimental studies [17, 57], most notably the pioneering work of [17], where proximity-
induced superconductivity was realized in an InSb nanowire device with electrostatic gates, as
illustrated in Fig. 1.5.

0.0 0.5 1.0 1.5 2.0 2.5
B (Bc)

1.0

0.5

0.0

0.5

1.0

E
(
)

Ls

(a) (b)

Fig. 1.4 (a) A semiconductor nanowire with Rashba spin–orbit coupling, which in proximity to an s-wave
superconductor forms MBSs (red filled circles) at its ends. (b) The evolution of the spectrum with
magnetic field B, where the vertical red dashed line marks the topological transition point.

When the applied Zeeman field exceeds the critical field, EZ >
√

µ2+∆2, the system enters
the topological phase and MBSs emerge at the two ends of the nanowire.

As shown in Fig. 1.4(b), when the magnetic field reaches the critical value Bc, the supercon-
ducting gap closes. For B > Bc, zero-energy modes appear that correspond to MBSs localized at
the ends of the wire. In this regime, the bulk states shift to higher energies, while the emergence
of zero-energy modes indicates a transition into the topological regime.

Fig. 1.5 A scanning electron microscope (SEM) image of a device similar to that used in the study
by [17] shows an InSb nanowire coupled to a NbTiN superconductor, enabling proximity-induced
superconductivity. Gold (Au) electrodes serve as normal-metal Ohmic contacts, allowing measurement
of the nanowire’s electrical conductance. Image is adapted from [48].
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(a) (b)

Fig. 1.6 Magnetic field–dependent conductance spectroscopy. (a) Differential conductance (dI/dV )
plotted against voltage (V) across different magnetic fields, with traces shifted for clarity except at
zero field, indicating induced gap features with arrows. (b) Color-scale map of dI/dV versus V and
magnetic field, emphasizing a ZBP with a dashed oval and gap boundaries with green dashed lines, while
a non-Majorana state crosses zero bias near 0.6T , marked by sloped yellow dotted lines. The data in (a)
is derived from (b). This figure is adapted from [17].

The presence of MBSs at the ends of a superconducting wire was investigated experimentally
by measuring the differential conductance dI/dV across a weak tunnel junction formed between
the normal and superconducting regions. This conductance reflects the local density of states.

Upon increasing the magnetic field, a pronounced ZBP appeared between 100 mT ≤ B
≤ 400 mT, as shown in Fig. 1.6(a), suggesting the emergence of MBSs, but disappeared at
higher field strengths. However, key theoretical signatures were missing: the ZBP height was
significantly lower than expected 2e2

h (only approximately 0.05× 2e2

h ), and no clear evidence
of the superconducting gap closing and reopening was observed, creating some doubt on the
identification of MBSs.

Following this, several independent research groups confirmed similar ZBP in nanowires
in non-zero magnetic fields, further strengthening evidence for MZMs [58–60]. However,
these experiments also revealed challenges: ZBPs can be mimicked by other effects, such as
Kondo physics [61, 62] disorder [63, 64] in the nanowire, smooth confinement [65, 66] or
parity crossings of Andreev levels [67], making it difficult to confirm the true nature of the
observed ZBP. However, for robust and controllable MZM formation, it is still desirable for the
semiconductor to be nearly defect-free, exhibit strong spin-orbit coupling and a large effective g
factor, and allow the semiconductor-superconductor interface to remain as clean as possible.

1.5.2 Majorana zero modes in a Josephson junction

In recent years, JJs incorporating 2DEG heterostructures have emerged as a promising alternative
platform for realizing MZMs and topological superconductivity [18, 19]. The phase difference
φ between superconductors acts as an additional tuning parameter to access the topological
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regime. In contrast to nanowire-based systems, which require relatively high magnetic fields
[15, 16] to reach the topological phase, JJs allow this transition at significantly lower fields.
This not only enhances experimental control but also helps maintain the superconducting state.
Figure 1.7(a) illustrates a schematic of a device in which a 2DEG exhibiting Rashba SOC is
coupled to a pair of s-wave superconductors. These superconductors possess a phase difference
denoted by φ and an external magnetic field B is applied along the x axis.

Fig. 1.7 (a) A JJ is created in a 2DEG with Rashba spin–orbit coupling by coupling it to two s-wave
superconductors with a phase difference φ , and with an in-plane magnetic field applied along the interface.
(b) At kx = 0, the bound-state spectrum is spin-degenerate without a Zeeman field (gray), but splits into
distinct spin states (red, blue) under the field, enabling a topological phase. (c) The phase diagram shows
topological and trivial regions as a function of the Zeeman energy EZ,J and phase difference φ , with solid
and dashed lines representing different junction transparencies. This figure is adapted from [19].

The BdG Hamiltonian describing this planar JJ is given by:

HBdG = (
h̵2(k2

x −∂ 2
y )

2m∗
+ m∗α2

2h̵2 τz−µ)τz+α (kxσy+ ι∂yσx)τz+EZ(y)σx+∆(y)τ++∆
∗(y)τ−,

(1.42)
where a position-dependent Zeeman energy EZ(y) is applied only in the normal (non-superconducting)
region, such that:

EZ(y) = EZ,J =
1
2

gµBB. (1.43)

The superconducting-order parameter in the junction is modeled as:

∆(y) = ∆eι (sgn(y)) φ

2 θ(∣y∣ −W /2), (1.44)

where φ is the superconducting phase difference and θ is the Heaviside function.
The spin and particle-hole Pauli matrices are denoted by σ and τ , respectively, and τ± =

(τx± ιτy)/2. The topological nature of the junction is determined by the ground state parity of
the BdG Hamiltonian at kx = 0.

At kx = 0, the Rashba spin-orbit coupling can be gauged away because the SOC and Zeeman
field both point along the x direction. The effective Hamiltonian simplifies to:

Heff = (−
h̵2∂ 2

y

2m∗
−µ)τz+EZ,J(y)σx+∆(y)τ++∆

∗(y)τ−. (1.45)
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Assuming µ≫∆,EZ,J and perfect transparency at the interfaces, the spectrum of ABS is [43, 44]:

arccos(E
∆
) = 1

2
( E

ETh
−

EZ,J

ETh
± φ

2
)+πn, (1.46)

where Thouless energy is ETh = h̵vF/2W 2. In the absence of a magnetic field, the Andreev levels
remain spin degenerate, resulting in even ground state parity for all φ . Applying a Zeeman field
lifts this degeneracy, and the levels cross zero energy as φ is varied. Each crossing corresponds
to a change in ground state parity, marking topological phase transitions. The subgap spectrum
of He f f , is shown in Fig. 1.7(b).

The boundaries of the topological phase can be obtained by setting the energy E = 0 in Eq.
1.46, yielding:

1
2

EZ,J

ETh
± φ

2
= π

2
+πn. (1.47)

This condition defines a phase diagram with alternating trivial and topological regions forming
a diamond-shaped structure, as shown in Fig. 1.7(c).

Fig. 1.8 Without external phase control, the system relaxes into the topological regime for certain ranges
of the Zeeman field by minimizing its ground-state energy (top panel). The associated 0–π transitions
manifest as local minima in the critical current (bottom panel). This figure is taken from [19].

In particular, the system is always in a topological regime at φ = π and remains trivial at
φ = 0. As a result, biasing the phase at φ = π allows MBS to emerge at arbitrarily low magnetic
fields. This phenomenon is attributed to mirror symmetry, which enforces the degeneracy at

2This equation is identical to Eq. 1.22, but with an additional shift of EZ,J/ETh.
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1.5 Majorana-bound states and Majorana zero modes

φ = 0 and φ = π , thus preventing any gap closing and excluding a topological transition at these
phase values.

However, this degeneracy holds only under the assumption of perfect Andreev reflection at
the NS interface. In realistic scenarios, factors such as low chemical potential, a mismatch in
chemical potential between the normal and superconducting regions, or interface imperfections
can introduce normal reflection. This reflection couples the left and right moving states, lifting
the degeneracy to φ = 0 and φ = π , and distorts the ideal diamond structure of the topological
phase diagram.

In the configuration where the phase is set by minimizing the ground-state energy, the system
can self-tune into the topological phase over a broad range of Zeeman fields, undergoing a
first-order topological transition. At the transition points, the minimizing phase φGS abruptly
switches between 0 and π , corresponding to trivial and topological regimes, which leads to
minima in the critical current (see Fig. 1.8). The critical current can thus serve as a novel
experimental probe of topological phase transitions.

In experiments, this superconducting phase difference (φ ) can be realized by threading a
magnetic flux through a loop that connects the two superconductors.

Using tunneling spectroscopy [18] via a quantum point contact (QPC) placed at one end of
the junction, as shown in Fig. 1.9, ZBPs can be detected. These ZBPs are phase dependent,
appearing prominently when the superconducting phase difference is φ ≈ π , consistent with
theoretical expectations for MZMs. The magnetic field, chemical potential, and phase can be
varied to map out the topological regime. Taken together, these measurements demonstrate that
phase biasing provides an efficient control knob for accessing and diagnosing the topological
phase.

Fig. 1.9 A planar JJ consists of two epitaxial superconductors (blue) on a 2DEG with strong spin–orbit
coupling (grey). A 1D channel forms between the leads, where Majorana modes (red crosses) can emerge
at its ends by tuning the parallel magnetic field (B∥), chemical potential (µ), and phase difference (φ ). A
QPC enables tunneling spectroscopy to probe these modes. This figure is adapted from [18].
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Chapter 2

Quantum transport

2.1 Eletronic transport

In general, the conductance (G) of a rectangular three-dimensional conductor follows Ohm’s
law,

G = 1
R
= 1

ρ

A
L
= σA

L
, (2.1)

where R is the resistance, σ the conductivity, ρ = 1/σ the resistivity, L the length of the conductor
and A its cross-sectional area. For a two-dimensional conductor of width W and length L, this
reduces to

G = σW
L

. (2.2)

Here, σ is a material property that does not depend on the dimensions of the sample.
The natural question then arises: How small can the width W or length L be before Ohm’s

law breaks down? A conductor exhibits Ohmic behavior as long as its characteristic dimensions
are larger than three fundamental length scales: the de Broglie wavelength (set by the kinetic
energy of the electrons), the mean free path (the average distance an electron travels before
scattering) and the phase relaxation length (distance over which the electron maintains its phase).
Conductors with dimensions that fall between the microscopic and macroscopic regimes are
referred to as mesoscopic. Such systems are larger than atomic scales but small enough that
Ohmic behavior is no longer valid.

2.2 The Landauer-Büttiker formalism

As we move to smaller dimensions, the conductance is no longer governed by the length
(L) and width (W ), but by the transmission of transverse modes carrying charge through the
conductor. In a narrow conductor, these transverse modes arise from quantization of the spectrum
perpendicular to transport. Each mode, labeled by N, is characterized by a dispersion relation
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E(N,k), with k the longitudinal wave vector along the conductor. The lowest energy of mode N
is reached at k = 0 and is denoted by [68]

εN = E(N,k = 0). (2.3)

A single transverse mode does not contribute to transport for energies below εN . For a given
energy E, the total number of modes that contribute can therefore be written as

M(E) =∑
N

Θ(E −εN), (2.4)

where Θ(x) is the Heaviside step function. For clarity, we begin by considering quantum
transport at zero temperature and restrict the analysis to a two-terminal rectangular device.
Consider a conductor connected to two large contacts by leads, as shown in Fig. 2.1(a). The
transport process can be represented schematically in Fig. 2.1(b): electrons incident from the
reservoirs enter the central scattering region, where they are either transmitted with probability
T(E) into the opposite lead or reflected back into the injecting reservoir.

Conductor Right
lead

Left
lead

Right
contact

Left
contact

V

R

E

k

E
IL
+

IL
-

L

k

IR
+

(a)

(b)

Fig. 2.1 (a) Schematic of a rectangular ballistic conductor, coupled to two large reservoirs through ideal
leads. (b) Dispersion relations in the left and right leads, showing electrons propagating from the left
reservoir through the conductor into the right reservoir.

We assume that the contacts are ballistic, i.e., charge carriers inside the leads can enter the
contacts without any reflection. To calculate the electric current, a potential is applied across the
conductor, driving electrons from the left contact to the right contact. As shown in Fig. 2.1(a),
the left reservoir has chemical potential µL and the right reservoir has chemical potential µR, with
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2.2 The Landauer-Büttiker formalism

µL > µR. The states in the leads are filled according to the respective Fermi–Dirac distributions
fL(E) and fR(E).

To analyze transport, it is useful first to evaluate the current carried by the right-moving
states (+k) in a single transverse mode and then sum over all modes. If the electron density
along the transport direction is n, and the carriers move with group velocity v (i.e., v = 1

h̵
∂E
∂k ), the

basic relation gives the corresponding current as

I = env. (2.5)

Thus we obtain
I+L =

e
L
∑
k

v fL(E) =
e
L
∑
k

1
h̵

∂E
∂k

fL(E). (2.6)

Replacing the sum by an integral over k,

∑
k
Ð→ 2

L
2π
∫ dk, (factor of 2 accounts for spin degeneracy), (2.7)

one obtains
I+L =

2e
h ∫

∞

ε

dE fL(E), (2.8)

where ε is the cutoff energy of the mode. Extending this to all available modes leads to

I+L =
2e
h ∫

∞

−∞

dE fL(E)M(E). (2.9)

The transmitted current into the right lead is

I+R =
2e
h ∫

∞

−∞

dE fL(E)M(E)T(E). (2.10)

The backward-moving current in the left lead arises from electrons injected from the left reservoir
that are reflected, together with electrons injected from the right reservoir that are transmitted
into the left lead:

I−L =
2e
h ∫

∞

−∞

dE [ fL(E)M(E)[1−T(E)]+ fR(E)M(E)T(E)]. (2.11)

The net current in the left lead is therefore

IL = I+L − I−L . (2.12)

Analogously, the current in the right lead can be expressed as

IR = I+R − I−R . (2.13)
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In steady state, the net current flowing through the device is the same in both leads, i.e.,

I = IL = IR. (2.14)

It can be expressed as

I = 2e
h ∫

∞

−∞

dE [ fL(E)− fR(E)]M(E)T(E). (2.15)

At zero temperature, the Fermi–Dirac distributions in the two reservoirs reduce to step functions,
equal to 1 for energies below the respective chemical potentials and 0 above:

fL(E) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, E < µL,

0, E > µL,
fR(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, E < µR,

0, E > µR.
(2.16)

In this limit, the Landauer current expression simplifies to

I = 2e
h ∫

µL

µR
dE M(E)T(E). (2.17)

Consequently, only states within the bias window [µR,µL] contribute to transport. For small bias
V = (µL−µR)/e, both M(E) and T(E) can be taken as constant within this window, yielding

I = 2e2

h
M T V, (2.18)

and the corresponding conductance is the Landauer formula [68],

G = dI
dV
= 2e2

h
M T. (2.19)

This is the well-known Landauer equation for quantum conductance, which describes quantum
transport properties in a coherent regime. Also, for wide conductors, the number of transverse
modes scales as M∝W , while the transmission probability decreases as T ∝ 1/L. Substituting
into the Landauer relation, leading to Eq. (2.2) Ohm’s law. The above Eq. (2.19) is closely
analogous to the Einstein relation for conductivity:

σ = e2NSD ⇐⇒ G = 2e2

h
MT, (2.20)

where the correspondence is

σ ⇒ G, NS ⇒ M, D ⇒ T.
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2.2 The Landauer-Büttiker formalism

Here, σ is the electrical conductivity, NS the density of states, and D the diffusion coefficient.
In the Landauer picture, M represents the number of transverse modes and T transmission
probability. Thus, the Landauer formula may be regarded as the mesoscopic analog of the
Einstein relation.

The Landauer approach was originally introduced to describe the current–voltage characteris-
tics of tunnel junctions in the limit of small transmission probabilities. Over time, it has become
the standard theoretical framework for understanding transport in mesoscopic conductors and is
often viewed as the mesoscopic analog of Ohm’s law.

The Landauer formula provides a transparent description of transport in a two-terminal
system, but many experiments employ multiterminal geometries. Büttiker proposed a natural
extension by treating each terminal as an ideal voltage probe, so that transport can be formulated
entirely in terms of measurable currents and voltages. In this framework, the current entering
contact α is

Iα =
2e
h
∑
β

[Tβα µα −Tαβ µβ ] =∑
β

[Gβα Uα −Gαβ Uβ ], (2.21)

where Tαβ is the total transmission probability from lead β into lead α (summing over all
propagating modes), Gαβ = (2e2/h)Tαβ are the corresponding conductance coefficients, and
Uα = µα/e is the voltage at contact α . Current conservation requires the conductance coefficients
to satisfy

∑
α

Gαβ = 0, ∀β , (2.22)

which reflects the fact that no net current flows when all contact voltages are equal. With this
constraint, the expression simplifies to the compact form

Iα =∑
β

Gαβ (Uα −Uβ ). (2.23)

An additional property follows from the time-reversal symmetry of the scattering matrix: the
conductance coefficients satisfy the Onsager reciprocity relation

Gαβ (B) =Gβα(−B), (2.24)

where B denotes the applied magnetic field. In the absence of magnetic field, the conductance
coefficients are symmetric, Gαβ =Gβα . This relation, known as the Büttiker formula, generalizes
the Landauer approach to multiterminal systems and provides the theoretical foundation for
analyzing four-probe measurements, Hall-bar geometries, and other mesoscopic transport
configurations [68–70].
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2.2.1 Conductance in terms of the scattering matrix

The scattering matrix acts as a linear map between incoming and outgoing amplitudes [68, 69,
71], treating the conductor as a “black box” [72]. In this approach, the microscopic details of
the sample interior do not matter. All the information about how electrons are transmitted or
reflected is contained in the elements of the scattering matrix S. This provides a convenient
starting point for deriving measurable quantities such as the transmission function T and,
ultimately, the conductance.

Formally, this mapping takes the form

cout = Scin. (2.25)

Here, cin and cout denote the amplitudes of the incoming and outgoing states, respectively.
Conservation of probability current in a coherent device requires the scattering matrix to be

unitary,
S†S = I = SS†, (2.26)

where S† is the Hermitian conjugate of S, and I is the identity matrix. If lead i supports Mi(E)
propagating modes, the total number of modes is

N(E) =∑
i

Mi(E), (2.27)

and therefore S has dimension N ×N.

Example: two-terminal case

The two-terminal geometry is illustrated in Fig. 2.1(a), shows the schematic of the device with
contacts and leads, and although Fig. 2.1(b) depicts the associated dispersion relations with two
modes per lead, for simplicity, we restrict here to the case of a single propagating mode in each
lead. In this case, the scattering matrix is reduced to

S2×2 =
⎛
⎝

r t′

t r′
⎞
⎠
, (2.28)

and therefore
⎛
⎜
⎝

cout
α

cout
β

⎞
⎟
⎠
= S2×2

⎛
⎜
⎝

cin
α

cin
β

⎞
⎟
⎠
. (2.29)

Here r,r′ are reflection amplitudes and t,t′ are transmission amplitudes. This compact form
already captures all possible scattering events in the two-terminal case.
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2.2 The Landauer-Büttiker formalism

Multiterminal systems

For systems with several leads, each of which can support multiple propagating modes, it is
convenient to label the scattering amplitudes by both the lead index and the mode index. Thus,
cin

β ,m denotes the incoming amplitude in the mode m of lead β , while cout
α,n denotes the outgoing

amplitude in the mode n of lead α . The general scattering relation then reads

cout
α,n(E) =∑

β

∑
m

Snm
αβ
(E)cin

β ,m(E), (2.30)

where Snm
αβ
(E) is the scattering amplitude for transmission from mode m in lead β into mode n

in lead α at energy E. The corresponding transmission probability is

T nm
αβ
(E) = ∣Snm

αβ
(E)∣2, (2.31)

and the total transmission from lead β to lead α is obtained by summing over modes,

Tαβ (E) = ∑
m∈β
∑
n∈α

T nm
αβ
(E). (2.32)

Within the Landauer–Büttiker approach, the conductance matrix is expressed as

Gαβ (E) =
2e2

h
Tαβ (E) =

2e2

h
∑
m∈β
∑
n∈α
∣Snm

αβ
(E)∣2. (2.33)

In practice, the scattering matrix can be obtained for simple models by solving the Schrödinger
equation, or numerically using approaches such as recursive Green’s functions or wavefunction
matching; comprehensive discussions of these methods and the scattering formalism can be
found in Refs. [68, 70]

In summary, the scattering matrix provides the bridge between microscopic scattering
processes and macroscopic transport quantities such as conductance.

2.2.2 Landauer–Büttiker approach to NS interfaces

We now extend the scattering formalism to an NS interface. At subgap energies ∣E ∣ <∆, transport
occurs exclusively by reflection in the normal lead: either normal reflection of an electron (ree)
or Andreev reflection, where an incoming electron is reflected as a hole (rhe).

In the Nambu basis (ψe,ψh), the incoming and outgoing amplitudes are related by

⎛
⎝

cout
e (E)

cout
h (E)

⎞
⎠
=
⎛
⎝

ree(E) reh(E)
rhe(E) rhh(E)

⎞
⎠
⎛
⎝

cin
e (E)

cin
h (E)

⎞
⎠
, (2.34)
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where ree,rhh describe normal reflection of electrons and holes, and rhe,reh describe Andreev
reflection processes. The corresponding reflection probabilities (trace over propagating modes,
per spin) are

Ree(E) = Tr[ree(E)r†
ee(E)] , Rhe(E) = Tr[rhe(E)r†

he(E)] . (2.35)

Following Tinkham (BTK picture), we assume that each reservoir is in equilibrium, so incoming
occupations are Fermi functions shifted by the electrochemical difference µN −µS = eV : f (E −
eV) for electronlike and f (E +eV) for holelike states, which yields [38]

I = e
h ∫

dE [ f (E −eV)− f (E +eV)][N −Ree(E)+Rhe(E)], (2.36)

where N is the number of propagating modes. The linear-response conductance then reads 1

G = dI
dV
∣
V=0
= 2e2

h ∫
dE (− ∂ f

∂E
)[N −Ree(E)+Rhe(E)]. (2.37)

At zero temperature, evaluated at the Fermi energy E = 0, this simplifies to

GNS(0) =
2e2

h
[N −Ree(0)+Rhe(0)]. (2.38)

In the normal state (no superconductivity), the electron and hole sectors decouple (rhe = 0). The
two-terminal conductance in linear response (at T = 0) is

GN =
2e2

h

N
∑
n=1

Tn, (2.39)

where Tn are the transmission eigenvalues (eigenvalues of t t†), and the sum runs over all open
modes [71, 73, 74]. This is the Landauer formula. In the presence of both spin–orbit coupling
and a magnetic field, the twofold degeneracy does not hold; the conductance quantum is reduced
to G0 = e2/h.

1Expanding the Fermi functions for small V gives f (E −eV)− f (E +eV) ≈ −2eV ∂ f /∂E, so dI/dV ∣V=0 defines
the linear-response conductance. At T = 0, −∂ f /∂E → δ(E) and the conductance reduces to its value at the Fermi
energy E = 0.
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Chapter 3

Numerical method

3.1 Numerical quantum transport and the role of KWANT

In condensed matter physics, solving the scattering problem is a general and common task.
The scattering problem essentially reduces to determining the scattering matrix, which relates
incoming and outgoing modes through transmission and reflection probabilities, as explained in
Sec. 2.2.1.

Over the past decades, a variety of numerical methods have been developed to address
this problem, each with different strengths and limitations. The recursive Green’s function
(RGF) method has played a central role in numerical quantum transport. Initially formulated
for simple one-dimensional chains [75, 76], the approach was subsequently extended to handle
quasi-one-dimensional geometries [77], square-lattice tight-binding models [78], and later more
general lattice types and multi-terminal architectures [79–81]. In parallel, significant effort
was devoted to improving computational efficiency, leading to refinements such as modular
decomposition approaches [82], precalculation of building blocks [83], and optimized slicing
techniques for recursive algorithms [84].

Despite these advances, most implementations of RGF remained group-specific codes with
limited accessibility. This motivated the development of publicly available software packages
for numerical quantum transport. Several alternative approaches have been proposed [85], as
the scattering problem also arises in contexts beyond mesoscopic quantum transport.

A more general and flexible approach to simulating arbitrary tight-binding models is provided
by KWANT [86]. It is an open-source Python library designed for both efficiency and ease of
use. In KWANT, a tight-binding Hamiltonian is built by specifying onsite terms for each site and
hopping terms between sites. This is exactly the same way the Hamiltonian is usually written in
textbooks, so the code looks very similar to the standard blackboard expression.

Once the system is constructed, it is finalized into a sparse matrix representation of the
Hamiltonian, which is then used in transport calculations.
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Numerical method

While many introductory examples focus on two-dimensional systems, KWANT itself does
not restrict dimensionality and can be applied equally well to one-, two-, or three-dimensional
models. This generality, together with its compatibility with widely used Python scientific
libraries, has established KWANT as a versatile and widely adopted tool for numerical quantum
transport.

Although KWANT was developed primarily for quantum transport calculations, it can also
be applied to closed systems, that is, a scattering region without leads. In this case, spectral
properties, such as the eigenenergies and eigenfunctions, can be obtained by diagonalizing the
Hamiltonian defined in KWANT. Since the wave functions contain information about current
flow, one can also analyze local currents inside the system. This demonstrates how KWANT

provides a unified framework for investigating closed and open tight-binding systems [86].

3.1.1 Defining the tight-binding system

To describe quantum transport through mesoscopic structures, it is convenient to discretize the
system into a lattice. In this framework, the Hamiltonian is expressed as

Ĥ =∑
p,q

Hpq c†
pcq, (3.1)

where c†
p (cq) creates (annihilates) an electron at the site p (q), and Hpq are the Hamiltonian

matrix elements. In first quantization, this can be written as

Ĥ =∑
p,q

Hpq ∣p⟩⟨q∣, (3.2)

with the state ∣p⟩ = ∣r,α⟩ that contains both the lattice coordinate r and an internal degree of
freedom α (e.g. orbital or spin). The diagonal entries Hpp correspond to on-site energies, while
off-diagonal terms Hp≠q describe hopping between sites.

In quantum transport calculations, the system is defined as a finite scattering region connected
to semi-infinite leads. This finite scattering region corresponds to the system under study (often
referred to as the device in experimental realizations), while the semi-infinite leads represent
ideal reservoirs that provide the propagating modes.

3.1.2 Scattering theory using KWANT

After the lattice Hamiltonian is specified, the subsequent step is the determination of the
scattering states. For clarity, we consider a single semi-infinite lead attached to a finite scatterer;
although attaching multiple leads is also straightforward. Let Hsc denote the Hamiltonian of
the scattering region, Hℓ the Hamiltonian of a single unit cell in the lead, Vℓ the hopping matrix
that connects neighboring lead cells, and Vc the coupling matrix between the scatterer and
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3.1 Numerical quantum transport and the role of KWANT

the first lead cell. With this notation, the Hamiltonian of the infinite system can be written in
block-matrix form as

Ĥ =

⎛
⎜⎜⎜⎜⎜
⎝

⋱ Vℓ 0 0
V †
ℓ Hℓ Vℓ 0
0 V †

ℓ Hℓ Vc

0 0 V †
c Hsc

⎞
⎟⎟⎟⎟⎟
⎠

. (3.3)

The total wavefunction may be written as

Ψ = (. . . ,ψℓ,2,ψℓ,1,ψsc)T , (3.4)

where ψℓ,q represents the wave function in the q-th unit cell of the lead and ψsc denotes the
wave function within the scattering region. The translational invariance of the lead Hamiltonian
implies that its eigenstates can be written in Bloch form. These modes can be expressed as

φn(q) = λ
q

n χn, λn = exp(ιkna), (3.5)

where λn and χn denote the eigenvalue and the eigenvector of the lead, respectively, with kn the
momentum for the nth channel (or mode) and a the lattice spacing. The classification of the
modes falls into three categories: ∣λn∣ = 1 correspond to propagating states; those with ∣λn∣ < 1
are evanescent (exponentially decaying), while modes with ∣λn∣ > 1 are non-normalizable and
therefore excluded 1. Inserting the Bloch form into the Schrödinger equation yields

(Hℓ+Vℓλ
−1
n +V †

ℓ λn)χn = E χn. (3.6)

And the particle current can be written as

< I >= 2Im(⟨φn(q)∣Vℓ∣φn(q−1)⟩) . (3.7)

For transport calculations, the lead modes are required to carry unit current. This is enforced by
choosing the normalization of each mode such that the corresponding current fulfills

⟨I⟩ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+1, incoming modes,

−1, outgoing modes,

0, evanescent modes.

(3.8)

Here, “incoming” refers to modes with a group velocity directed towards the scatterer, while
“outgoing” modes have a group velocity directed away from it. Evanescent solutions with ∣λn∣ < 1

1Writing kn = α + ιβ , one finds λn = eιkna = eιαae−βa. For β > 0, the amplitude decays with distance (∣λn∣ < 1);
for β < 0, it diverges (∣λn∣ > 1), making the state non-normalizable.
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carry no net current and therefore do not contribute to transport, although they are essential for
boundary matching at the interface.

Scattering matrix from lead-mode expansion

The wave function in lead ℓ associated with an incoming mode n can be written as

ψn(p) = φ
in
n (p)+∑

m
Smn φ

out
m (p)+∑

r
S̃rn φ

ev
r (p), (3.9)

where φ in
n (p), φ out

m (p), and φ ev
r (p) denote, respectively, incoming, outgoing, and evanescent

transverse lead modes evaluated on slice p. Here, Smn are the elements of the scattering matrix
relating propagating modes, while S̃rn are coefficients associated with evanescent modes.

The wave function in the scattering region corresponding to mode n is denoted φ sc
n . At

the interface between the lead and the scatterer, continuity of the wave function is imposed by
matching the wave functions of the scatterer and the lead.

ψn(0) = φ
sc
n , (3.10)

which satisfies the stationary Schrödinger equation

Ĥψn = Eψn, (3.11)

where Ĥ is the block Hamiltonian given in Eq. (3.3). Once the scattering matrix is known, the
transport coefficients follow directly. In particular, the two-terminal differential conductance
between leads α and β is

Gαβ =
e2

h
∑
n∈α
∑
m∈β
∣Snm

αβ
∣
2
. (3.12)

where n and m label the transverse modes in the leads α and β , respectively. When spin
degeneracy is included, Eq. (3.12) reduces to Eq. (2.33) in Sec. (2.2.1). The internal properties
of the system can be obtained from the scattering-region wavefunctions. A compact expression
is

⟨O⟩ = 1
2π
∑
n
∫ dE fn(E)ψ(sc)†

n (E)Ôψ
(sc)
n (E), (3.13)

where Ô is the operator corresponding to the desired observable (for example, the local density
of states or the current density), and fn(E) is the Fermi–Dirac distribution of the lead for the
channel n. This formulation shows how KWANT turns the scattering problem into a numerically
tractable task. Using lattice discretization, mode classification, and normalization to unit current,
it provides a robust framework for quantum transport in mesoscopic systems [86].
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3.1 Numerical quantum transport and the role of KWANT

3.1.3 Scattering in a tight-binding chain

To illustrate the tight-binding scattering formalism, consider a simple one-dimensional (1D)
chain of atoms. Two semi-infinite leads are attached to a finite region consisting of L sites. The
lattice constant is denoted a and is assumed to be uniform throughout the system. One can begin
from the continuum Schrödinger equation as

− h̵2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x). (3.14)

To discretize this problem, derivatives are approximated using the central (three-point) finite-
difference scheme. In a lattice with spacing a,

dψ

dx
∣
x=na
≈ ψ(x+a)−ψ(x−a)

2a
, (3.15)

d2ψ

dx2 ∣x=na
≈ ψ(x+a)−2ψ(x)+ψ(x−a)

a2 . (3.16)

Substituting into Eq. 3.14 gives the discrete equation

(2t +Vn)ψn− tψn−1− tψn+1 = Eψn. (3.17)

This can be written as

∑
m
Hnmψn = Eψn, (3.18)

where Hnm denotes the matrix elements, ψn = ψ(x = na), and Vn =V(x = na). The diagonal
terms Hnn = 2t +Vn act as on-site energies, while the off-diagonal terms Hn≠m = −t describe
nearest-neighbor hopping with t = h̵2/(2ma2). In higher dimensions the coordination number
increases, giving (4t +Vi, j) on a square lattice (2D) and (6t +Vi, j,k) on a cubic lattice (3D) [87].

As established above, the eigenstates of the periodic leads take the Bloch form. In the one
dimension, Eq. 3.17 admits plane-wave solutions. For the incidence from the left lead (n ≤ 0),
the state is written as a superposition of incoming and reflected waves:

ψn = eιkna+Ae−ιkna, (3.19)

while in the right lead (n ≥ L+1) it contains only a transmitted component,

ψn = Beιkna. (3.20)

The dispersion relation follows as follows.

E(k) = −2t cos(ka), (3.21)
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with corresponding group velocity;

v(k) = 1
h̵

dE
dk
= 2ta

h̵
sin(ka). (3.22)

The transmitted flux 2 is therefore proportional to ∣B∣2v(k), which reduces to the continuum
result in the long-wavelength limit ka→ 0 3. The coefficients ∣A∣2 and ∣B∣2 directly represent
reflection and transmission probabilities, respectively. This connects the explicit wave-function
approach to the general scattering-matrix formalism developed in the previous section.

Within the finite region, the amplitudes ψ1, . . . ,ψL are determined by enforcing continuity
at the boundary sites n = 0,1,L,L+1. This results in a system of L+2 linear equations for
unknowns {A,ψ1, . . . ,ψL,B}. In compact notation, this is written as

MΨ = b, (3.23)

where M is a tridiagonal matrix (L+2)×(L+2) and b an inhomogeneous vector. Solving this
system yields the reflection and transmission amplitudes, together with the scattering-state
amplitudes inside the finite region. Explicit forms of the boundary equations are given in Ref.
[87]. Repetition of the procedure for the incidence from the right lead yields two additional
coefficients. Collecting all four amplitudes defines the 2×2 scattering matrix

S =
⎛
⎝

sLL sLR

sRL sRR

⎞
⎠
, (3.24)

where sαβ denotes the amplitude of the scattering from lead β to lead α , with α,β ∈ {L,R}.
Thus, sLL and sRR correspond to reflection in the left and right leads, while sRL and sLR represent
transmission across the device. Thus, the full scattering matrix that was the central object of the
transport problem in this example is obtained, derived here within the wave-function approach.

2In the continuum case with dispersion E(k) = h̵2k2/(2m), the probability current for the transmitted wave is
I = h̵k

m ∣B∣
2 = ∣B∣2vk, where vk =

1
h̵

dE
dk is the group velocity.

3At ka→ 0 (as long as the wave function varies only gradually over the lattice spacing), the Eq. (3.22) reduces
to v(k) = h̵k

m
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Chapter 4

Summary of Articles

4.1 Controlling Andreev Bound States with the Magnetic
Vector Potential
C. M. Moehle, P. K. Rout, N. A. Jainandunsing, D. Kuiri, C. Ting Ke, D. Xiao, C. Thomas,

M. J. Manfra, M. P. Nowak, S. Goswami, Nano Lett. 22, 8601 (2022).

Planar JJs have been proposed as a platform for realizing MBSs, whose position and coupling
can be tuned by the magnetic vector potential. This vector potential drives counter-propagating
currents, generates Josephson vortices, and produces the characteristic Fraunhofer interference
pattern in the critical current. A detailed understanding of the ABS spectrum is therefore
an essential prerequisite for the realization of MBSs in JJs. Semiconductor–superconductor
heterostructures naturally host ABSs, which are coherent superpositions of electron- and hole-
like excitations with energies below the superconducting gap. In recent years, such hybrid
systems have emerged as versatile platforms for studying and controlling ABSs. In JJs, the
ABS spectrum also determines macroscopic properties such as the critical current, which can be
tuned via the superconducting phase difference controlled by magnetic flux.

The goal of this work was to investigate how the vector potential influences ABSs in planar
JJs. The key experimental observation was that tunneling spectroscopy at the two ends of the
junction revealed distinct ABS spectra, with each local probe detecting only part of the spectrum
due to coupling to ABSs localized near the respective tunnel barrier. The spectra displayed
abrupt phase jumps and opposite shifts of the ABS maxima at the two ends, consistent with a
local superconducting phase difference of equal magnitude but opposite sign induced by the
magnetic vector potential. In addition, the cusps near the ABS minima develop into sharp
jumps, resulting in a highly asymmetric and skewed shape away from zero magnetic field. The
skewness is not only reversed for positive and negative fields, but also for the top and bottom
ends of the junction. These features demonstrate that each probe is sensitive only to a region of



limited spatial extent in its vicinity, making it difficult to extract bulk junction properties from
local spectroscopy alone.

To interpret these findings, we introduce a toy model. The model assumes the presence of
localized ABSs at the edges of the junction and demonstrates how the vector potential produces
relative phase shifts in their spectra. It therefore explains the observed shifts, skewness reversals,
and phase jumps in the tunneling data. To support the toy model, detailed numerical simulations
were performed, which not only reproduced the experimentally observed ABS spectra but also
confirmed that the tunneling current is dominated by edge-localized ABSs and reproduced the
observed phase shifts.

In addition to the ballistic case, we also studied disordered regimes with different mean free
paths based on experimental parameters. Unlike the ballistic case, where the spectra at both
ends remain closely related, disorder makes the ABS spectra at the top and bottom drastically
different due to their sensitivity to the local disorder configuration. Disorder also causes the
main resonance to split into multiple, more distinguishable ABSs localized near the ends of the
JJ. Their precise position is determined by the local potential landscape, leading to different
relative phase shifts that can be observed experimentally near the tunnel probe.

This study makes a significant contribution by elucidating the effects of a spatially varying
superconducting phase difference on the ABS spectrum in extended JJs. The results are directly
relevant for ongoing efforts to understand and realize topological superconductivity in planar
JJs.



4.2 Nonlocal transport signatures of topological superconduc-
tivity in a phase-biased planar Josephson junction
D. Kuiri, M. P. Nowak, Phys. Rev. B 108, 205405 (2023).

Zero-bias peaks in tunneling spectroscopy, which were initially considered evidence for MBSs
in proximitized nanowires, can also arise from disorder-induced trivial ABSs, leading to false
positive results. Planar SNS junctions are regarded as promising platforms for hosting MBSs,
with the superconducting phase difference offering an extra knob to control the topological
transition. Nonlocal measurements have recently attracted considerable attention. Although both
local and nonlocal spectroscopy have been performed on planar SNS junctions in the tunneling
regime, they did not exhibit a clear signature of the topological transition.

In this work, we theoretically explored the detection of the topological transition in a planar JJ
using nonlocal spectroscopy. The transition, associated with a fermion parity change controlled
by the in-plane magnetic field and the superconducting phase difference, is manifested by a
change of the sign of the nonlocal conductance at zero energy. This effect originates from a
change in the quasi-particle character of the bands and can serve as a clear signature of the
topological transition in transport measurements.

At the same time, we highlight an important limitation for realizing the topological phase in
SNS junctions: in practical devices where the phase bias is controlled by threading magnetic flux
through a superconducting loop embedding the junction. Such loops always have a finite and non-
negligible inductance. As a result, the increasing flux through the loop induces superconducting
phase slips. Phase slips can prevent continuous access to the full phase space, skipping the most
substantial region of phase space required for realizing MZMs. As a result, phase slips strongly
hinder the emergence and detection of MBSs at lower magnetic fields.

A significant contribution of this work is to show that, in realistic devices, nonlocal spec-
troscopy not only provides a tool for identifying topological transitions but also exposes practical
challenges for accessing and stabilizing MBSs. This constraint highlights the importance of
careful device design, as reducing the loop inductance or suppressing the junction current may
help recover access to the required phase space.



4.3 Enhancement of the topological regime in elongated Joseph-
son junctions
D. Kuiri, P. Wójcik, M. P. Nowak, Phys. Rev. B 111, 085416 (2025).

The realization of topological superconductivity in hybrid Josephson junctions has attracted
enormous attention due to the possibility of hosting MBSs. The crossover between the trivial
and topological regimes can be controlled primarily through two experimentally accessible
parameters: the Zeeman interaction strength, adjusted via the magnitude of the in-plane magnetic
field, and the superconducting phase difference. The previous nonlocal study has shown that
finite loop inductance in flux-biased junctions induces phase slips that skip substantial regions
of phase, thereby preventing stable access to the φ ≡ π region where the topological gap forms
and MBSs emerge. Consequently, experiments typically require large in-plane magnetic fields
to extend the topological phase. Such fields, however, reduce the induced superconducting gap,
resulting in the emergence of trivial subgap states, and ultimately suppress superconductivity.

To address this limitation, we demonstrate in this work that the topological region can be
significantly extended by elongating the junction rather than by increasing the magnetic field.
However, this junction elongation comes with an important drawback: in the normal region,
additional transverse modes appear, which close the induced gap and destroy the MBS.

We demonstrate that those unwanted in-gap states can be eliminated by further proximitizing
the junction with two additional superconducting contacts, thereby restoring both the topological
gap and the Majorana edge modes. Our numerical simulations, supported by an analytical
model, reveal that the expansion of the phase interval corresponding to the topological regime
scales linearly with the junction length.

Moreover, we show that the topological transition is accessible via critical-current measure-
ments, which additionally reflect the linear decrease of the critical magnetic field required for
the transition as the junction length increases.
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ABSTRACT: Tunneling spectroscopy measurements are often
used to probe the energy spectrum of Andreev bound states (ABSs)
in semiconductor-superconductor hybrids. Recently, this spectros-
copy technique has been incorporated into planar Josephson
junctions (JJs) formed in two-dimensional electron gases, a
potential platform to engineer phase-controlled topological super-
conductivity. Here, we perform ABS spectroscopy at the two ends
of planar JJs and study the effects of the magnetic vector potential
on the ABS spectrum. We show that the local superconducting
phase difference arising from the vector potential is equal in
magnitude and opposite in sign at the two ends, in agreement with
a model that assumes localized ABSs near the tunnel barriers.
Complemented with microscopic simulations, our experiments demonstrate that the local phase difference can be used to estimate
the relative position of localized ABSs separated by a few hundred nanometers.
KEYWORDS: Planar Josephson junctions, Tunneling spectroscopy, Andreev bound states, Local superconducting phase difference

Hybrid structures composed of superconductors and
normal conductors host Andreev bound states

(ABSs).1−3 These states are superpositions of electron-like
and hole-like excitations with energies lower than the
superconducting gap. In recent years, superconductor−semi-
conductor hybrids have emerged as an appealing platform to
manipulate these bound states. For example, controllable
coupling between individual ABSs has led to the creation of
Andreev molecules,4−7 and Josephson junctions (JJs) based on
these hybrids have been combined with superconducting
circuits to realize Andreev qubits.8,9 In JJs, the microscopic
properties of ABSs determine global properties of the junction,
such as its critical current.2 The energy of ABSs is dependent
on the phase difference between the superconducting leads,
which can be tuned by the application of a magnetic flux
through a superconducting loop connecting the leads. In
planar JJs, the vector potential of the magnetic field leads to
streams of positive and negative current, to the formation of
Josephson vortices, and to the well-known Fraunhofer
interference pattern in critical current.10−12 It has been
proposed that such planar JJs can host Majorana bound
states,13−16 and that the location and coupling of these states
can be controlled via the vector potential.17

In order to investigate how the vector potential modifies
ABSs in a JJ, one needs experimental techniques that provide
information about the spatial extent and location of ABSs.
Studies in junctions that simultaneously probe the spatial

distribution and energy spectrum of ABSs have mainly been
performed using scanning probe techniques,18,19 and more
recently, via local tunnel probes in two-dimensional electron
gases (2DEGs).20,21

Here, we perform tunneling spectroscopy at both ends of
planar JJs embedded in a superconducting loop, allowing us to
probe the effects of the magnetic vector potential on the phase-
dependence of the ABS energy. We directly show that the local
superconducting phase difference originating from the vector
potential has equal magnitude but opposite sign at the two
ends of the JJ. This is manifested by a striking difference in the
spectroscopy maps obtained from each side, in excellent
agreement with a model that assumes tunnel coupling to a
single ABS localized at each end. Microscopic numerical
simulations confirm that such a localization of the ABSs is
indeed expected, and that the tunneling current is only
sensitive to ABSs located near the ends of the JJ. By modifying
the potential landscape in the vicinity of the tunnel probe, we
show that the local phase difference allows us to resolve
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multiple ABSs within a spatial extent of a few hundred
nanometers, in qualitative agreement with simulations.

The JJs are fabricated using an InSb0.92As0.08 2DEG with in
situ grown Al as the superconductor (details about the
molecular beam epitaxy growth of the heterostructure can be
found in ref 22). Figure 1a shows a schematic and a false-
colored scanning electron micrograph (SEM) of such a device.
To fabricate the devices, we first use a combination of Al and
2DEG etches to define the JJ and the superconducting loop.
The exposed 2DEG on the top and bottom sides of the JJ is
contacted by Ti/Au, and the Al loop is contacted by NbTiN,
resulting in a three-terminal device. A globally deposited layer
of AlOx forms the gate dielectric. Lastly, split gates are
evaporated on the top and bottom ends of the JJ, allowing us
to define tunnel barriers, while also depleting the 2DEG
around the junction. A central gate (kept grounded throughout
this study) covers the normal section of the JJ. We study two
JJs (Dev 1 and Dev 2), both with length l = 80 nm and width
w = 5 μm. More details about the device fabrication can be
found in the Supporting Information - Section 1 (SI-1). The
devices are measured in a dilution refrigerator with a base
temperature of 30 mK using standard lock-in techniques.

In Figure 1b (top panel) we present a tunneling spectros-
copy map for Dev 1 at the top end of the JJ. The conductance,
Gt = dIt/dVt, is measured as a function of voltage bias, Vt, and
perpendicular magnetic field, B. The bottom panel shows the
conductance measured at the bottom end, Gb = dIb/dVb, with
representative line cuts presented in Figure 1c. In both maps
we see a superconducting gap that is modulated by B, with an
oscillation period equal to Φ0/S, where Φ0 = h/2e is the
magnetic flux quantum and S is the area of the super-
conducting loop. This modulation indicates the presence of
flux-periodic ABSs in the JJ. For a normal region much shorter
than the superconducting coherence length, the relation
between the ABS energy and the gauge-invariant phase
difference between the two superconducting leads, φ, is
given by2

E ( ) 1 sin ( /2)n n
2= ± * (1)

where Δ* is the induced gap in the 2DEG regions below the Al
leads and τn is the transmission probability of the nth

conduction channel. The flux through the loop, Φ = BS, and
φ are related via φ = 2πΦ/Φ0. The relatively small modulation
depth observed in the experiment might suggest low-
transmission ABSs [see the field evolution of a single ABS
with τ = 0.6 (pink) and τ = 0.99 (orange) in Figure 1b].
However, when looking more closely at the energy minima, we
find that they display pronounced cusps, not expected from eq
1. These cusps are indicative of phase slips that occur when the
superconducting loop has a sizable inductance, L, whereby the
standard linear flux-phase relation no longer holds. We
independently estimate L = 321 pH (see SI-2) and use the
appropriate flux-phase conversion (see SI-6) to find that the
measured ABS spectrum is consistent with a large transparency
of τ = 0.99 (light green line in Figure 1b). We further confirm
this by performing spectroscopy at higher B, as will be
discussed later. This highlights the fact that the inductance,
which can be significant in thin film superconductors, strongly
affects the ABS spectra observed in experiments.

Thus far we have assumed that the superconducting phase
difference is constant along the width of the JJ (see Figure 2a
for a top-view schematic of the junction). However, the vector
potential of the magnetic field creates a phase gradient, ϕ′(y),
and the total gauge-invariant phase difference is given by
φ(y) = ϕ + ϕ′(y), where ϕ is the phase difference that can be
tuned by the flux through the loop. The position-dependent
local phase difference can be expressed as10,23

fBly
2

0
=

(2)

where f is a flux focusing factor that increases the effective
magnetic flux in the JJ (see SI-3 andRef. 24). This expression
for φ is valid for JJs with a width much smaller than the
Josephson penetration length, which is the case for our
junctions (see SI-4). The magnetic vector potential also leads
to the formation of localized ABSs with a well-defined
supercurrent direction (see SI-7 for numerical simulations).
Figure 2b shows a plot of the expected local phase difference
for Dev 1 at B = 1 mT, demonstrating that the phase difference
experienced by an ABS located at the top and bottom end of
the JJ will be significantly different. Therefore, for localized
ABSs (as depicted in Figure 2a), one expects observable
differences in the field evolution of their energies. This is more

Figure 1. Tunneling spectroscopy at the two ends of a planar phase-biased JJ. (a) Schematic (before the gate deposition) and false-colored SEM of
Dev 1. (b) Spectroscopy maps measured at the top (Vg1 = −0.39 V, Vg2 = −0.74 V, Vg3 = 0 V, Vg4 = 0 V) and bottom end of the JJ (Vg1 = 0 V, Vg2 =
0 V, Vg3 = −1.1 V, Vg4 = −0.6 V). The three curves in the top panel correspond to single-channel ABS spectra calculated for different combinations
of transmission (τ) and loop inductance (L) as specified in the legend. (c) Line cuts of the bottom spectroscopy map at the indicated positions in
panel b.
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clearly illustrated in Figure 2c, where we plot the ABS energy,
E, as a function of B. As B increases, the maxima for the top
and bottom ABS shift relative to each other. This is a direct
consequence of eq 2, whereby ABSs located at opposite ends
of the JJ are sensitive to the local phase difference with equal
magnitude but opposite sign.

With an understanding of the effect of the magnetic vector
potential on the ABS spectrum, we now turn to spectroscopy
measurements over a significantly larger field range (Figure 3).
Figure 3a and b show the top and bottom spectroscopy maps,
respectively. We first look at the high field regime (Figure 3a2
and b2), where the ABS oscillation amplitude has increased
significantly (compare to 1b). This is caused by the
Fraunhofer-like reduction of the critical current, Ic, thereby
reducing the so-called screening parameter, β ∝ LIc. The lower
β results in a linear flux-phase relation, making it possible to
probe the complete phase-dependence of the ABS (see SI-6 for
more details). The fact that the ABS energy reaches very close
to zero confirms that the ABSs we are probing have extremely
high transparency.

In the intermediate field range (see Figure 3a1 and b1) we
find that the cusps near the ABS minima develop into sharp
jumps, resulting in a highly asymmetric and skewed shape away
from B = 0. The skewness is not only reversed for positive and
negative fields, but also for the top and bottom end of the JJ.
Furthermore, we find that the ABS energy maxima shift in
opposite directions in the top and bottom spectroscopy map,
as expected for bound states localized at the edges. This is a
strong indication that each probe is sensitive only to a region
of limited spatial extent in its vicinity, and that it is in general
difficult to reliably estimate bulk junction properties from a
local spectroscopy measurement.25

To explain these findings we introduce a model that takes
into account the combined effects of the inductance and vector
potential, and assumes that each tunnel probe couples only to a
single localized ABS with τ = 0.99 (a full description of the
model can be found in SI-6). The resulting ABS spectra are
shown as light blue lines plotted on the spectroscopy maps of
Figure 3a and b. We find an excellent agreement between the
model and the experiments in the entire magnetic field range.
We show in SI-6 that the observed reversal of the skewness can

only occur when both the vector potential and the loop
inductance are taken into account. Therefore, the loop
inductance serves as an extremely useful tool to clearly see
the effects of a spatially varying phase difference along the JJ.

In order to systematically analyze the difference between the
energy spectra of the top and bottom ABS, we introduce the
quantity ΔB = Bt − Bb (see Figure 3c). In Figure 3d, we plot
ΔB as a function of Bt for experiment (dark blue circles) and
theory (light blue circles). Both show a nonlinear dependence,
which can be well accounted for by the variation of Ic (and
hence β). It is interesting to note that while our device
geometry makes it impossible to directly measure Ic of the JJ,
the nodes in the Fraunhofer pattern can still be identified by
regions where β ≈ 0 (see arrows), and therefore the
experiment/theory plots with finite L approach the theory
curve with L = 0 (red circles). All of these findings are
reproduced in Dev 2 (see spectroscopy maps in SI-5 and the
ΔB analysis in Figure 3e).

Although our toy model is effective in capturing the most
important features observed in experiments, it relies on the
assumption that the tunnel probes couple to a single localized
ABS in the vicinity of the barriers. In the following, we use
numerical simulations to show that the tunneling current is
indeed dominated by edge-located ABSs, and that the phase
shifts for these states agree with the experiments. For the
simulations, we consider a planar JJ composed of two semi-
infinite superconducting leads and a normal region that is
connected to two normal leads through tunneling barriers. We
calculate the conductance from the top (bottom) normal lead,
Gt (Gb), by tracing the quasiparticles entering and leaving the
top (bottom) lead. In the simulation, we include the effect of a
perpendicular magnetic field and disorder, which results in a
finite mean free path, le. A superconducting phase difference,
ϕ, is imposed between the superconducting terminals (more
details about the model can be found in SI-7).

We first consider a ballistic JJ with infinite mean free path. In
Figure 4a and b, we show the conductance calculated from the
top and bottom, respectively, at B = 1 mT. In both maps, the
main resonance is shifted by an equal amount in ϕ, but in
opposite directions. This shift agrees very well with our toy
model (black lines), where we assumed tunnel-coupling to a
single ABS localized at the top/bottom end of JJ. The presence
of localized ABSs is clearly seen by inspecting the supercurrent
distribution calculated at the energy/phase values denoted by
the colored circles in Figure 4a. We find that the top probe is
only sensitive to the ABSs located in the vicinity of the top
barrier (see Figure 4c).

To make a connection with the experiments, we also
consider a semiconductor with le = 150 nm, a good estimate for
the mean free path in our 2DEGs.22 The top and bottom
conductances are shown in 4d and e, respectively. As in the
ballistic case, we again find a predominant sensitivity to edge-
located ABSs, and a relative shift of the ABS maxima. However,
we also note two important differences. First, unlike the
ballistic case, the ABS spectra at the top and bottom are now
drastically different from each other. This is not surprising,
given the fact that the ABSs can be sensitive to the particular
disorder configuration present at each end. Second, the main
resonance splits into more clearly distinguishable ABSs. These
ABSs are also localized close to the top/bottom end of JJ, as
seen in Figure 4f. The specific location of these states is
sensitive to the local potential landscape. However, we expect

Figure 2. Effect of the magnetic vector potential. (a) Top-view
schematic of the JJ in Dev 1. Two ABSs located at the top and bottom
end are indicated. (b) Calculated local phase difference arising from
the vector potential at B = 1 mT ( f = 6.2). (c) Magnetic field
evolution for the ABS located at the top (black) and bottom (gray),
showing a relative shift due to the local phase difference.
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them to acquire different relative phase shifts depending on
their precise location in the JJ.

This spatially dependent phase shift in the vicinity of the
tunnel probe can also be experimentally observed. Figure 5a
presents spectroscopy measurements on the top end of Dev 2,
where the split gate settings have been modified to locally alter
the disorder landscape. At B = 0 (central panel), distinct ABSs
are hardly visible (see also black line cut in Figure 5b).
However, when increasing the magnetic field (left and right
panel), the localized ABSs acquire different phase shifts making

it possible to resolve them more clearly (see also gray line cut
in Figure 5b). Reversing the field direction leads to ABSs
shifted in the opposite direction, as expected for spatially
separated ABSs. A similar pattern of ABSs located at different
positions close to the edge of the junction and experiencing
different phase shifts is obtained in the numerical calculation
shown in Figure 5c and d. This demonstrates that the effect of
the vector potential (and resulting local phase difference) can
indeed be used to estimate the location of the ABSs in the JJ.
Around B = 2.09 mT, the maxima of the two states (indicated

Figure 3. Tunneling spectroscopy over a large magnetic field range. (a) Spectroscopy map at the top end of Dev 1 (Vg1 = −0.39 V, Vg2 = −0.74 V,
Vg3 = 0 V, Vg4 = 0 V), with zoomed-in views presented in panel a1 and a2. (b) Spectroscopy map at the bottom end (Vg1 = 0 V, Vg2 = 0 V, Vg3 =
−1.1 V, Vg4 = −0.6 V) with zoom-in views in panel b1 and b2. The model (light blue lines) assumes coupling to a single ABS (τ = 0.99), taking into
account the local phase difference in the JJ and the loop inductance (L = 321 pH). (c) Model curves for the top and bottom end plotted together
(offsetted vertically for clarity). The ABS maxima on the top (Bt) and bottom (Bt) are shifted. (d,e) ΔB = Bt − Bb as a function of Bt for Dev 1 and
Dev 2 (dark blue circles). We also include the ΔB values from the toy model with L = 321 pH (light blue circles), and L = 0 (red circles). The
arrows indicate the position of the first Fraunhofer node.
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by the brown and pink circles) are shifted by ≈ 5 μT. This shift
can be translated into an estimate of their spatial separation by
using the spectroscopy results at the two extreme ends of the JJ
(Figure S4 and Figure 3e), where we find ΔB = 106 μT at B =
2.09 mT for ABSs separated by 5 μm. Using this, we can
estimate the spatial separation of the two states indicated by
the brown and pink circles to be approximately 250 nm.

In conclusion, we employed local tunneling spectroscopy at
two ends of planar phase-biased JJs to study the influence of
the magnetic vector potential on the ABS spectrum. The
combined effect of inductance and a spatially varying local

phase difference results in striking differences in the tunneling
spectra measured at the two edges of these junctions.
Supporting our experiments with a theoretical toy model and
microscopic numerical simulations, we showed that our results
are consistent with the measurement of ABSs localized at the
ends of the JJ, in the vicinity of the tunnel barriers. Finally, we
showed that the effects of the vector potential are not only
observable for ABSs separated by microns, but can also be used
to estimate the relative locations of ABSs separated by a few
hundred nanometers. Our results provide insights into the
effects of a spatially varying phase difference on the ABS

Figure 4. Numerical simulation of the tunneling conductance for a ballistic and disordered JJ. (a,b) Conductance maps at B = 1 mT for a ballistic JJ
probed from the top and bottom. The black lines correspond to the phase shifts expected from the toy model. c Supercurrent distribution in the
normal region of the JJ obtained for the E and ϕ values denoted with the circles in panel a. (d,e) Conductance maps at B = 1 mT for a disordered JJ
(le = 150 nm) probed from the top and bottom. (f) Supercurrent distributions for the E and ϕ values denoted with the circles in panel d.

Figure 5. Probing spatially separated ABSs. (a) Tunneling spectroscopy maps at the top end of Dev 2 (Vg1 = −1.90 V, Vg2 = −1.40 V, Vg3 = −2.10
V, Vg4 = −1.43 V). The ABSs that are initially hardly resolvable around B = 0 are better resolved at larger B, where localized ABSs acquire different
phase shifts depending on their location in the JJ. (b) Line cuts at two indicated positions in panel a showing this improvement in resolution. (c)
Simulated tunneling conductance map for a disordered JJ (le = 150 nm) at B = 10 mT probed from the top. (d) Supercurrent distributions for the E
and ϕ values marked by circles in panel c, showing how localized ABSs at different positions correspond to ABS spectra that are shifted in ϕ.
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spectrum in extended JJs, and are relevant for ongoing efforts
on investigating topological superconductivity in planar JJs.

Additional Note: During the preparation of this manuscript,
we became aware of a related work on tunneling spectroscopy
in planar JJs.26
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1. DEVICE FABRICATION

The two phase-biased JJs (Dev 1, Dev 2) and the DC SQUID are fabricated using electron

beam lithography. Due to a possible intermixing of Al and Sb we perform all fabrication

steps at room temperature unless stated otherwise. The device fabrication starts by etching

the Al and the 2DEG in unwanted areas. The Al etch is performed in Transene D etchant at

a temperature of 48.2 °C for 9 s resulting a etching thickness of 100 nm. Afterwards, using

the same PMMA mask, the 2DEG is etched in a solution of 560 ml deionized water, 9.6 g

citric acid powder, 5 ml H2O2 and 4 ml H3PO4, using an etching time of 90 s. To define the

JJs, we perform a second Al etch, carried out in 38.2 °C Transene D for 16 s. This is fol-

lowed by sputtering a 60 nm thick layer of SiNx that partly covers the superconducting loop,

isolating it from the intended 2DEG contact inside the loop. Next, we contact the exposed

2DEG region on the top and bottom side of the JJ by Ti/Au. Prior to the evaporation of

10 nm Ti and 190 nm Au, a gentle Ar etching is performed in the loadlock of the evaporator

to remove any oxides that might have formed on the 2DEG. Afterwards, we contact the

superconducting loop by sputtering 150 nm of NbTiN (before the sputter process an in-situ

Ar etch is performed to remove the oxide on the Al). As the gate dielectric, we deposit

a global layer (40 nm thick) of AlOx by atomic layer deposition at 40 °C. The gates are

formed in two steps: First, the fine structures (split gates and central gate) are deposited

by evaporating 10 nm of Ti and 40 nm of Au. In the second step, 10 nm Ti and 100 nm Au

are evaporated to define the gate leads.

A schematic and false-colored SEM of Dev 1 is shown in Fig. 1a of the main text. In Fig.

S1a we present a SEM of Dev 2, which is similar to Dev 1. The main difference is that the

normal region of the JJ is slightly zigzag-shaped (zx = 0.24µm, zy = 1.43µm). This was

originally introduced into this device to potentially suppress long quasiparticle trajectories

and thereby increase the size of the topological gap [1]. The superconducting leads of Dev 1

and Dev 2 have a length of 500 nm. Figure S1b shows a SEM of the DC SQUID, consisting

of two JJs (device JJ and reference JJ) in the superconducting loop. The device JJ has a

superconducting lead length of 300 nm. Two additional gates are deposited, one covering

the normal region of the reference JJ and one covering the 2DEG region around this junction
∗ These authors contributed equally to this work.
† Present Address: Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
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InSbAs Al Ti/Au gatesTi/Au contacts
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2 μm
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40 days
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FIG. S1. a SEM of Dev 2 having a zigzag-shaped normal region (zx = 0.24µm, zy = 1.43µm) with

a length of l = 80nm and width of w = 5µm. b SEM of the DC SQUID. The device JJ (on the

bottom) has dimensions l = 120 nm and w = 2µm. The reference JJ (on the top) has dimensions

l = 80nm and w = 5µm.

(always kept at -2.5 V to deplete the 2DEG there).

2. ESTIMATION OF LOOP INDUCTANCE

In order to extract the inductance of the SQUID loop, we measure the SQUID interfer-

ence pattern for different reference JJ gate voltages, Vg,ref . Figure S2a-l shows the obtained

differential resistance maps as a function of applied current bias, I, and perpendicular mag-

netic field, B. Panel a-l corresponds to Vg,ref = 0, -0.4, -0.8, -0.9, -1, -1.1, -1.2, -1.25, -1.3,

-1.35, -1.4, and -1.45 V, respectively. The device JJ gate is grounded in all measurements.

With the colored circles we mark the positions where the total critical current is maximum.

For a given SQUID oscillation, the field at which the maximum occurs is different for posi-

tive and negative current bias: ∆B = B+ − B−. The corresponding flux difference is given

by: ∆Φ = 2(LrefIc,ref − LdevIc,dev) [2]. Here, Ic,ref and Ic,dev are the critical current of the

reference and device junction, respectively. The inductances of the two SQUID arms are
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FIG. S2. Differential resistance, dV/dI, as a function of applied current bias, I, and perpendicular

magnetic field, B. Panel a-l corresponds to reference gate voltage Vg,ref = 0, -0.4, -0.8, -0.9, -1, -1.1,

-1.2, -1.25, -1.3, -1.35, -1.4, and -1.45 V, respectively. No voltage is applied to the device junction

gate. The colored circles mark the positions of maximum total critical current. m ∆Φ plotted

against Ic,max for the three oscillations shown in a-l. The extracted ∆B is normalized with respect

to the oscillation period, giving ∆Φ in units of the magnetic flux quantum, Φ0. The average value

of the maximum critical current on the positive and negative current bias sides gives Ic,max.

Lref and Ldev. The above expression can be rewritten as: ∆Φ = 2LrefIc,max − 2LIc,dev, using

the relations for the maximum critical current, Ic,max = Ic,ref + Ic,dev, and the total loop

inductance, L = Lref + Ldev.

In Fig. S2m we plot the extracted ∆Φ as a function of Ic,max for the three oscillations indi-

cated in Fig. S2a-l. The linear fits yield Lref = 166 pH as the average value. Since the width
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and the thickness of the superconducting loop is the same for all three devices, the induc-

tance should only depend on the length of the superconducting loop. Under this assumption

the loop inductance of the phase-biased JJs can be estimated to be Lref lPBJJ/lref = 321 pH,

where lref = 15.3µm is the length of SQUID reference arm and lPBJJ = 29.6µm is the loop

length of Dev 1 and 2.

3. FLUX FOCUSING IN PLANAR JJ

The Fraunhofer interference pattern periodicity, B0, in a JJ is determined by the geo-

metrical area, A, enclosed between two superconducting leads, i.e. B0 = Φ0/A. However,

in the presence of flux focusing, the periodicity is reduced from the theoretical value [3].

To estimate the effect of flux focusing we measure the differential resistance, dV/dI, as a

function of applied current, I, and perpendicular magnetic field, B, for the device JJ of the

DC SQUID (see Fig. S3). For this measurement, the reference JJ is pinched off by applying

a voltage of −2.5V to the top gate. We observe the first node at 2.1mT instead of the

expected Fraunhofer periodicity of B0 = 8.6mT. This gives a dimensionless flux focusing

factor, f , of 4.1 for this junction.

6 4 2 0 2 4 6
B (mT)

1.0

0.5

0.0

0.5

1.0

I (
A)

0.0

0.1

0.2

0.3

0.4

0.5

dV
/d

I (
k

)

FIG. S3. Differential resistance, dV/dI, as a function of applied current, I, and perpendicular

magnetic field, B for the device JJ of the DC SQUID.

To explain our spectroscopy maps measured at the top and bottom ends of Dev 1 and

Dev 2 we introduce a toy model with flux focusing in Sec. 6. Although the above extracted f
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gives an estimate of the focusing factor, the exact value can vary from junction to junction.

The best agreement between the experimental spectroscopy maps and the toy model is be

achieved with f = 6.2 for Dev 1 and 7.2 for Dev 2 (see Fig. 3 in the main text as well as

Fig. S4]. The larger f values (and therefore stronger flux focusing) are in fact expected due

to the shorter JJ length and larger lead length of Dev 1 and Dev 2 compared to the values

for the device JJ of the DC SQUID [3].

4. JOSEPHSON PENETRATION DEPTH

The Josephson penetration depth for a JJ with the thickness of the superconducting

electrodes comparable or smaller than the penetration depth is dominated by the kinetic

inductance contribution and is given as [4]: λJ = (Φ0w/4πµ0Jcλ
2)1/2, where w = 5µm is the

junction width, Jc is the critical current density, and λ is the superconducting penetration

depth of Al.

For our junctions, the thickness of the Al electrodes (7 nm) is much smaller compared

to the previously reported value of λ = 180 nm for a similar heterostructure [3]. Therefore

we use the above expression to determine λJ . Since the critical current cannot be measured

for Dev 1 and Dev 2, we estimate it based on values obtained for the DC SQUID. The

critical current of the device JJ with width w = 2µm is Ic = 1.05µA (see Fig. S3) and the

thickness of 2DEG is t = 30 nm. Using these values we get Jc = Ic/wt = 1.75×107A/m2 and

λJ = 34µm, which is much larger than the width of the JJs (w = 5µm). This ensures that

the gauge-invariant phase difference can be expressed as φ(y) = ϕ+ ϕ′, with ϕ′ = −2π fBly
Φ0

.
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5. TUNNELING SPECTROSCOPY FOR DEV 2
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FIG. S4. a Spectroscopy map at the top end of Dev 2 with zoom-ins presented in a1 and a2. The

bottom spectroscopy map is shown in b with zoom-ins in b1 and b2. Both measurements were

obtained with Vg1 = −1.60V, Vg2 = −1.42V, Vg3 = −2.10V, Vg4 = −1.43V. The model (light blue

line) assumes coupling to a single ABS (τ = 0.99), taking into account the local phase difference in

the JJ and the loop inductance (L = 321 pH) for the field-phase conversion.
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6. TOY MODEL

This model is used to calculate the Andreev bound states (ABSs) energies of a Josephson

junction embedded in a superconducting loop in the presence of a perpendicular magnetic

field, as used to substantiate the measurement results shown in Fig. 3 and Fig. S5. The

junction has a length l (the distance between the superconducting contacts) and a width w

(the distance between the edges of the junction where the tunneling probes are connected).

We assume a homogeneous density of the supercurrent in the junction and that the

current is carried by M ABSs uniformly distributed across the junction at positions yn =

−w/2 + (n− 1) · w/(M − 1) with integer n ∈ [1,M ].

The positive energies of the ABSs in the junction with the transmission coefficient τ are

given by [5]:

En(φn) = ∆

√
1− τ sin2(

φn

2
), (S1)

where, in the presence of the external perpendicular magnetic field, φn = ϕ+ 2π
Φ0

∫ (l,yn)

(0,yn)
A ·dl

is the gauge-invariant phase drop across the junction for an ABS located at position yn.

ϕ is the superconducting phase difference. For the vector potential in the Landau gauge

A = (−yB, 0, 0), the phase drop in the junction at yn is φn = ϕ − (2π/Φ0) · fBlyn, where

we included f as the magnetic field focusing factor. The latter equation gives the phase

evolution of the ABS located at the edges of the junction as φt/b = ϕ ∓ (π/Φ0) · fBlw [6]

with a minus (plus) sign for the upper (bottom) edge.

The zero-temperature supercurrent obtained from the positive-energy ABSs in the junc-

tion is given by:

I(φ) =
e∆2τ

2h̄

M∑

n

sin(φn)

En(φn)
. (S2)

In the experimental setup, the superconducting phase difference ϕ is induced by a flux

Φ = BπR2 that threads a superconducting loop with radius R. The non-zero loop inductance

L results in the following phase-flux relation [7]:

ϕ =
2π

Φ0

(Φ− LI(φ)). (S3)

We obtain the energies of the ABSs located at the edges of the junction versus B using the

following procedure. In the first step, we solve Eq. S3 for a given B and obtain the ϕ value

that minimizes the total energy of the system E(ϕ) = LI2(φ)/2 − ∑M
n En(φn) calculated

8



FIG. S5. Superconducting phase difference versus applied magnetic field obtained for L = 321 pH,

l = 80 nm, w = 5000 nm, M = 35, τ = 0.99, R = 4207 nm, ∆ = 0.2 meV and f = 6.2. The black

dots show possible phase values for a given B, while the blue curve shows the superconducting

phase difference obtained by minimizing the total energy.

as the sum of the energy contained in the superconducting loop and the free energy of the

junction (F = const−Ej = const−∑
En). An example of a flux-to-phase conversion curve

is shown in Fig. S5. Finally, we use the phase difference value to calculate En corresponding

to the ABSs located at the outermost edges of the junction using Eq. S1.

Figure S6 shows an ABS located at the top (top panel) and bottom (bottom panel) end

of the JJ in the presence and absence of the loop inductance and the local phase difference

arising from the magnetic vector potential as indicated. The reversal of the skewness can

only happen when both the loop inductance and the local phase difference are present.

Table S1 summarizes the parameters that are used for the overlays for Dev 1 (Fig. 3 of

the main text) and Dev 2 (Fig. S4).
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FIG. S6. ABS energy versus magnetic field in the presence or absence of the loop inductance and

with or without local phase difference in the JJ as indicated. The top and bottom panels correspond

to an ABS located at the top and bottom end of the JJ, respectively. For all plots, the following

parameters are used: l = 80 nm, w = 5000 nm, M = 35, τ = 0.99, R = 4207 nm, ∆ = 0.2 meV

and f = 6.2.

Parameter Dev 1 Dev 2

l (nm) 80 80

w (µm) 5 5

R (nm) 4207 4190

L (pH) 321 321

∆ (meV) 0.2 0.19

f 6.2 7.2

M 35 45

τ 0.99 0.99

TABLE S1. Toy model parameters used for Dev 1 and Dev 2.
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7. MICROSCOPIC MODEL

A. Tunneling spectroscopy calculations

We consider a four-terminal device, with two vertical superconducting leads separated by

the normal region (which creates the superconductor-normal-superconductor junction) and

two normal leads that are placed horizontally at the top and bottom—see Fig. S7. Between

the horizontal leads and the normal scattering region, we introduce tunneling barriers that

mimic the behavior of QPCs tuned into the tunneling regime.

The considered system is described by the Hamiltonian

 H ∆

∆∗ −H


 , (S4)

acting on a wave function in the basis Ψ = (Ψe,Ψh)
T . Here H is defined as

H = − h̄2

2m∗∇
2 + V (r)− µ. (S5)

µ is the chemical potential, m∗ is the effective electron mass and V (r) is the rectangular

potential barrier of height Vg placed just above and below the normal region of length (l = 80

nm).

In the presence of a magnetic field, the Hamiltonian H becomes

H
′
= − h̄2

2m∗ (∇− qA/h̄)2 + V (r)− µ, (S6)

with q = −|e| for the electron and q = |e| for the hole part of the Hamiltonian Eq. S4. We

choose the vector potential in the Landau gauge with B⃗ = Bẑ, so that A⃗ = −Byx̂

The superconducting pairing potential ∆ varies spatially and is given by:

∆(x) =





∆0 if x < −l/2

0 if −l/2 ≤ x ≤ l/2

∆0e
ιϕ if x > l/2

We discretize the Hamiltonian Eq. S4 on a square lattice with discretization constant

a = 10 nm. We put the material parameters as m∗ = 0.016me, µ = 5 meV, ∆ = 0.2 meV.

We introduce the anisotropic mass in the superconducting leads with the mass along the
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b

b

FIG. S7. Schematic of the system considered for tunneling spectroscopy calculations. The dots

denote the sites of the computational mesh. The black dots correspond to the scattering region,

whereas the pink ones denote the semi-infinite leads. We use l = 80 nm (the distance between the

superconducting contacts) and w = 5000 nm (the distance between the edges of the junction where

the tunneling probes are connected). The barrier potential at the top and bottom is separated

from the normal leads of width wb = 100 nm. The vertical leads are superconducting, while the

horizontal leads are normal.

translation symmetry of the superconducting leads equal to 10m∗ as appropriate for the

description of transparent normal-superconductor interfaces in models where the chemical

potential is kept constant [8]. Including a vector potential in this system is done using

Peierls substitution as tnm → tnm exp[−ιe
h̄

∫
Adl] [9, 10].

We exclude the magnetic field from the superconducting leads to account for the screening

effect setting A = 0 there. We also put zero vector potential in the top and bottom leads to

maintain the translation invariance. This in turn introduces a delta peak in the magnetic

field where the horizontal leads are attached (as calculated from B = ∇ × A). We have,
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however, verified that for the considered small magnetic fields, this does not affect our results,

as confirmed by replacing the vector potential by a position-dependent superconducting

phase as ϕ → ϕ− 2πBly
Φ0

and observing that both results match accurately.

The finite mean free path (le) is implemented by introducing a random on-site disorder

potential Vd(x, y) with the amplitude uniformly distributed between −Ud/2 and Ud/2 [11],

where

Ud = µ

√
6λ3

F

π3a2le
. (S7)

Here a, le, λF are the lattice constant, mean free path and the Fermi wavelength, respectively.

We calculate the conductance map with respect to the phase difference ϕ and energy using

the scattering matrix approach implemented in the Kwant package [12], using the formula:

Gt/b =
2e2

h
(N e

t/b − T ee
t/b + T he

t/b), (S8)

where t and b stand for top and bottom lead respectively and N e
t/b is the corresponding

number of the electron modes. The energy dependent transmissions are evaluated as:

Tαβ
t/b = Tr([Sαβ

t/b]
†Sαβ

t/b), (S9)

where Sαβ
t/b is the block of scattering amplitudes of incident particle of type β in t (b) lead

to a particle of type α in the lead t (b).
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B = 1 mT (e,f). The vertical black lines denote the expected phase shift of the edge modes due to

the magnetic field φt/b = ϕ∓ (π/Φ0) · fBlw.
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FIG. S9. Conductance versus phase difference and energy calculated for quasiparticles injected

from the top lead for B = 1 mT and different mean free paths le = 150 a, 500 b and 1000 nm c.
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B. ABS calculation

For the numerical calculation of ABSs spectra we consider a Josephson junction treated

as a finite system consisting of a normal scattering region and two long superconducting

segments. The two superconducting regions have a length of lSC = 2000 nm (much larger

than the coherence length ξ = 1091.16 nm, calculated using the formula, ξ = h̄vF
∆

where

vF =
√
2µ/m∗ ), and they are separated by a normal region of length l = 80 nm. The

width w of the entire system is taken as 1000 nm. The Hamiltonian remains the same as

in equation S6 except for the tunneling barrier potentials (here we do not consider the top

and bottom electrode). The anisotropic mass and Peierls phase factor (for magnetic vector

potential) are introduced as described above. We diagonalize the Hamiltonian and plot the

energy with respect to the phase difference ϕ, and also the probability current in Fig. S10.

In the probability current, we observe that in the presence of the perpendicular field each

ABSs is localized in a separated region in the junction. The different spatial position of the

ABSs is reflected by their different phase shifts in the spectrum plotted in Fig. S10 (a).
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FIG. S10. a ABS spectrum of a SNS junction with two SC regions (lSC = 2000 nm) separated by a

normal region (l = 80 nm, w = 1000 nm) at B = 2 mT without disorder. The color curves denote

analytically calculated ABS from Eq. S1 with τ = 1. b Supercurrent in the normal area of the

junction calculated for the ABS whose energies are denoted by the color circles in a.
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Hybrid Josephson junctions realized on a two-dimensional electron gas are considered promising candidates
for developing topological elements that are easily controllable and scalable. Here, we theoretically study the
possibility of the detection of topological superconductivity via the nonlocal spectroscopy technique. We show
that the nonlocal conductance is related to the system’s band structure, allowing probe of the gap closing and
reopening related to the topological transition. We demonstrate that the topological transition induces a change
in the sign of the nonlocal conductance at zero energy due to the change in the quasiparticle character of the
dispersion at zero momentum. Importantly, we find that the tunability of the superconducting phase difference
via flux in hybrid Josephson junctions systems is strongly influenced by the strength of the Zeeman interaction,
which leads to considerable modifications in the complete phase diagram that can be measured under realistic
experimental conditions.

DOI: 10.1103/PhysRevB.108.205405

I. INTRODUCTION

Planar superconductor-normal-superconductor (SNS)
Josephson junctions have been proposed as a promising
platform for engineering and exploiting Majorana bound
states due to the tunability of the topological transition by
the superconducting phase difference [1] and the scalability
of two-dimensional (2D) heterostructure systems [2]. For the
realization of topological SNS devices, typically two separate
superconducting electrodes proximitize the two-dimensional
electron gas (2DEG), creating a SNS junction where the good
quality of the normal-superconducting interfaces results in
an induced gap close to that of the parent superconductor
[3]. Upon application of an in-plane magnetic field, the
Zeeman interaction leads to the splitting of Andreev bound
states (ABS) in phase, resulting in the opening of the
topological regime whenever the fermion parity is odd
[1]. The topological regime is already obtained for the
vanishingly small Zeeman interaction energies at the phase
difference π . This becomes an important factor in achieving
the topological superconductivity in SNS junctions realized
on normal-superconductor hybrids as a strong Zeeman
interaction can lead to the appearance of an abundance of
trivial in-gap states [4,5] that decrease the induced gap and
can obscure Majorana zero-energy modes.

Originally, in normal-superconductor nanostructures, such
as proximitized nanowires [6], Majorana bound states were
sought by tunneling spectroscopy, where the presence of a
zero-bias peak was assigned to the appearance of topological
zero-energy states [7–9]. However, zero-bias peaks can also

*kuiri@agh.edu.pl
†mpnowak@agh.edu.pl

result from disorder-induced trivial ABS [10–12] or be due to
the specifics of the tunneling barriers used [13].

Tunneling spectroscopy was considered [14] (among other
techniques such as scanning tunneling microscopy [15] or its
spin-polarized variant [16]) as a way to probe bound states in
planar SNS junctions. It allowed revealing the edge-dependent
evolution of ABS in the perpendicular field [17–19]. In fact
the zero-bias peaks were observed in planar SNS junctions
[20,21] but, as in the case of nanowire systems, single-edge
conductance cannot be considered as a conclusive determinant
of the topological character of a zero-energy state. Relying on
the observation of a single feature expected for topological
systems can lead to false positive results [11,22]. Instead,
specialized protocols [23,24] have recently been proposed that
require the observation of several signatures of the topological
transition, preferably in a wide range of experimentally con-
trollable parameters.

In this context, a promising method is a nonlocal measure-
ment [25,26], which has recently been the subject of intense
research effort. Local and nonlocal spectroscopy was recently
performed on planar SNS junctions in the tunneling regime
[27], but lacked a clear signature of the topological transition.
In this work, we focus on the signatures of the topological
transition in phase-biased SNS junctions in nonlocal mea-
surements in the context of recently realized two-dimensional
Josephson junction heterostructures [17,18,26]. We theoret-
ically study the transport features of the junction both in
the spectroscopy limit, i.e., tunneling measurements that are
sensitive to the density of states in the junction, and in an open
regime, i.e., without tunneling barriers, where the transport
features correspond rather to a band structure of the junction.
The latter can elucidate the closing and reopening of the gap
associated with the topological transition [26].

We find that the nonlocal conductance sign represents the
electron- or holelike character of the bands in the junction.

2469-9950/2023/108(20)/205405(8) 205405-1 ©2023 American Physical Society
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FIG. 1. Schematic diagram of the considered system. A semi-
conductor strip (yellow-green) is sandwiched between two super-
conducting electrodes (orange), whose pairing potential has phase
difference φ. The gray regions denote the potential barriers, placed
just above and below the SC region. The green segments in the
semiconductor denote the top (1) and bottom (2) normal leads.

The closing and reopening of the gap at k = 0 is associated
with the meeting of the electron and hole bands at zero energy
and, correspondingly, with the change in the sign of the non-
local conductance. Furthermore, we discuss a serious caveat
in the realization of the topological phase in SNS junctions.
Namely, we show that in a realistic situation, where phase
biasing is done by running a flux through a superconducting
loop embedding the SNS junction, the phase slips result in
skipping a large region of phase space close to π , prohibit-
ing the creation and probing of Majorana bound states at a
small field. We discuss the factors that allow one to limit this
obstacle.

The paper is structured as follows. In Sec. II we introduce
the numerical model. In Sec. III A we discuss nonlocal spec-
troscopy results in relation to the effective charge polarization
of the bands. In Sec. III B we show how experimentally per-
formed phase biasing limits the magnetic fields in which the
topological phase can be observed. We discuss our results in
Sec. IV and summarize them in Sec. V.

II. MODEL

We consider a planar SNS junction constituted by a semi-
conducting strip of length Lj connected to superconducting
electrodes of width Wj . The scheme of the considered struc-
ture is depicted in Fig. 1.

The Hamiltonian of the system written in the basis � =
(ψe↑, ψh↓, ψe↓,−ψh↑)T (where e and h correspond to electron
and hole components with spin up ↑ or down ↓, respectively)
is

H =
(

h̄2kx
2

2m∗ + h̄2ky
2

2m∗ − μ

)
σ0 ⊗ τz + 1

2
g(x)μBBσy ⊗ τ0

+ α(x)(σxky − σykx ) ⊗ τz + 	(x)τ+ + 	∗(x)τ−, (1)

where kx(y) = −ι∂/∂x(y), σi and τi with (i = x, y, z) are the
Pauli matrices that act on the spin and electron-hole degree
of freedom, respectively, with τ± = (σ0 ⊗ σx ± ισ0 ⊗ σy)/2,
where σ0 is the (2 × 2) identity matrix.

We consider the nonzero pairing potential in superconduct-
ing contacts, which is modeled by the spatial dependence of

the gap parameter 	(x),

	(x) =

⎧⎪⎪⎨
⎪⎪⎩

	0 if x < −Lj/2,

0 if − Lj/2 � x � Lj/2,

	0eιφ if x > Lj/2,

with φ the superconducting phase difference. Accordingly,
we neglect the Zeeman splitting and spin-orbit effects in the
superconductor setting g(x) = α(x) = 0 in them. The in-plane
magnetic field is applied along the y direction. For concrete-
ness, we adopt the material parameters corresponding to the
InSb semiconductor and the Al superconductor, that is, m∗ =
0.014me, μ = 5 meV, 	0 = 0.2 meV, and α = 50 meV nm.
We also assume typical dimensions for this type of structure,
that is, Lj = 80 nm and Wj = 2000 nm [18,21,27].

For numerical simulations, we discretize the Hamiltonian
on a square lattice with the lattice constant a = 10 nm. Since
we use a uniform chemical potential in our calculations, for
a proper description of Andreev scattering at the NS interface
[28], we introduce an anisotropic mass in the superconducting
leads with the effective mass in the direction parallel to the
interface m∗

‖ = 10m∗ [29]. The code used for the presented
calculations is available online [30].

In this study, we consider three variants of the SNS sys-
tem. The first is the open system as shown in Fig. 1 used
to study the transport properties. Here, the normal regions
extend beyond the width of the superconducting contacts by
length 100 nm, which includes 10 nm tunneling barriers of
height 50 meV. They are connected to semi-infinite leads
that allow the transport of in-gap electrons/holes into/from
the junction. The normal region is connected to semi-infinite
superconducting leads. Such geometries have recently been
experimentally realized in InSbAs [18] or InAs [27] 2DEGs
proximitized by Al.

Experimentally, the nonlocal conductance is measured by
grounding the superconductor and registering the current
change in one of the normal leads upon application of the
voltage bias in the other. Numerically we calculate the non-
local conductance considering the scattering properties of the
quasiparticles injected and scattered back to normal leads us-
ing the scattering matrix approach implemented in the Kwant
package [31] with the formula

Gi j (E ) = ∂Ii

∂Vj
= e2

h

(
T ee

i j − T he
i j − δi jN

e
i

)
. (2)

Ii is the current entering terminal i from the scattering region,
Vj is the voltage at terminal j, and Ne

i is the number of electron
modes at energy E in terminal i. T ee

i j and T he
i j are electron-to-

electron and electron-to-hole transmission amplitudes (with j
being the source and i the drain) calculated at energy E that
represents the applied bias voltage Vj at zero temperature [26].

To investigate the properties of the bound states that form
in the junction, we consider a finite isolated system by dis-
connecting the protruding normal segments and leads [32].
Finally, to study the properties of the band structure, we
introduce the translation-invariant system constructed by re-
moving the normal leads and making the junction invariant in
the y direction, where ky is a good quantum number.
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FIG. 2. (a) ABS energy spectrum of the isolated SNS junction.
The analytical ABS spectrum is shown with black dashed lines.
The colors denote the average spin polarization of ABS along the
y direction. Nonlocal conductance with (b) and without (c) tunneling
barriers versus the superconducting phase difference. The results are
obtained for the in-plane field B = 0.5 T.

III. RESULTS

A. Nonlocal conductance as a measure of topological transition

The 2π -periodic spectrum of isolated junction in a nonzero
in-plane field is shown in Fig. 2(a). The evolution of the ABS
of a single-mode spinful junction in the presence of the
magnetic field is captured by the formula

Eσ (φ) = 	

√
1 − τ sin2

(
φ + ϕσ

2

)
, (3)

where ϕσ = 2σEzL j/h̄vF , τ is the junction transmission
coefficient, Ez = gμBB/2 is the Zeeman energy, σ = ±1
corresponds to positive and negative spin components,

and vF = √
2μ/m∗ is the Fermi velocity. Overlaying the

numerically calculated spectrum with the analytical one in
Fig. 2(a) we see that the cones made up of ABS are split in
phase by the Zeeman interaction. Inspecting the mean spin
polarization of ABS calculated as the expectation value of
the operator σyτ0, we observe that the edge of each cone is
made of ABS with positive and negative spin polarization
along the y direction. Upon increasing the magnetic field,
for the negative g factor considered here, the positively
(negatively) spin-polarized states move down (up) in energy.
This in turn results in an increase in the distance between
the positive-energy cones. The bottom tip of each cone
sets out a phase point when the fermion parity changes
and the system undergoes a phase transition—with the
topological phase being present in each φ = [0, 2π ] (mod
2π ) segment only between the cones. Since the plot shows
spin polarization, the spinless Majorana bound states are
not visible.

Calculating the nonlocal tunneling spectroscopy we obtain
the map shown in Fig. 2(b) where the gap closing and reopen-
ing upon the increase of the superconducting phase is visible.
An analogous result is obtained when the tunneling barriers
are removed [Fig. 2(c)]. Most importantly, we observe that
in both plots the topological transition manifests itself as the
sign change of the nonlocal signal at zero energy [see the
vertical black lines in Fig. 2(b)] leading to the rectification
of the current, similar to the case of an NS junction [26].

In Figs. 2(b) and 2(c) there is also a middle cone visible in
which the nonlocal conductance does not change sign at zero
energy and which does not mark the topological transition, as
we will show in the following.

1. Charge polarization of the bands

As we will show, the sign of nonlocal conductance outlines
the leading transport phenomenon in the junction. According
to the formula, Eq. (2), a positive conductance signal is ob-
tained when the dominant transport process involves electron
transport through the proximitized region, while a negative
signal is obtained when the electron is converted into a hole in
a crossed Andreev reflection process.

To elucidate the change of the nonlocal conductance, we
consider an invariant system. In Fig. 3(a) we plot the dis-
persion relation obtained for the phase difference set in the
vicinity of the left cone, that is, φ = 0.84π . We see the gap
closing at ky = 0 as the bands cross zero energy, causing the
fermion parity change, which in turn leads to the topological
transition.

We introduce the quasiparticle polarization of the bands
factor (P) which is calculated as P = vky, where v = 1

h̄
∂E
∂ky

and color the bands in the dispersion relation in Fig. 3(a) with
it. We observe that the bands at positive energy mostly have
an electronlike character, i.e., the sign of the Fermi velocity
matches the sign of the wave vector ky. The situation for
negative energy is the opposite and the bands there are mostly
of a holelike character.

Positive band polarization allows electrons with positive
energies to flow between the top and bottom contacts with
little Andreev reflection [see Fig. 3(b)]. We observe that the
electron can freely propagate from the bottom to the top
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FIG. 3. (a) Dispersion relation for B = 0.5 T and φ = 0.84π .
The colors denote the average charge polarization of the bands.
Electron (left) and hole (right) components of probability currents
obtained for E = 0.169 meV (b) and E = −0.169 meV (c).

contact [left map in Fig. 3(b)] with little Andreev reflection
[right map in Fig. 3(b)]. On the other hand, the mostly hole
character of the negative energy bands results in a blockade
of the electron transport [see the left map in Fig. 3(c)] and
instead crossed Andreev reflection occurs [see the right map
in Fig. 3(c)], which in turn results in negative nonlocal con-
ductance that is related to the splitting of the Cooper pairs
between top and bottom contacts.

It should also be noted that part of the band structure can
also have an electronlike character, even at negative energy,
which, e.g., can cause the red outlines of the rightmost cone
at negative energy as seen in Fig. 2(c).

In Fig. 4(a) we show the P factor for the invariant sys-
tem calculated by projecting the P values obtained in the
range ky ∈ [−a−1, a−1] for each phase difference value for
the increased in-plane field B = 1 T. We indeed see that in
the outermost cones in each 2π segment of the spectrum the
particle polarization of the bands is positive at positive energy
and vice versa. The opposite polarizations result in the change
of the sign of the nonlocal conductance at zero energy, which
marks the topological transition.
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FIG. 4. Charge polarization obtained for ky ∈ [−a−1, a−1] versus
energy and phase difference. (b) The band structure obtained for
φ = 1.15π . (c) T ee

12 nonlocal conductance component. The results are
obtained for B = 1 T.

In the map of Fig. 4(a) there is also a clear signature of the
appearance of positively charged bands both in positive and
negative energy between the two outermost cones in the topo-
logical region. If we look at the exemplary dispersion relation,
obtained for the phase where the positive- and negative-energy
middle cones meet [Fig. 4(b)], we observe that the gap closing
occurs at nonzero ky. Therefore, this gap closing does not
result in a phase transition. The modes in those bands have
a high Fermi velocity at zero energy and therefore a small
φσ Zeeman phase shift that results in a weak dependence
on the position of this cone on the strength of the in-plane
field. Finally, since those bands always have a considerable
electron polarization, the electrons can be transmitted through
the system for both positive and negative energies. This is
clearly visible in the map of Fig. 4(c), where we show the
electron transmission coefficient. This effect in turn results
in lack of sign change of the nonlocal conductance at zero
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energy as it is for the cones that mark the topological/trivial
transition.

B. Phase biasing by a perpendicular magnetic field

Phase biasing of the junction is achieved by placing the
junction in a superconducting loop and threading the loop
with a perpendicular magnetic field B⊥ resulting in the mag-
netic flux � = B⊥πR2, with R being the radius of the loop.
Typically, those loops have significant inductance L [18,21]
leading to nonlinear magnetic field to phase conversion gov-
erned by the equation

φ = 2π

�0

⎛
⎝� − L

∑
σ=±1

Iσ (φ)

⎞
⎠. (4)

Typically the perpendicular field B⊥ magnitude is a few
orders lower than the magnitude of the in-plane field; there-
fore, one can consider that it does bring negligible effects in
terms of Zeeman spin splitting. The Zeeman interaction due to
the in-plane field nevertheless leads to the evolution of ABSs
through the formula Eq. (3) and causes the modification of the
supercurrent whose phase dependence at zero temperature for
a junction embedding M spinful modes can be approximated
as

Iσ (φ) = e	2τM

4h̄

sin(φ + ϕσ )

Eσ (φ)
. (5)

The B⊥ to phase conversion obtained in the absence of the
in-plane magnetic field B, where ϕσ = 0, is plotted with a
thick curve in Fig. 5(a). The obtained dependency is strongly
nonlinear due to the LI (φ) term in Eq. (4). Assuming a qua-
sistatic approximation, for each value of B⊥ we minimize
ε(φ) = L[

∑
σ=±1 Iσ (φ)]2/2 − M

∑
σ=±1 Eσ (φ) to obtain the

phase difference that guarantees the ground state of our sys-
tem. The result is a single-valued conversion curve B⊥ to
phase presented with a thin black line in Fig. 5(a). Here we
take the parameters corresponding to the recent experiment
[18], i.e., M = 30, L = 321 pH, τ = 0.99, and R = 4207 nm.

Following the curve from the negative values of B⊥ we
observe phase slips close to the values −π and π . As a result,
regulating the phase difference by the perpendicular field al-
lows one to obtain phase values only from certain regions [18],
which actually omits the most desired values close to π . The
Zeeman interaction leads to a splitting in the ABS structure,
as seen in Fig. 2(a). As a result, the current jumps are less
pronounced and no longer occur at ±π—see the red dots in
Fig. 5(a).

In Fig. 5(b) with blue dots we show the possible attainment
of phase difference values versus the in-plane magnetic field.
We indeed see that only at considerable Zeeman splitting
energies it is possible to induce the π phase difference. In
the same plot, we denote the analytical estimate of the phase
values that guarantee the topological regime obtained from the
analytical ABS spectrum as presented in Fig. 2(a). It is clear
that, despite the topological gap opening at an already small
parallel magnetic field at φ = π it is not possible to set the
necessary phase bias to actually induce the topological phase.
We observe that only a strong Zeeman interaction unveils the
phase-difference region, close to ±π—where the topological
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FIG. 5. (a) Plot of phase difference versus perpendicular field
obtained without (black) and with (red) the in-plane field. The thick
curves show the results without energy minimization and the thin
lines correspond to the case of the energy minimization included.
(b) The blue dots represent the feasible phase values that can be
obtained by applying the perpendicular magnetic field B⊥ for a given
value of the in-plane field B. Gray areas, outlined by black and
red lines, show the predicted [from the solution of Eq. (3)] phase-
magnetic field range in which the topological regime is expected. The
inset shows in red the parameter range in which the φ = π phase bias
is available upon variation of the superconducting loop inductance.

superconductivity is present. This shows that the Zeeman
interaction not only leads to the opening of the topological
transition in the junction due to splitting of the ABS but
also significantly modifies the flux-phase conversion that is
necessary to bias the junction into the topological regime.

Finally, we study the case where the flux-phase conversion
is calculated from a numerical spectrum of the junction in-
stead of a simple approximation of Eq. (5). For each value of
the in-plane field, we calculate numerically the spectrum of
an isolated junction and then obtain the supercurrent I (ϕ) =
− e

h̄

∑
En>0

∂En
∂ϕ

. We then follow the same procedure of flux-
to-phase conversion as described above. The results for three
values of the in-plane field are shown in Figs. 6(a), 6(b) and
6(c). We see that only for a strong in-plane field is the linear
flux to phase conversion restored with the possibility to bias
the junction with π phase difference.

In Figs. 6(d), 6(e) and 6(f) we show nonlocal spectroscopy
results versus the perpendicular field. We see that despite
considering a transparent junction the probed ABS do not
touch zero energy due to phase slips. Hence the topological
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FIG. 6. (a),(b),(c) Perpendicular field to phase conversion obtained from numerical ABS spectrum for absent (a) parallel field and (b) 0.5 T
and (c) 1 T. (d),(e),(f) Nonlocal tunneling spectroscopy results as a function of the perpendicular field used for phase biasing

region, although present in the spectra plotted against the
phase difference in Fig. 2(a), is not present when we consider
a realistic situation of flux-induced phase biasing. Only at
considerable Zeeman interaction strength (here 1 T) is the
transition between the trivial and topological regime visible
as signified by the gap closing and reopening associated with
the change of the sign of nonlocal conductance at zero energy
[see Fig. 6(f)].

IV. DISCUSSION

We showed that, despite the fact that the phase bias can
lower the critical Zeeman energy required for the topological
transition [1], the phase biasing and specifically tuning the
junction to φ = π configuration turns out to be difficult to
perform in practice, and is in fact dependent on the microscop-
ical parameters of the SNS junction (such as the supercurrent)
and the device geometry itself (e.g., the superconducting loop
size). Phase jumps as shown in Figs. 6(d) and 6(e) are actually
visible in virtually every spectroscopic measurement of the
ABS structure in planar junctions [17–21,27]. For instance,
in the results of Ref. [18], upon closer examination of the
energy phase relation, it was found that the measured Andreev
bound states exhibit prominent cusps, a phenomenon not an-
ticipated for transparent junctions. These cusps signify the
occurrence of phase slips, which manifest themselves when
the superconducting loop that embeds the junction possesses
a substantial inductance. The phase slips in the experiment
of Ref. [18] showed that it is possible to probe only a part
of the ABS spectrum, which then affected the outcome of
the measurement in a stronger perpendicular field, where
the asymmetry in local spectroscopy measured from top and
bottom was obtained. As these types of structures [17,18] are
in principle to be used for nonlocal spectroscopy, the observed
limited phase space probing represents a serious obstacle in
probing the topological transition in them.

Let us discuss the conditions that will make it more favor-
able to bias the junction with phase π . Since it is the LI (φ)

term that induces the nonlinearity of flux to phase conversion,
one should consider limiting it to restore the possibility of
realizing the π phase difference at small Zeeman fields. We
approximate the condition under which increasing B⊥ results
in linear growth of the phase in the vicinity of the values of
π (mod 2π ) as when the second local maximum of B⊥(φ)
becomes larger than the first in each repeating 2π segment.
For the case of τ → 1 we can analytically estimate the values
of these two extrema, which leads to the condition

ϕσ + 2π

�0
LI+(π + 2ϕσ ) < 0, (6)

where I+ is half of the total current, assuming the same num-
ber of spin positive and spin negative modes. Solving it for
L and B⊥ yields the critical magnetic field at which π phase
biasing becomes possible. We plot the resulting diagram in
the inset of Fig. 5(b) where blue denotes the parameter range
that allows one to obtain the phase bias π . We observe a
rapid growth of the critical field with an increase in L. The
inductance of the superconducting loop is typically dominated
by the kinetic inductance L = l h̄R0/wπ	 [33], where l is the
length, w is the width of the arm of the superconducting loop,
and R0 is normal state sheet resistance [21]. Therefore, smaller
loops with wide arms could in principle be used to decrease
the critical Zeeman field, which is necessary to phase bias the
junction into the topological regime.

Limiting the current is typically less favorable because it
requires either limiting the transparency of the junction by
decreasing the mean free path or making the width of the
junction (Wj) smaller, thus decreasing the number of ABS.
The latter is again unfavorable because it induces overlap
between Majorana modes, lifting their degeneracy, and would
require usages of extended geometries [34,35]. An alternative
approach could involve applying the gate voltage to the nor-
mal region of the junction, which in principle could decrease
the number of ABS and therefore decrease the current in the
junction [36].
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V. SUMMARY AND CONCLUSIONS

In this theoretical study, we investigated the possibility
of detection of the topological transition in a planar Joseph-
son junction via the nonlocal spectroscopy technique. We
showed that the topological transition that is associated with
the fermion parity change which is controlled by the in-plane
magnetic field and the phase difference in the junction re-
sults in a change of the sign of the nonlocal conductance
at zero energy. We showed that this phenomenon is directly
related to the change in the quasiparticle character of the
bands and can be used to determine the topological transition
in the transport measurements. As we showed, in a realis-
tic situation the control of the phase bias in the junction is
strongly dependent on the strength of the in-plane magnetic

field as the Zeeman interaction controls the current-phase
relation. This leads to the inability of scanning the entire
phase space, specifically reaching the π bias required for
topological transition at a small Zeeman interaction strength,
unless the inductance of the superconducting loop embedding
the junction or the current in the junction is considerably
reduced.
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We theoretically study topological superconductivity in elongated planar Josephson junctions. In the presence
of spin-orbit coupling and an in-plane magnetic field, the Josephson junction can enter the topological phase
and host zero-energy Majorana bound states over a range of the superconducting phase difference centered
around π , with the span of this range determined by the strength of the magnetic field. We demonstrate that the
topological superconducting phase range can be greatly increased by elongation of the junction, which causes
an amplification of the Zeeman-induced phase shift of Andreev bound states. We show that the appearance of
trivial in-gap states that occurs in elongated junctions can prohibit the creation of Majorana modes, but it can be
mitigated by further proximitization of the junction with additional superconducting contacts. The topological
transition in this system can be probed by measurements of the critical current and we show that the elongation of
the junction leads to a linear decrease of the transition critical magnetic field beneficial for experimental studies.

DOI: 10.1103/PhysRevB.111.085416

I. INTRODUCTION

Planar superconductor-normal-superconductor (SNS)
junctions have emerged as promising platforms for studying
topological superconductivity as they combine necessary spin
interactions such as Rashba spin-orbit coupling, a strong
Zeeman interaction [provided by the semiconducting normal
part typically realized in InAs, InSbAs [1–8] two-dimensional
electron gases (2DEG)] accompanied by the extended
tunability of the system band structure through the variation
of the superconducting phase difference φ between the two
superconducting contacts [9,10]. Typically, in hybrid SNS
junctions, a superconducting gap with a value similar to that
of the parent superconductor is opened by proximitizing
2DEG by a conventional superconductor such as Al [11].

Experiments aimed at the realization of topological su-
perconductivity look for zero-energy Majorana bound states
(MBS) that appear at junction edges in the topological
phase [10]. Typically, tunneling spectroscopy is used to ex-
plore the presence of zero-bias conductance peaks [3,5], their
correlation at the two edges of the system, or a nonlocal signal
characterizing the closing and reopening of the gap [12,13].
The system can be tuned in or out from the topological regime
mainly by two experimentally accessible knobs: the strength
of the Zeeman interaction, which is controlled by the in-plane
magnetic field magnitude and by the superconducting phase
difference. The latter is induced by embedding the junction in
a large superconducting loop, which is threaded by a magnetic
flux [5,8]. This method inconveniently suffers from nonzero
loop inductance, which translates into phase jumps [13,14]

*Contact author: kuiri@agh.edu.pl
†Contact author: pawel.wojcik@fis.agh.edu.pl
‡Contact author: mpnowak@agh.edu.pl

that prevent accessing of the φ = π region, where the MBS
form. This in consequence results in the need for MBS to be
present in a large phase range, which in turn requires large
in-plane magnetic fields. This denies the original feature of the
topological SNS junctions, which is the possibility of achiev-
ing the topological phase at small magnetic fields [9]. The
strong Zeeman interaction in hybrid SNS systems leads to the
appearance of an abundance of trivial in-gap states [6,15], re-
duces the induced gap, and the required considerable magnetic
field closes the superconducting gap of parent low-critical-
field superconductors, such as Al.

In this paper, we show that the topological regime in the
SNS junction can be greatly extended by elongating the junc-
tion. However, this comes with a caveat: the formation of
transverse modes located in the normal part of the junction,
which quickly close the induced gap and destroy the MBS. We
propose a way to overcome this problem by further proximiti-
zation of the normal region by two superconducting contacts.
This kind of configuration has been considered in the context
of multiterminal Josephson junctions [16–23] that have been
studied in terms of quasiparticle quartets [24–26], Cooper pair
splitters [27], and superconducting diode effect [28–30]. We
show that the topological phase span in the superconducting
phase space is linearly dependent on the junction length and
that the topological transition can be probed via critical cur-
rent measurement [9,14,31–33], which also benefits from the
enhancement of the topological regime with a linear decrease
of the critical magnetic field with junction elongation.

II. PROOF OF CONCEPT

For a perfectly transparent junction the two spin
Andreev bound states (ABS) components, dependent on
the superconducting gap difference φ, can be described
by formula Eσ (φ) = ±�| cos[(φ/2 + ϕσ )]|, where

2469-9950/2025/111(8)/085416(8) 085416-1 ©2025 American Physical Society
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FIG. 1. Schematic energy-phase relation of an SNS junction un-
der the Zeeman effect. The blue, red, and green curves show ABS
energies for the same magnetic field strength (B = 0.5 T) but with an
increase in the junction length. The topological regime opens around
φ = π with MBS appearing at zero energy (denoted with light lines)
and its phase span increases as the junction is elongated.

ϕσ = σEzL j/h̄vF , Ez = gμBB/2 is the Zeeman energy,
σ = ±1 corresponds to positive and negative spin
components and vF = √

2μ/m∗ is the Fermi velocity [34–36].
In the calculation of the phase shift we omit the effect of
the spin-orbit coupling to the Fermi velocity [36] as it is
small compared to the chemical potential term and has
a negligible impact on the obtained results. Here we use
μ = 5 meV, m∗ = 0.014me, � = 0.2 meV, and g = 50
as typical parameters for the InSb SNS junctions [8]. As
follows from the formula, in the absence of the Zeeman
interaction, the ABS energy spectrum is twofold degenerate.
The Zeeman interaction splits the degeneracy and moves apart
in phase two branches of ABS states (see the blue curves
in Fig. 1). Between the two branches, around φ = π , where
the fermion parity is odd, the topological regime emerges,
and two MBS are formed at the edges of the junction. Their
zero-energy levels are schematically indicated by faint lines in
Fig. 1.

Crucially, we see that the phase shift of the ABS is propor-
tional to the length of the junction Lj—the distance between
the superconducting electrodes. In fact, in Fig. 1 we see that
the region in which MBS are present is greatly increased when
the length of the junction is extended. We can see that for
Lj = 400 nm, MBS appear in almost the entire phase region,
while for Lj = 100 nm they are present only in the small
region around φ = π , which can prevent it from being ex-
perimentally reached in flux-induced phase-biased Josephson
junctions [13].

The size of the odd-parity phase region, which is denoted
by the faint lines at zero energy in Fig. 1, �φ = |φ+ − φ−|
is determined by the positive and negative roots of Eσ = 0
given by φ± = ±χBLj + π (1 + 2n), where n ∈ Z, resulting
in �φ = |2χBLj | with χ = gμB/h̄vF . In Fig. 2 we show the
linear increase in the topological phase span with increasing
junction length with the tilt determined by the magnetic field
value. It should be noted that the increase of the length of
the junction at a given magnetic field can lead to a situation
where the topological phase covers the full 2π phase region

FIG. 2. The phase span of the topological regime versus the
length of the junction for three values of the magnetic field.

with MBS appearing even at φ = 0 in accordance with the
phase diagram shown in Ref. [9].

In the following sections, we discuss the theoretical frame-
work, numerical simulations, and results that support the
proposed idea.

III. RESULTS

A. Induced gap—Green’s function model

First, we study the dispersion relation of an SNS junction
to understand the effect of the elongation of the junction
on the induced gap. We consider a finite system along
the superconductor-normal-superconductor direction (x) and
translation-invariant along the perpendicular direction with a
well-defined momentum ky. The SNS junction consists of two
S segments corresponding to a proximitized semiconductor
flanking a normal (N) semiconducting region [37]. The system
is described by the Hamiltonian,

H0 =
(

h̄2k2
x

2m∗ + h̄2k2
y

2m∗
‖

− μ

)
σ0 ⊗ τz + 1

2
gμBByσy ⊗ τ0

+ α(x)(σxky − σykx ) ⊗ τz (1)

written in Nambu basis 
T = (ψe↑, ψh↓, ψe↓,−ψh↑) that rep-
resents the electron (e) or hole (h) components with spin up
(↑) or down (↓). kx = −ι∂/∂x, ky is a good quantum number,
σi and τi with i = x, y, z are the Pauli matrices acting on
spin and electron-hole degree of freedom, respectively. The
magnetic field and spin-orbit coupling are included only in
the normal part of the junction.

The excitations of the system are obtained from the system
Green’s function [38–40]

G−1(w) = w − H0 −
∑

(w), (2)

where

∑
(w) = −γ

[
ωσ0 ⊗ σ0 + �(x)τ+ + �∗(x)τ−√

�(x)2 − ω2

]
, (3)

is a self-energy resulting from the uniform coupling of the
system to the superconductor [38,39] with the pairing term
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FIG. 3. Density of states of a junction invariant along the NS
interface as a function of transverse momentum ky for the junction
length (a) Lj = 100 nm and (b) Lj = 500 nm for φ = 0 and B = 0.

given by

�(x) =

⎧⎪⎨
⎪⎩

�0 if x < −Lj/2

0 if |x| � Lj/2

�0eiφ if x > Lj/2

, (4)

which corresponds to a 2DEG proximitized by two supercon-
ducting segments placed on top of the heterostructure [1–7].
Equation (3) is applicable to energies within the supercon-
ducting gap, |ω| < �0. The density of states is calculated
based on the formula ρ(ω) = − 1

π
Im[G(w)] [41], where we

adopt the parameters that correspond to the InSb semi-
conductor and the Al superconductor with m∗ = 0.014me,
μ = 5 meV, �0 = 0.2 meV, α = 50 meV nm and γ =
0.7 meV that controls the coupling between the superconduc-
tor and the parent semiconductor.

We discretize the Hamiltonian on a square lattice with a
lattice spacing of a = 10 nm and replace superconducting
(proximitized) contacts with finite segments with lengths that
exceed the coherence length (estimated to be ξ 	 1 µm), with
LSC = 2 µm. Since in our calculation we use a uniform chem-
ical potential, for a proper description of Andreev scattering at
the NS interface [42], we introduce an anisotropic mass in the
proximitized contacts with the effective mass in the direction
parallel to the interface m∗

‖ = 1000m∗ [43]. The results were
obtained in part with the use of the KWANT package [44] and
the numerical code behind the calculations is available in an
online repository [45].

In Fig. 3 we show the calculated densities of states versus
ω and ky that visualize the junction spectrum for Lj = 100 nm
(a) and Lj = 500 nm (b) at zero magnetic field and φ = 0.
We observe the appearance of an induced gap with mag-
nitude close to 200 µeV and an abundance of quasiparticle
bands outside the gap that originate from the wide supercon-
ductors. In contrast to the Lj = 100 nm results [Fig. 3(a)],
where the gap is opened in the whole Brillouin zone, for
Lj = 500 nm [Fig. 3(b)] there are a great number of states
with large momenta ky localized within the induced gap. As
we shall see, those states that appear upon elongation of the
junction constitute an obstacle in enhancing the topological
gap by elongation of the junction in the simple two-terminal
SNS geometry.

B. Integrated superconductivity

For further analysis of the in-gap states and to numerically
approach finite junctions with realistic sizes, determined by
the junction length Lj and width Wj (the size of the junction
along the superconducting contacts), in the next step we move
on to a less numerically demanding model, where the induced
superconductivity is integrated into the regions surrounding
the normal part of the junction [12,13].

The system Hamiltonian becomes

H =
(

h̄2k2
x

2m∗ + h̄2k2
y

2m∗ − μ

)
σ0 ⊗ τz + 1

2
g(x)μBBσy ⊗ τ0

+ α(x)(σxky − σykx ) ⊗ τz + �(x)τ+ + �∗(x)τ− (5)

with τ± = (τx ± ιτy)/2 and τx = σ0 ⊗ σx, τy = σ0 ⊗ σy.
The Hamiltonian is discretized on a square mesh with

lattice constant a = 10 nm. All the system parameters remain
the same as in the former section.

First, we consider a translational invariant system as
in the section above. In Fig. 4 we show two disper-
sion relations for a system with Lj = 100 nm (a) and
Lj = 500 nm (b). As previously, we observe appearance of
in-gap states for the elongated junction, which justifies the ap-
plication of the integrated superconductivity approximation.
In Fig. 4 the colors denote the weight of the wave function
localized in the normal region of the junction calculated as
WN = ∫ L j/2

−L j/2 |
(x, ky)|2dx. For Lj = 100 nm, we observe a
pronounced superconducting gap open for all ky values. The
bands with the energies outside the induced gap correspond to
the quasiparticle states residing mostly in the superconducting
leads with small WN values denoted by a dark blue color.
The situation is strikingly different in the elongated junction
whose spectrum we plot in Fig. 4(b). Here, the gap closes for
larger ky values with modes that reside mainly in the normal
part of the junction with pronounced WN values.

The presence of these high ky in-gap states has immediate
consequences for the ABS structure of the finite-size SNS
which we show in Fig. 5. Here, the junction length Lj is
100 nm (a) and 500 nm (b) with the width of the systems
Wj = 2000 nm. In Fig. 5(a), we see that the spectrum con-
sists of two spin-split branches of ABS and, between them,
a small region with zero-energy states corresponding to MBS
in accordance with the proof-of-concept model of Fig. 1. The
situation for the elongated junction depicted in Fig. 5(b) is
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FIG. 4. Dispersion relation for translational-invariant SNS junc-
tion for (a) Lj = 100 nm and the (b) Lj = 500 nm. The colors denote
WN , the weight of the wave function localized in the normal region.

starkly different. We again observe two spin-split branches,
this time with much larger splitting due to the amplification of
the Zeeman effect discussed earlier. However, in the spectrum,
there is an abundance of in-gap states whose energies are
nearly phase independent. This is in line with the results of
Fig. 4(b) where we saw that the in-gap modes are localized
mostly in the normal region and therefore they are weakly
affected by change of the phase difference in the nearby su-
perconducting leads. Crucially, those states, mostly localized
in the normal regime, couple the two junction edges, making
it impossible to form the MBS, which is accompanied by a
lack of zero-energy states and a lack of visible induced gap in
the topological phase.

C. Proximitizing the in-gap modes

Recently, it has been proposed that a zigzag configuration
could help mitigate the adverse effects caused by the in-gap
modes [46]. Here we propose a different strategy which is
simpler in terms of the required precision in shaping the su-
perconducting contacts and also avoids the limit of the zigzag
junction length set by reopening the straight paths when the
separation between the superconductors increases—important
in the context of the enhancement of the topological regime.

Since the in-gap modes have large momenta parallel to
the superconducting interfaces and are localized mainly in

FIG. 5. ABS energies versus the superconducting phase differ-
ence for a finite-size SNS junction with the length (a) Lj = 100 nm
and (b) Lj = 500 nm. The result are obtained for B = 0.2 T and the
width of the junction Wj = 2000 nm.

the normal region, they correspond to quasiparticles traveling
between the normal edges of the junction. Hence, we place
two additional superconducting contacts at the top and bot-
tom edges of the junction [see Fig. 6(b)] that force Andreev
reflections of the vertically propagating quasiparticles, which
in turn leads to the reopening of the induced gap. We assume
the same superconducting gap value in the top and bottom
contacts as in the left and right leads (with the phase φ = 0),
and the length of 2000 nm that exceeds the value of the
superconducting coherence length.

Induced proximitization of the in-gap modes has direct
consequences for the ABS spectrum of the junction. In
Fig. 6(a) we plot the eigenspectrum of the junction and ob-
serve the removal of phase-independent ABS states appearing
with energies |E | < 0.1 meV in Fig. 5(b). Most importantly,
the lack of localized states spreading in the bulk of the normal
region allows now for creation of zero-energy modes which
correspond to spatially delocalized MBS whose probability
density we plot with blue color in Fig. 6(b). It is worth men-
tioning that the superconducting phase difference, which is
implied by setting φ 
= 0 on the right terminal, also breaks
the inversion symmetry with respect to x = 0 and causes a
nonsymmetric localization of the MBS at the corners of the
junction.
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FIG. 6. (a) ABS spectrum for an elongated junction with the
length Lj = 500 nm for B = 0.2 T with extra two superconducting
contacts at the bottom and the top of the junction. (b) Scheme of
the extended junction with both left and right and top and bottom
superconducting contacts (orange). The blue color map represents
the probability density for the MBS denoted with the red dot in (a).

The elongation of the junction eventually leads to a sit-
uation in which the junction length becomes comparable to
the superconducting coherence length. In this situation, the
ABS structure undergoes a transition, adopting a linear con-
figuration [47]. In Fig. 7 we show the spectrum of a junction
of length Lj = 1000 nm 	 ξ . We observe a pronounced
topological gap open in the system, and the presence of
nearly-degenerate zero energy state almost in the entire phase
range despite the small magnetic field value of B = 0.2 T,
compatible with the prediction of Fig. 1.

D. Possible measurement of topological transition

The presence of the top and bottom superconducting elec-
trodes prohibits performing local [1,3] or nonlocal [12,13]
tunneling spectroscopy to probe the ABS structure and the
closing and reopening of the gap. However, the topolog-
ical transition in the ground state of the junction can be
investigated by tracing the critical current of the junction
Ic = maxφI (φ) (with I (φ) = − e

h̄

∑
Ei>0

∂Ei
∂φ

) in an external
magnetic field [9]. Ei are either obtained as eigenvalues of

FIG. 7. ABS spectrum for a junction of length Lj = 1000 nm and
B = 0.2 T.

the Hamiltonian Eq. (5) or for the case of analytical ap-
proach are calculated by taking

∑
Ei(φ) = E+(φ) + E−(φ)

from the model of Sec. II with the resulting current scaled to
be comparable to the one obtained numerically. The numerical
results are obtained for the junction with the top and bottom
superconducting contacts attached.

In Fig. 8 we show with red solid lines the critical cur-
rent and with blue solid lines the ground-state phase φGS

which results in the minimization of the SNS junction energy
calculated as the sum over energies of ABS states Ej (φ) =∑

Ei<0 Ei(φ). We see that as the critical current reaches the
minimum, the ground state of the junction switches from the
trivial regime (with a phase difference close to 0) to the topo-
logical regime (with the phase difference π ). Crucially, the
switching magnetic field is greatly reduced in the elongated
junction, as can be seen comparing the panel (a) obtained for
Lj = 100 nm with Fig. 8(b) calculated for Lj = 500 nm. In the
same figure with dashed lines we show the ground-state phase
and the critical current obtained from the analytical model for
ABS spectrum of Fig. 1.

Moreover, from the analytical model for the Zeeman-
split ABS we can estimate the magnetic field at which the
junction switches its ground-state phase, which occurs at∑

σ �| cos(ϕσ )| = ∑
σ �| cos(π/2 + ϕσ )| as

Bc = n
hv f

4LjgμB
, (6)

with n ∈ Z as previously considered for Zeeman-driven
Fulde-Ferrell-Larkin-Ovchinnikov-like mechanism that
through a spatial variation of the superconducting pairing
leads to a minimum in the critical current [14,48]. We see
that the linear scaling of the span of the topological region is
translated into a linear decrease of the critical field necessary
to achieve the topological phase when probing the junction
by the critical field.

IV. DISCUSSION

The typical length of the junctions studied experimentally
so far was around 100 nm [1–6,8], while the measured mean
free path was reported to be 600 nm for InAs systems [2–5],
suggesting that the junction length could be increased
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FIG. 8. Superconducting phase difference leading to the ground-
state of the junction (blue) and critical current of the junction (red
curves), showing minima at phase transitions. The results are ob-
tained for junctions with length (a) Lj = 100 nm and (b) Lj = 500
nm. Solid lines represent numerical calculations, while dashed lines
correspond to analytical results.

several times without reducing its transparency significantly
and allowing for a several-times increase in the span of the
topological region and multiple reductions of the critical mag-
netic field for the topological transition probed by the critical
current. Another possible limit in the achievable junction
length is the phase coherence length. However, it is typically
much larger than the mean free path as found experimentally
for these kinds of heterostructures [7,49,50], so whenever the
junction is clean enough so that the mean free path is longer
than the length of the junction, the phase coherence should not
be a constraint.

It is also worth comparing the junction length with another
length scale present in those systems, namely the spin-orbit
coupling length lSO = h̄2/m∗α, which for the Rashba-type

interaction, to some extent can be controlled by gating the
system. For considered here α = 50 meV nm lSO = 109 nm
and clearly, the junction length exceeds lSO, yet the topologi-
cal phase is fully developed. We have verified that increasing
the spin-orbit coupling strength up to 100 meV nm results in a
minimal variation of the energy structure, suggesting that the
spin-orbit length does not impose a constraint on Lj . It specif-
ically does not affect the topological transition points. This is
also expected in analogy to a single superconductor system
(such as a nanowire proximitized by a superconducting shell)
where the topological transition criterion is E2

z > �2 + μ2

and does not include the spin-orbit coupling term. It is rather
expected that the strength of the spin-orbit interaction affects
the spatial extent of the Majorana bound state such that for the
systems with stronger spin-orbit coupling the Majorana bound
state coherence length decreases [51], therefore systems with
stronger spin-orbit interactions would be desirable in terms
of realization of topological Josephson junctions with limited
width (the span in y direction).

V. SUMMARY AND CONCLUSIONS

We studied topological superconductivity in elongated pla-
nar Josephson junctions. We showed that the increase of
the separation between the superconducting contacts causes
the amplification of the Zeeman effect affecting the Andreev
bound-state spectrum. As the junction becomes longer, at a
constant magnetic field, the phase separation between the
Andreev bound states increases, extending the phase-span of
the topological region. However, as the length increases the
junction also becomes populated with trivial in-gap states
which prohibit creation of Majorana bound states. We show
that those in-gap states can be removed from the spectrum
by further proximitizing the junction with two additional su-
perconducting contacts, which restores the topological gap
and edge-mode Majorana states. Our numerical study comple-
mented with an analytical model shows that the amplification
of the phase-span of the topological regime linearly depends
on the junction length. We show that the topological transition
can be probed by critical current measurement which also
benefits from linear reduction of the critical field, at which
the transition occurs as the length of the junction is increased.
Furthermore, the presence of Majorana edge modes can be
further verified in this type of system by local probing of
the density of states [52] or the spin structure of the edge
modes [53].
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Chapter 8

Summary

The main goal of this thesis is to study ABSs and MBSs in JJs, since JJs offer a robust
architecture for realizing MZMs with potential applications in quantum computing. To this end,
we employed numerical and analytical models and compared them with experiments to reveal
how superconducting phase difference, magnetic field, SOC, disorder, and device geometry
affect confined states in JJs.

We demonstrated that in planar JJs, the magnetic vector potential induces opposite supercon-
ducting phase differences at the two ends of the junction. As a result, tunneling spectroscopy
probes detect only localized ABSs in their vicinity, giving rise to abrupt phase jumps, spectral
skewness, and opposite shifts between the two ends. Our model and numerical simulations
reproduced the experimental findings, highlighting that the observed behavior originates from
ABSs localized at the junction ends near the barriers.

We then studied nonlocal conductance as a probe of the topological phase. We showed that
a sign change in the zero-energy nonlocal conductance provides a signature of the topological
transition, associated with a fermion parity change. At the same time, we revealed that finite
loop inductance in phase-biased devices causes phase slips, preventing access to the crucial
phase interval near φ = π where MZMs appear. These findings clarify experimental limitations
and point toward design strategies, such as reducing inductance, to stabilize the topological
regime.

To further enlarge the accessible topological region, we proposed junction elongation. Our
simulations demonstrated that increasing the junction length linearly expands the phase interval
supporting MZMs and lowers the magnetic field required for the topological transition. However,
elongation of the junction introduces unwanted transverse modes that close the induced gap
and destroy the MBSs. We showed that adding extra superconducting contacts suppresses these
modes, restoring the topological gap. The effects of topological region enlargement were also
shown to appear in critical-current measurements, making them experimentally accessible.

Overall, this thesis established how superconducting phase control, device geometry, SOC,
and magnetic fields affect ABSs, MBSs, and nonlocal transport in JJs. By combining analytical



and numerical models, simulations, and direct comparison with experiments, the work advances
the understanding of topological superconductivity, fills theoretical gaps, and provides practical
implications for experimental realizations of MBSs in hybrid JJs.
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