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Pigoniowi, za dyskusje, pomoc oraz atmosferę,
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Abstract

The subject of this doctoral dissertation is the dynamical analysis of open quantum system in the presence of

random potential perturbations using the phase-space formalism. Using the Stratonovich-Weyl quantisation

scheme for a one-dimensional system interacting with an N -dimensional environment, the equation of mo-

tion for the Wigner function was derived from a microscopic perspective. Due to the adopted assumptions,

the results obtained refer to weakly interacting memoryless systems. The resulting equation of motion, af-

ter assuming a linear expression for the Lindblad symbol L(x, p) = ax + bp, a, b ∈ C, was expressed in

operator form, and subsequently, the second-order split-operator method was applied. The time evolution

generator was expressed as the sum of four operators, for which a commutation table was prepared. As a

result of the calculations, it was observed that the part of the generator not containing the potential term

can be separated exactly, thereby reducing the number of applied Fourier transforms. Next, the equation of

motion for the approximated averaged Wigner function of the statistical ensemble was derived, yielding an

equation with a diffusion coefficient that is linearly dependent on time, the perturbation strength, and the

second derivative of the potential. As model systems, a single Gaussian barrier and a chain of such barriers

were considered, and each of these systems was then perturbed by a random vector whose components were

independent random variables. For such prepared potentials, the equation of motion for the Wigner function

was solved numerically using the split-operator method, with a common Gaussian initial condition. In the

C++ implementation of the algorithm, the Fast Fourier Transform (FFTW3) was employed. The dynamical

analysis of the studied cases was based on the following measures: statistical - averages, standard devia-

tions, and covariance; phase-space - nonclassicality parameter and Wigner-Shannon entropy; state - purity

and Loschmidt echo; distance - the L2(R2)-normalised distance between the solution for the unperturbed

potential and the approximate solution. These measures were used to study the influence of the environment

on the dynamics of the open system. Additionally, the existence of stationary states for the studied cases

was analysed.
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Streszczenie

Tematem rozprawy doktorskiej jest analiza dynamiczna otwartych układów kwantowych w obecności

losowego zaburzenia potencjału przy użyciu formalizmu przestrzenno-fazowego. Wykorzystując schemat

kwantyzacji Stratonovicha-Weyla dla jednowymiarowego układu oddziaływującego z N -wymiarowym

otoczeniem wyprowadzono, w ujęciu mikroskopowym, równanie ruchu dla funkcji Wignera. Ze względu na

przyjęte założenia, uzyskane wyniki odnoszą się do słabo oddziaływujących układów bez pamięci. Otrzy-

mane równanie ruchu, po przyjęciu liniowego wyrażenia na symbol Lindblada L(x, p) = ax+ bp, a, b ∈ C,

zapisano w języku operatorowym, aby następnie przystąpiono do zastosowania metody split-operator

drugiego rzędu. Generator ewolucji czasowej został wyrażony przez sumę 4 operatorów, dla których przy-

gotowano tabelę komutacji. W wyniku przeprowadzonych obliczeń zauważono, że część generatora nieza-

wierająca części potencjalnej może zostać odseparowana w sposób dokładny, obniżając tym samym liczbę

zastosowanych transformacji Fouriera. Następnie wyprowadzono równanie ruchu dla przybliżonej uśred-

nionej funkcji Wignera zespołu statystycznego, otrzymując tym samym równanie ze współczynnikiem dy-

fuzji zależnym: liniowo od czasu, rzędu zaburzenia oraz drugiej pochodnej potencjału. Za modelowe układy

przyjęto pojedynczą barierę gaussowską oraz łańcuch takich barier, a następnie każdy z tych układów

zaburzono o wektor losowy, którego współrzędne były niezależnymi zmiennymi losowymi. Dla tak przygo-

towanych potencjałów rozwiązano numerycznie, metodą split-operator, równanie ruchu dla funkcji Wign-

era, przy wspólnym warunku początkowym w postaci funkcji Gaussa. Przy implementacji algorytmu w

języku C++ zastosowano Szybką Transformatę Fouriera (FFTW3). Analizę dynamiczną badanych przy-

padków oparto o miary: statystyczne - średnie oraz odchylenia standardowe i kowariancję; przestrzenno-

fazowe - parametr nieklasyczności oraz entropię Wignera-Shannona; stanu - czystość oraz echo Loschmidta;

odległościowe - znormalizowana do jedności odległość w przestrzeni L2(R2) między rozwiązaniem potenc-

jału niezaburzonego oraz między rozwiązaniem przybliżonym. Przy ich pomocy zbadano wpływ otoczenia

na dynamikę układu otwartego. Dodatkowo, podjęto się analizy istnienia stanu stacjonarnego dla badanych

przypadków.
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Introduction

Throughout history, we have been taking part in the constant, unending race between experimental methods

and theoretical models in physics, where at different periods one took over the other to pave the way for

scientific research. Focusing on events after 1900, when Max Planck revolutionised physics by solving the

problem of black-body radiation, we have seen massive growth in the research and scientific community,

a renaissance of physics, where new ideas were born on the spot while others died nearly as quickly. A

great overview by Styer et. al. [164], shows the diverse formulations of the quanta theory since Planck’s

discovery. We shall focus on one particular formulation of quantum theory, namely, the phase-space ap-

proach. It is built on the quasi-probability distribution function known as the Wigner function, in which the

position x and momentum p variables are treated on equal footing. This formulation lays the groundwork

for a similarity to statistical mechanics, however, the algebra between x and p is non-commutative [43] in

this formulation. Moreover, the emphasis shifts from the probability amplitude to a new statistically proper

measure, the Wigner distribution function (WDF), defined on the phase space. Its equation of motion is

known as the Moyal equation, which, when written in differential form, can be treated as a quantum analogy

to the classical Liouville equation but with additional terms resulting from quantumness of the system [29].

Those are represented by the power series of the Planck constant multiplied by the higher-order deriva-

tives of the potential, and the momentum derivative of the WDF. The beginnings of this formulation can

be traced to the work of H. Weyl [181], J. von Neumann [176], E. Wigner [182], and H. Groenewold [76].

Their results were synthesised by J. Moyal [126], who, from a statistical perspective, demonstrated the

similarity between this new framework and fundamental quantum theory. In particular, Moyal calculated

expectation values of observables, connected them to the Heisenberg uncertainty relation, and revealed that

the underlying structure is generated equivalent to the deformed Poisson bracket, which in turn led to the

evolution equation for the WDF. However, it should be noted that the agenda behind von Neumann’s work

was not concerned with the phase-space approach but rather with the Stone-von Neumann theorem. Never-

theless, the von Neumann’s results were closely related to and, in fact, identical with those later obtained

by Moyal [85]. In the end, the phase-space approach was elevated to the status of a statistical theory, equiv-

alent to Schrödinger or path-integral formulation of quantum mechanics. Controversial for some and even

unsettling for others [86], it nevertheless offers the best of two worlds, classical and quantum, and continues

to direct research toward semiclassical analysis [27], non-commutative geometry [36], pseudodifferential

operators theory [121], quantum trajectories [18], and Bohmian mechanics [84].

With current technological advances, we can experimentally verify posed theories or build new ones

that explain the results. This progress has led to device dimensions so small that quantum effects can-
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not be ignored, nor can devices be treated as isolated systems. For example, environmental effects

in nanoscale systems can cause decoherence, which influences the dynamical properties of these sys-

tems [191, 190, 67, 189, 192]. The moral of this observation is that quantum effects, such as tunnelling

or the superposition of states, can no longer be considered solely in terms of isolated or closed systems,

they must be treated as open systems interacting with their environment. The first attempts to describe such

systems were made by Wangsness and Bloch [178, 20] and later extended by Redfield [137]. In their work,

Wangsness and Bloch derived a general Boltzmann equation for the density matrix. Redfield, inspired by

their results, proposed a systematic procedure for deriving a suitable master equation describing a spin sys-

tem coupled to a thermal bath. The equation introduced is known today as the Redfield equation, and remains

the standard starting point for the microscopic derivation of the Gorini-Kossakowski-Sudarshan-Lindblad

(GKSL) equation. The GKSL equation, independently discovered by Lindblad and Gorini, Kossakowski,

and Sudarshan, represented a breakthrough in the theory of open quantum systems [112, 72]. It was derived

on the basis of rigorous mathematical assumptions about the density operator of an open quantum system.

The key result of these works was the general characterisation of the generator of open-system dynamics,

which guarantees complete positivity, trace preservation, and hermiticity, ensuring that the time evolution

maps quantum states to valid quantum states. Today, the GKSL equation is regarded as the natural gener-

alisation of the von Neumann equation, extending the description of time evolution from isolated or closed

quantum systems to the open ones. Naturally, the GKSL equation is not the equation of everything for open

systems as it has important limitations. In particular, it does not include memory effects in the system. Sub-

sequent research has therefore developed alternative approaches, such as the Nakajima-Zwanzig equation,

which incorporates memory kernel explicitly [127, 193], and the time-convolutionless (TCL) approach intro-

duced by Shibata [156, 155], which instead encodes the memory effects of the system in a time-dependent

operator rather than an integration kernel. In addition, stochastic methods have also been developed and

play an important role in the theory of open quantum systems. For a broader overview of these and other

approaches, see Ref. [25].

The thesis consists of four chapters followed by a summary, where we also outline perspectives for

further research. Its structure is as follows. In Chapter 1, we introduce the standard formalism of quantum

mechanics. We begin with the notion of the abstract state vector and extend it to the density operator, moti-

vated by the distinction between pure and mixed states. We discuss its key properties, the evolution equation,

and the solution for a given initial condition in the case of isolated and closed systems. The chapter pro-

ceeds with an introduction to the tensor product Hilbert spaces, preparing the ground for the description

of open-system dynamics via the GKSL equation. Finally, we briefly present the Nakajima-Zwanzig equa-

tion, which extends the GKSL framework to non-Markovian cases. In Chapter 2, we present the central tool

of this thesis: the phase-space formulation of quantum mechanics. We begin with a comparison between

classical and quantum phase spaces and the probability functions defined on them. Next, we provide the

necessary analytical background, including the definitions of the Weyl transform, the Wigner function, and

the Moyal product. We further introduce the Stratonovich-Weyl correspondence and apply it to the case of a

flat total phase space describing two coupled systems. In Chapter 3, we provide the theoretical background

for the split-operator method. We start from evolutionary-type equations and their solutions within operator

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



CONTENTS 3

theory. Then, we recall three basic schemes for approximating the exponential of a sum of operators, and

extend the method to explicitly time-dependent operators. In Chapter 4, we derive the equation of motion

for the Wigner distribution function (WDF) of an open quantum system. Later, we consider linear quantum

jump operators and formulate a split-operator algorithm for numerical implementation. The commutation

relations between the relevant operators are analysed, leading to explicit second- and fourth-order schemes,

including the case of a time-dependent potential V (x, t). To complement these results, we also discuss iso-

lated and open systems in the light of previously published work. Subsequently, we consider a randomly

perturbed potential V (x;λ), parameterised by a random vector λ, and derive the approximate equation of

motion for the ensemble-averaged WDF. Finally, we analyse the system using the split-operator method and

compute its dynamical parameters.

The main motivation behind this work was to derive the GKSL equation in terms of phase-space quanti-

sation and implement it numerically. Additionally, in the spirit of the research conducted during the studies,

we aimed to analyse the measures used to characterise the quasi-probability distribution in the case of an

open quantum system. The derivation used the microscopic approach to the dynamics of the open system,

as described in [24], while the numerical implementation was based on the split operator algorithm for the

linear type of quantum jump operators. Due to the differential nature of the equation of motion, the Fourier

transform was used to convert partial differential operators into matrix multiplication. The author’s contri-

butions presented in this dissertation are directly based on the achievement of specific objectives, including

the following:

1. Microscopic derivation of an equation of motion for the Wigner function of an open system, based

entirely on the phase-space approach. These calculations were based on the derivation performed for

the density operator and were presented in the Chapter 4, Section 4.1.

2. Derivation of the equation of motion for the Wigner function of an open system with a linear quantum

jump operator, along with a numerical algorithm for calculating its evolution. This result is present in

Chapter 4, Section 4.2.

3. Calculation of an exact splitting of the exponential operator into the kinetic and dissipative parts

of the Wigner-Gorini-Kossakowski-Sudarshan-Lindblad equation with at most quadratic dissipators

presented in Chapter 4, Section 4.2.

4. Implementation of the algorithm in C++. The initial results obtained with its help are presented in

works [185, 186, 97], available in the Appendix F. The algorithm and some issues regarding its im-

plementation are presented in chapter 4, section 4.2, and also in the Appendices E and C.

5. Proposition of an approximate equation of motion for the ensemble-averaged Wigner distribution

function.

6. Analysis of single- and multi-barrier systems with random perturbations, including the study of phase-

space parameters and their comparison across the systems. These are presented in Chapter 4, Sec-

tions 4.5.2, 4.5.3, 4.5.4.
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1. D. Woźniak, M. Kalka, P. Pigoń, and B.J. Spisak. Phase-space analysis of spinning particle dynamics

in two-dimensional Weyl systems: Stratonovich–Weyl approach. New Journal of Physics [Accepted

Manuscript online 17 September 2025, (DOI 10.1088/1367-2630/ae081f)]
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Chapter 1

Beyond the wave function - quantum
mechanics of density matrix

1.1 Density matrix quantum mechanics

According to the fundamentals of quantum theory, every physical quantum system has an associated sep-

arable complex Hilbert space H(C) over the complex number field, with a dimension specified by its na-

ture [177, 54]. The normalised elements of H, called state vectors, represent possible states of the sys-

tem [74, 169]. This mathematical construct is a fundamental concept that allows for a proper, and most

importantly validated by experiment, description of quantum physics. The simplified description of quan-

tum theory can be narrowed to considerations of statistically certain states that can be described in terms

of a single state vector. Equivalently, these states contain maximal information about the system. Statistical

certainty implies that, whenever an experiment is conducted with the same setup and the state of the system

is measured, the outcome is well defined and certain [62].

φ

φ
φ

Figure 1.1: A representation of a pure system. The bag represents a single realisation of the system being,

with some probability, in a state |φ⟩. If such setups are repeated infinitely many times, and then each one is

measured independently, then for a pure quantum state with 100% certainty, the state of the system will be

|φ⟩.
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1. Beyond the wave function - quantum mechanics of density matrix 6

This property does not encompass cases where there is a mixture of different quantum states. To consider

such states in quantum mechanics, one should extend the idea of a pure state, meaning the state describ-

able by a state vector, to include a statistical mixture of states. These are mixed states, which means that

they cannot be described by such a vector [15] or, equivalently, by conducting multiple copies of the same

experiment, the resulting state after measurement is different, but statistically describable in terms of prob-

ability of occurrence. In this picture, a pure state is represented as a simple projection operator P̂ := |ψ⟩⟨ψ|
with the property P̂ 2 = P̂ [138]. To introduce a concept of mixed state, let us assume that a quantum state

consists of different quantum states |ψi⟩, each contributing with a weight wi > 0, which plays a role of

probability, such that
∑

iwi = 1. Then an object that contains all the information about the system is the

density operator given by [79]

ρ̂ =
∑
i

wi |ψi⟩⟨ψi| . (1.1)

According to this formula, the density operator can be regarded as a convex combination of projection

operators on a given state |ψi⟩ with associated projectors in the form P̂ψi
= |ψi⟩⟨ψi|. With this reasoning,

a pure quantum state is an element of the convex set that lies on its boundary. [9] This is equivalent to

describing the system as an ensemble of pure states, where wi are the probabilistic weights associated with

a given projection operator.

Ψ

Ψ

Ψ

w1=w2=w3 =1/3

1

2

3

Figure 1.2: An analogous to Fig. 1.1 representation of a mixed system with equiprobable states. Each of the

bags is equivalent to a single realisation of the system in a quantum state |ψ1⟩, |ψ2⟩, or |ψ3⟩. If such setups

are repeated infinitely many times and measured, then the probability of occurrence of the selected state can

be obtained.

The properties of a density operator are inherited from its contributing projectors. Thus, the density operator

is a self-adjoint operator ρ̂∗ = ρ̂, semi-positive defined: ρ̂ ≥ 0, with a trace equal to identity Tr ρ̂ = 1 [80].

To complete this natural extension of pure state quantum mechanics, we notice that the time dependence

of the density operator is inherited directly from the time dependence of state vectors whose evolution is

subjected to the Schrödinger equation of evolution. Let us recall that at any time, for isolated quantum

systems, a state vector |ψ(t)⟩ satisfies the evolution equation [177]

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (1.2)

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



1. Beyond the wave function - quantum mechanics of density matrix 7

where Ĥ is a Hamiltonian. Thus, for each time instance t ∈ R+, the state vector |ψ(t)⟩ belongs to the

considered Hilbert space and describes the state of the system. Furthermore, the deterministic evolution of

the state vector from initial state |ψ(0)⟩ = |ψ0⟩ is given by a strongly continuous one-parameter group [11]

Û(t) := e−
i
ℏ Ĥt, (1.3)

where the Hamiltonian Ĥ plays the role of generator of the dynamics. Let us now extend the concept of

time-dependence over the density operators. As previously stated, the properties of the density operator are

direct consequences of the characteristics of projection operators P̂ψi
. This allows for a natural extension

of the time evolution, namely ρ̂(t) =
∑

iwi |ψi(t)⟩⟨ψi(t)|, where for each t ∈ R+ the expression ρ̂(t) is

a valid density operator. As a result, the time evolution equation of the density operator, known as the von

Neumann equation, emerges
d

dt
ρ̂(t) = − i

ℏ

[
Ĥ, ρ̂(t)

]
, (1.4)

which is used to describe isolated quantum systems. At this point, let us clarify that for closed quantum

systems, where the Hamiltonian is explicitly time-dependent, ∂tĤ(t) ̸= 0, the time evolution operator Û(t)

has a similar but enhanced via the Dyson time-ordering operator for or, equivalently, is expressed through

the Dyson series [179], namely

Û(t) = T̂ e− i
ℏ
∫ t
0 Ĥ(s)ds, (1.5)

where the time-ordering operator T̂ is defined as [115]

T̂ [Â(t1)B̂(t2)] =

Â(t1)B̂(t2), t1 > t2

B̂(t2)Â(t1), t2 > t1.
(1.6)

For further counterparts, we focus on the statistical properties of observables, which can be deduced

from this formulation [128]. Assume that Â is a self-adjoint operator acting on a system’s Hilbert space

with spectral decomposition Â =
∑

k akP̂k. Then, the average of this operator, understood as the average

result over many ensembles, is given by the following formula

⟨A⟩ := Tr
[
ρ̂Â
]
, (1.7)

in counterpart to

⟨A⟩ :=
∑
n

|cn|2
〈
ψn

∣∣∣Âψn〉 =
∑
k,n

|cn|2|ak|2δnk =
∑
k

|ck|2|ak|2, (1.8)

and the state of the system, after the projective measurement of the eigenvalue aj , is given by the following

density operator

ρ̂→ ρ̂j =
P̂j ρ̂P̂j

Tr
[
ρ̂P̂j

] , (1.9)

in contrary to

|ψ⟩ →
∣∣ψ′〉 = P̂j |ψ⟩√

⟨ψ|ψ⟩
. (1.10)

Of course, we could consider a much more general measurement like positive operator valued measurement

(POVM), nevertheless the generalisation of the results from state vectors to density operators is natural.

D. Woźniak Dynamics of Quantum State: Phase-Space Approach
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Under the system’s time evolution or after measuring the system, a question might arise whether the state

still behaves as a mixture or was purified to a single projector operator. To determine the purity of the state,

a simple theorem can be used [136]:

Theorem 1.1. Let ρ̂ be the density operator of the quantum system. Then the following statements are

equivalent:

a) The state of the system is pure;

b) ρ̂2 = ρ̂;

c) Tr
[
ρ̂2
]
= 1.

Simultaneously, this property defines a parameter that can monitor the behaviour of the quantum system

under the time-evolution, notably the purity of the system, defined as the trace of the square of the density

operator. Most importantly, the purity of the system is preserved under the time evolution of the isolated or

closed quantum system, as it is given by

ρ̂(t) = Û(t)ρ̂(0)Û †(t), (1.11)

where Û(t) is the previously defined unitary evolution operator for an isolated quantum system. Then, by

the cyclicity property of the trace operation and the fact that Û(t)Û †(t) = 1̂, the purity is conserved. We can

restate the evolution formula for the density operator in terms of a superoperator Φ(t) which has a form [93]:

ρ̂(t) = Φ̂(t)ρ̂(0) := Û(t)ρ̂(0)Û †(t), t ≥ 0. (1.12)

This superoperator satisfies a composition law Φ̂(t)Φ̂(s) = Φ̂(t + s) for t, s ≥ 0, preserves positivity,

hermicity and trace of the density operators [105], constituting to a semigroup of operators. In the case of

isolated or closed quantum systems, using the properties of the operator Û(t), this semigroup {Φ̂(t), t ≥ 0}
can be extended to a group by introducing an inverse operator Φ̂−1(t) = Φ̂(−t). Such systems, where the

family of superoperators Φ̂(t) form a group, are called Hamiltonian systems [129].

1.2 Open quantum systems

The idea behind the construction of open quantum systems comes directly from the formulation of closed

systems. Through an open quantum system we shall understand a subsystem S of a total isolated system T ,

with a complementary system B, being the bath or the environment [122].
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Environment

Open system

Figure 1.3: The diagram of an open quantum system. An open system interaction picture involves the in-

teraction between the environment and the open system, which is based on either mass exchange (curved

arrow between two different circles) or energy exchange (wave arrows). This interaction should be included

in the form of an interaction Hamiltonian that acts upon the tensor product space of both systems’ spaces.

The total quantum system is treated as isolated; thus, its time evolution can be considered unitary. However,

the complexity of the total system resulting from the number of degrees of freedom greatly incapacitates

the precise analysis possibilities, as the degrees of freedom of the environment are usually significantly

greater than 1 or even infinite. To address this problem, a sequence of approximations must be performed

to simplify the dynamics. In general, common justification, when investigating open quantum systems, is

the termination of memory effects, i.e. asking if the historical states (past) of the system should influence

the present state (future). Still, the Markovianity property of the system cannot be directly translated from

classical to quantum theory, as it violates the Kolmogorov condition and is rather connected to the direction

of the flow of information, as stated in [23]. Let us start generally by considering a tensor product Hilbert

space of the total system

HT = HS ⊗HB (1.13)

whereHS represents the Hilbert space of the considered system andHB represents the Hilbert space of the

states of the environment. The density matrix associated with the state of the total system must then satisfy

the von Neumann equation. We shall assume that the system is isolated. This leads to the equation of motion

in the form
d

dt
ρ̂T (t) = −

i

ℏ

[
ĤT , ρ̂T (t)

]
, (1.14)

where further, we will hold the following assumption on the form of the Hamiltonian

ĤT = ĤS ⊗ 1̂ + 1̂⊗ ĤB + gĤI , (1.15)

with ĤS , ĤB governing the dynamics of the subsystems, and ĤI being the interaction term with coupling

constant g, and 1̂ being the identity operator in respective spaces. To extract the open system dynamics

from the total density matrix, a partial trace is required, that is trace operation taken over the environment,

incorporating information about its influence [24], namely

ρ̂S(t) = TrB ρ̂T (t). (1.16)

Importantly, there is no a priori assumption that ρ̂T (t) can be decomposed as a tensor product of two density

operators, as this would imply a lack of correlations between two systems. As by our assumption on the
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unitarity of the dynamics, the density operator of the total system evolves according to the formula

ρ̂T (t) = Û(t)ρ̂T (0)Û
†(t) (1.17)

consequently giving a recipe for calculating the density operator of an open quantum system as follows

ρ̂S(t) = TrB

[
Û(t)ρ̂T (0)Û

†(t)
]

(1.18)

that can be displayed on the simple diagram presented in Fig. 1.4

ρ̂T (0) ρ̂T (t) = Û(t)ρ̂T (0)Û
†(t)

ρ̂S(0) ρ̂S(t) = Φ̂(t)ρ̂S(0)

Û

Φ̂

TrB TrB

Figure 1.4: The diagram describing two approaches to evolution dynamics of open system’s density operator

ρ̂S . The top path describes the straightforward calculation of the total density matrix at time t, then projecting

it, by tracing over the environment. The bottom path is more complying but the question of the existence of

such transformation must be posed.

Similarly to the discussion presented for isolated quantum systems, we are interested in the form and general

properties of the map Φ̂(t) for all t ≥ 0, that transfers the initial state of the open system ,ρ̂S(0), to the

state at time instant t ≥ 0. We expect that they originate from the physical restrictions imposed on the

mathematical apparatus to maintain the interpretation. As previously stated, the density operators are self-

adjoint, positive, and trace-class operators and so the map Φ̂(t) must preserve all those features at all times

t ≥ 0. It turns out that, apart from the semigroup property, that is Φ̂(t)Φ̂(s) = Φ̂(t + s) for t, s ≥ 0, the

map Φ̂(t) must be completely positive [154]. Additionaly, the characteristics of the dynamics of the open

quantum system are expected to strongly depend on the type of interaction with the environment, which,

in some cases, introduces memory effects. To exclude complex physical effects that might introduce past

dependency of the system, we assume that the Markovianity property is preserved, and thus, by [45] we

expect the interaction to be in the weak-coupling regime between the open system and the environment. All

these assumptions lead to the Gorini-Kossakowski-Saudarshan-Lindblad (GKSL or Lindblad) equation of

evolution for an open quantum system [72, 112]. The greatest achievement of these works is that the form of

the generator of the dynamical semigroup for the weakly coupled open quantum system derives directly from
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imposed mathematical restrictions. This, however, would not be possible if not for a celebrated Choi-Kraus

theorem on the decomposition of completely positive dynamical maps that preserve the trace of density

operator [107, 35], namely

Φ̂ρ̂ =
∑
i

V̂iρ̂V̂
†
i , (1.19)

where V̂i ∈ B(H) are the bounded operators [cf. Appendix A], called Kraus operators, acting in the Hilbert

spaceH and satisfying the completeness relation
∑

i V̂iV̂
†
i = 1̂1. In the context of quantum computation or

information theory, the superoperator Φ̂ is called a quantum channel [128]. Then, by scrupulous reasoning,

the equation of motion for the density operator of an open quantum system is given in the form [25]

d

dt
ρ̂S(t) =

1

i

[
ĤS , ρ̂S(t)

]
+

1

2

∑
k

γk

([
L̂kρ̂S(t), L̂

†
k

]
+
[
L̂k, ρ̂S(t)L̂

†
k

])
(1.20)

which is the GKSL master equation. The operators L̂k are known as quantum jump operators or Lindblad

operators. The operator L̂ generates the semigroup of dynamical operators {Φ̂(t) : t ≥ 0} by the formal

exponentiation formula [157, 59]

Φ̂(t) = etL̂ (1.21)

or equivalently

L̂ := lim
t→0+

Φ̂(t)− 1̂

t
. (1.22)

We shall call L̂ the Liouvillian operator in Lindblad form [3]. This operator might not be by itself a self-

adjoint operator, but it generates a dynamics that is consistent with physical expectations. As an example,

we may see that by the form of the Liouvillian operator in Lindblad form (1.20) the trace of the density

operator is preserved under its action.

At this point, it is worth noting that other superoperator techniques were developed to describe the

evolution of a given quantum system. If we relax the Markovianity condition, then the most general evolution

is given by the Nakajima-Zwanzig equation [193, 127, 143, 31] which describes the evolution of the relevant,

and complementary irrelevant, part of the quantum system. The relevant part of the total system provides

information about the dynamics of the open system. It is defined using a projection operator as follows:

P̂ ρ̂T := (TrB ρ̂T )⊗ ρ̂B, (1.23)

and complementary, the irrelevant part defined in terms of Q̂-operator, as follows

Q̂ρ̂T := (1̂− P̂)ρ̂T , (1.24)

where ρ̂B represents an initial state of the environment, which we will assume is normalised. Differenti-

ating both equations with respect to time t, changing to the interaction picture, and then performing some

manipulations [143] one arrives at the equation for the relevant part of the total system

d

dt
P̂ ρ̂T (t) =

∫ t

0
K(t, s)P̂ ρ̂T (s)ds, (1.25)

1There are two legacy approaches to the derivation of the GKSL equation, one for finite-dimensional Hilbert spaces and the

other for infinite-dimensional Hilbert spaces but with bounded generator [39].
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where K is the memory kernel of the Nakajima-Zwanzig equation. Due to dependency of the state P̂ ˆ̃ρT at

time t on previous states via integral kernel, the equation describes the non-Markovian evolution, that is with

memory effects [63, 145]. Of course, this equation given certain assumptions, leads to the GKSL equation.
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Chapter 2

Quantum theory in phase-space formalism

2.1 Phase-space quantum theory- general information

A phase-space approach to quantum theory is one of many equivalent formulations of quanta [164]. It was

founded on key developments introduced gradually by H. Weyl, E. Wigner, H. Groenewold, and J. Moyal.

Their work initiated a new paradigm, in which the operator-based framework in the Hilbert space was re-

placed by a noncommutative algebra of real-valued functions defined in phase space. The origins of this

formulation trace back to 1927 and then to 1932. It was in 1927 that H. Weyl discovered the correspondence

between dynamical quantities and linear Hermitian operators, formulated through a transformation that pre-

serves the probabilistic structure of quantum mechanics [181]. Five years later, E. Wigner introduced a spe-

cial type of function that changed the common view associated with the positivity of probability distribution

functions. By considering quantum corrections for thermodynamic equilibrium states Wigner discovered

a density function, which was notable for allowing negative values [182]. Subsequently, H. Groenewold

and J. Moyal independently made significant contributions to this framework, recognising the relationship

between the WDF, the density operator, and the Weyl transform. Their mutual work resulted in the con-

struction of the noncommutative algebra of real functions that were strictly connected to the well-known

quantum mechanics [76, 126].

Before we consider a rigorous description of the quantum phase space let us, by a simple example, dwell

on the idea of a probabilistic description of classical particles. Let us consider a classical particle moving

along a trajectory (x(t), p(t)) ∈ R2, with the initial position and momentum given by (x0, p0). In this case,

the probability density function (PDF) of finding this particle in phase space can be expressed as [102]:

P (x, p) ∝ δ(x− x(t;x0, p0))⊗ δ(p− p(t;x0, p0)),

which means that the particle is moving along a trajectory generated by the solution of the classical Hamilton

equations with a specific initial condition (x0, p0). Equivalently, the probability of finding a particle in the

strip that contains its trajectory is equal 1, whereas apart from it it is 0. This can be seen as a motion of a

point-centred probability distribution function along the phase-space trajectory of the system. On the other

hand, consider a scenario in which the particle might have a 50% chance of starting at a different point,

(x01, p01) or (x02, p02), in the phase space1. In this case, after repeating the setup infinitely many times and
1Assuming that it is not a point lying on the same trajectory as the previously chosen point
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measuring the particle’s trajectory, we can express the probability density function as follows:

P (x, p) ∝ 1

2
δ(x−x1(t;x01, p01))⊗δ(p−p1(t;x01, p01))+

1

2
δ(x−x2(t;x02, p02))⊗δ(p−p2(t;x02, p02)).

It is crucial to note that it does not imply the co-existence of a particle on two non-intersecting trajectories.

Rather, it encapsulates the randomness of a possible state of the system. We have already discussed such

cases in the previous chapter, where, instead of considering a pure quantum state, we extended the idea of

statistical certainty to allow for the coexistence of multiple constituent states in a single quantum system,

resulting in the density operator approach. Equipped with this idea, let us consider a quantum equivalent

of classical phase space. According to the axioms of quantum mechanics and the properties of canonical

operators, it is established that the canonical operators x̂k = xk and p̂l = −iℏ∂xl are not commensurable,

that is, they satisfy the canonical commutation relation in the form

[x̂k, p̂l] = iℏδkl1̂. (2.1)

This relationship is governed by the Heisenberg uncertainty principle, which introduces a minimal vol-

ume ∆xk∆pk for k = 1, . . . , n that cannot be surpassed by any measurement. Thus, we expect that this

should resemble the structure of the quantum phase space and the probability distributions defined on it. As

the Heisenberg uncertainty principle forbids the simultaneous characterisation of position and momentum,

rather than considering points, one should consider minimal cells obeying Heisenberg’s principle.

Figure 2.1: Pictorial difference between classical and quantum phase spaces. In classical space, the evolution

of a particle can be regarded as a movement of a 0-width probability distribution function along the particle’s

trajectory. In the quantum phase space, the probability function with non-zero standard deviation evolves

over the minimal cells given by Heisenberg’s uncertainty principle, and rather than trajectories, we are

presented with a statistical average.

The simplest flaw of this approach is the choice of centres of such minimal cells, which implies some

privilege among points in the phase space. Also, this would require a transition from a continuous descrip-

tion of a quantum system to a countable one, since R2 phase space can be covered by a countable union
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of squares. Additionally, as pointed out in Ref. [49], the minimal geometrical objects that simultaneously

satisfy the uncertainty relationship and have the symplectic group as their symmetry group are the quan-

tum blobs. These are ellipsoids strictly related to squeezed coherent states that can be obtained from the

phase-space ball through an affine symplectic transformation. Nevertheless, the phase-space approach gives

the closest description of quantum mechanics that simultaneously resembles a classical structure. The gen-

eral characteristics of the quantum phase space (or pℏase space) were based on the idea that the quantum

structure, in the classical limit, has to become classical [104]. Let us recall that a complete description of a

classical system in terms of Hamiltonian mechanics requires 3 elements: a phase spaceM = R2n given by

a smooth manifold, an energy function H :M → R and a symplectic 2-form ω [124, 125]. For the scope

of this work, we will assume thatM = R2, then the classical phase space of the system with Hamiltonian

H(x, p, t) is equipped with Poisson bracket [168]

{f(x, p), g(x, p)} := ∂f

∂x
(x, p)

∂g

∂p
(x, p)− ∂g

∂x
(x, p)

∂f

∂p
(x, p). (2.2)

This allows for the description of the trajectories of the classical system via Hamilton equations

d
dtx(t) = {x,H(x, p, t)},
d
dtp(t) = {p,H(x, p, t)}.

(2.3)

Complementarily, let us turn our attention to the system described by some probability distribution function

(PDF), P (x, p, t), defined on the phase space. The Liouville theorem says that along the trajectories of

the system, the PDF P (x, p, t) is constant [6]. Consequently, the function P (x, p, t) satisfies the Liouville

equation
∂

∂t
P (x, p, t) = {H(x, p, t), P (x, p, t)} . (2.4)

The Liouville equation exemplifies the conservation law of the PDF P (x, p, t) during time evolution. These

elements constitute the statistical description of classical mechanics. To extend this structure suitably for

quantum mechanical theory in such a way that there exists a smooth transition, from quantum to classical

mechanics, one introduces the star product [88, 104]:

Definition 2.1. Let (M, {·, ·}) be a Poisson manifold. A star product ⋆ : C∞(M)× C∞(M)→ C∞(M)

is defined as

f ⋆ g :=
∞∑
k=0

(
iℏ
2

)n
Cn(f, g), (2.5)

where Cn are bidifferential operators of order n with C0(f, g) = f · g, C1(f, g) = {f, g}, satisfying

∑
j+k=n

Cj(Ck(f, g), h) =
∑
j+k=n

Cj(f, Ck(g, h)). (2.6)

The main advantage of this approach is that knowledge of classical mechanics allows for direct analysis in

quantum mechanics, thus there is no need to rephrase the interpretation of canonical variables. One of many

star products is the Moyal star product, or simply the Moyal product, defined over canonical phase space,

whereM = R2 as follows
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Definition 2.2 (Moyal product [61, 7]). Let f, g ∈ C∞(R2). The Moyal product ⋆ : C∞(R2)×C∞(R2)→
C∞(R2) is given by

f(x, p) ⋆ g(x, p) := f(x, p)e
iℏ
2

(←
∂x
→
∂p−

←
∂p
→
∂x

)
g(x, p), (2.7)

where arrows over the derivative sign are understood as the direction in which it is acting.

This definition can be used interchangeably, depending on the complexity of calculations, with the following

equivalent forms

f(x, p) ⋆ g(x, p) := f

(
x+

iℏ
2
∂p, p−

iℏ
2
∂x

)
g(x, p)

= f (x, p) g

(
x− iℏ

2
∂p, p+

iℏ
2
∂x

)
=

1

(πℏ)2

∫
R4

e
2i
ℏ S(x,x

′,x′′,p,p′,p′′)f(x′, p′)g(x′′, p′′)dx′dx′′dp′dp′′,

(2.8)

where function S(x, x′, x′′, p, p′, p′′) is the signed area of a parallelogram in a phase space spanned by 3

vectors: (x, p), (x′, p′), (x′′, p′′), namely

S(x, x′, x′′, p, p′, p′′) = det

∣∣∣∣∣∣∣∣
1 1 1

x x′ x′′

p p′ p′′

∣∣∣∣∣∣∣∣ . (2.9)

The most important property of such a defined product is its limit as ℏ→ 0+. Let us notice that for any two

symbols f, g one has

Proposition 2.1. For any two functions f, g ∈ C∞(R2) such that their ⋆-product is well-defined, the fol-

lowing limits, as ℏ→ 0+, hold

(f ⋆ g)(x, p)→ (f · g)(x, p), (2.10)

and

{f, g}⋆ :=
1

iℏ
[f ⋆ g − g ⋆ f ] (x, p)→ {f, g}, (2.11)

where {f, g} stands for the Poisson bracket of the functions f and g.

These are direct consequences of the definition of the ⋆−product. Additionally, the phase-space approach

enables an operator-free description of quantum theory, which requires the use of classical functions to char-

acterise the quantum systems. However, there is an elegant way to connect these two descriptions through

the Weyl transformation [50, 64]

Definition 2.3. Let a ∈ S(R2), and Â : S(R) → S(R), where S(Rn) is the Schwartz space of rapidly

vanishing functions [cf. Appendix A]. The Weyl transform between a and Â is the correspondence defined

as

Â(x, y) =
1

2πℏ

∫
R
e

i
ℏp(x−y)a

(
1

2
(x+ y), p

)
dp, (2.12)

a(x, p) =

∫
R
e−

i
ℏpy
〈
x+

1

2
y

∣∣∣∣ Â ∣∣∣∣x− 1

2
y

〉
dy. (2.13)

We will denote that relationship as W[Â](x, p) = a(x, p). Both definitions (2.2 and 2.3) constitute the

foundation of the deformation quantisation [17, 19].

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



2. Quantum theory in phase-space formalism 17

2.2 Weyl transform and Wigner function

As previously mentioned, the Weyl transform serves as a correspondence tool between operator-formulated

quantum mechanics and the phase-space approach. Let us provide some basic properties of the Weyl symbol

of the given operators Â and B̂ [42]

Corollary 2.1. Some commonly used properties of Weyl transformW:

1. Linearity:W[αÂ+ βB̂](x, p) = αW[Â](x, p) + βW[B̂](x,p);

2. If Â† = Â thenW[Â](x, p) ∈ R;

3. Product rule:W[ÂB̂](x, p) = (W[Â] ⋆W[B̂])(x, p);

4. Commutator representation:W
[
1
iℏ [Â, B̂]

]
=
{
W[Â](x, p),W[B̂](x, p)

}
⋆
.

These properties give a helpful correspondence relationship between phase-space observables (symbols)

and operator observables defined on the Hilbert space associated with our system. Finally, we can provide

the phase-space equivalent of the carrier of the information, the density operator [50, 180] :

Definition 2.4 (Wigner function). A Wigner function of the quantum system is a real-valued quasi-

probability distribution function defined over the quantum phase space, with well-defined marginal dis-

tributions, and is given by the rescaled Weyl transform of the density operator, namely

ϱ(x, p, t) :=
1

2πℏ

∫
R

〈
x+

1

2
y

∣∣∣∣ ρ̂(t) ∣∣∣∣x− 1

2
y

〉
e−

i
ℏpydy. (2.14)

It is worth mentioning that there are definitions of the Wigner function for any underlying deformed geom-

etry that can be introduced by a group-theoretical approach [4, 50].

Corollary 2.2. The equation of motion for an isolated or closed quantum system in a phase-space represen-

tation is given by the equation in the form [37]

∂tϱ(x, p, t) +
1

m
p∂xϱ(x, p, t)− {U(x, t), ϱ(x, p, t)}⋆ = 0. (2.15)

Applying the property (2.10) of the star product to the equation of motion, we arrive at the so-called classical

limit of the equation2. That is, at ℏ → 0+, the equation resembles the Liouville equation for the classical

PDFs defined over the phase space, namely

∂tP (x, p, t) +
1

m
p∂xP (x, p, t)− ∂x[U(x, t)]∂pP (x, p, t) = 0, (2.16)

and can be solved using the method of characteristics [60]. The overall volume of the phase-space PDF

remains invariant during the time evolution. In other words, the PDF is constant along the trajectories of the

classical system. Generally, when considering such a limit, one should not forget about the ℏ−dependency
2There are some different understandings behind the term classical limit. In this context, we will use the similarity of the

mathematical formalism between quantum and classical phase space as ℏ → 0+.

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



2. Quantum theory in phase-space formalism 18

of the WDF. Näively, the limit ϱ(x, p, t) → δ(p)|ψ(x, t)|2 is maintained as ℏ → 0+, unless the implicit

dependence of the wave function ψ on ℏ is considered. Otherwise, the final form of this expression is an

asymptotic exponential function multiplied by an energy-limiting Dirac delta distribution, as thoroughly

derived in [151]. Last but not least, we would like to revisit the eigenproblem posed in wave function

quantum theory in terms of the phase-space approach, leading to full equivalence between them. Recall that

an eigenproblem for the Hamiltonian Ĥ = p̂2/(2m) + U(x̂) is posed as

Ĥ |ψ⟩ = E |ψ⟩ , (2.17)

which in position representation takes the form of the second-order partial differential equation [15]

− ℏ2

2m

d2

dx2
ψ(x) + U(x)ψ(x) = Eψ(x), (2.18)

where ψ(x) = ⟨x|ψ⟩ is the wave function of the system, E is interpreted as the energy of the system. On the

basic level, it appears as a result of the application of separation of variables to the time-dependent problem,

with the assumption that the time-dependent wave function is a product of the spatial function ψ(x) and

some time-dependent function ϕ(t). Similar methods can be used in phase-space quantum mechanics to

deduce the phase-space eigenproblem. The Wigner eigenfunction to the eigenvalue E has to be the solution

to the following pair of equations [70, 69, 37]H(x, p) ⋆ ϱ(x, p) = Eϱ(x, p),
ϱ(x, p) ⋆ H(x, p) = Eϱ(x, p),

(2.19)

where H(x, p) is the Weyl symbol of the Hamiltonian Ĥ . For the purpose of the discussion, let us assume

that the eigenvalues of the Hamiltonian Ĥ form a discrete set σ(Ĥ) = {En}n∈N and are nondegenerate.

Then, according to the definition 2.4, the solution to Eq. (2.19) is given by [70]

ϱnm(x, p) =
1

2πℏ

∫
R
ψn

(
x+

1

2
y

)
ψ∗m

(
x− 1

2
y

)
e−

i
ℏpydy, (2.20)

called the cross-Wigner function [50], to the eigenvalue Enm = En − Em. It implies that a general, time-

dependent WDF can be expanded into coherent and incoherent part [70]

ϱ(x, p, t) =
∑
n

cnnϱnn(x, p) +
∑
n,m
n̸=m

cnme
− i

ℏ (En−Em)tϱnm(x, p). (2.21)

where off-diagonal terms are withholding the information about energy exchange between the modes of the

evolving system. Additionally, applying the secular approximation [116], we may conclude that in the limit

t→ +∞ the incoherent terms average out to zero, thus

lim
t→+∞

ϱ(x, p, t) =
∑
n

cnnϱnn(x, p). (2.22)

meaning that the system decohered to the stationary state.
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2.3 Phase-space approach to open quantum systems

As discussed in the previous chapter, the evolution of an open quantum system is modeled by simplifying

the dynamics of the total system through various approximations. So far, the phase-space quasiprobabil-

ity distribution function formalism has been developed for a single, isolated, or closed system, where the

independent variables relate only to that closed system. In this chapter, we will explore the properties of

the Weyl transform in product spaces, which will allow us to derive the GKSL equation based on the as-

sumptions made previously. Starting with the general properties of the WDF resulting from its definition,

we can state that it is a real, bounded function with correctly defined marginal distributions, which provides

an equivalent to the density operator quantum mechanics statistical description of the quantum system.

The Stratonovich-Weyl (S-W) correspondence provides a powerful generalisation of the Weyl transform,

offering a more meaningful connection between quantum operators and the phase-space functions [175].

At its core, this approach defines a quantisation operator that elegantly captures the geometric structure of

the system, making it a versatile tool for various applications. We shall now define the Stratonovich-Weyl

correspondence, according to Refs [163, 147, 170]

Definition 2.5. Let Â, Â1, Â2 be operators acting on Hilbert space H. A 3-tuple (H,M, Ω̂) constitutes

Stratonovich-Weyl (S-W) correspondence, where Ω̂ : M ∋ M → Ω̂(M) ∈ B(H) is the S-W kernel and

M is the phase space of the considered system with a phase-space vector given by M , if the following

conditions are satisfied

1. The mapping defined as

W[Â](M) := Tr
[
ÂΩ̂(M)

]
(2.23)

exists, is linear and invertible;

2. If Â is hermitian then the functionW[Â](M) is real valued;

3. The trace of an operator Â is equal to the integral of the functionW[Â](M) in the phase space∫
M
W[Â](M)dM = Tr Â, (2.24)

and
∫
M Ω̂(M)dM = 1̂;

4. The following product rule holds∫
M
W[Â1](M)W[Â2](M)dM = Tr

[
Â1Â2

]
; (2.25)

5. The covariance condition holds

W[Û †ÂÛ ](M) =W[Â](T (M)), (2.26)

where Û is a unitary transformation and T :M ∋ M → T (M) ∈ M is a transformation associated

with Û , acting on the phase space.
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Thus, the S-W correspondence is a one-to-one correspondence between operators and functions defined

over a space with classical meaning. These conditions generate the WDF of the quantum system with any

underlying geometry and allow for equivalent statistical interpretation. It should be noted that there is no

mention of a ⋆-product. However, the 4th condition gives a basis for the uniqueness of an algebra of functions

defined over phase space [26]. We can define a ⋆−product through the following integral relation [66]

(f ⋆ g)(M) =

∫∫
M

Tr
[
Ω̂(M)Ω̂(M1)Ω̂(M2)

]
f(M1)g(M2)dM1dM2, (2.27)

which, in general, is non-commutative, and reduces to a common product of two functions when considered

under the integral sign ∫
M
(f ⋆ g)(M)dM =

∫
M
(f · g)(M)dM. (2.28)

An observant reader will notice that we have reached the same formalism as previously introduced: the non-

commutative calculus of real functions, represented as appropriate symbols of operators. This generalisation

of the Weyl correspondence requires us to find an operator Ω̂(M) whose form depends on the underlying

Lie symmetry group [66]. As a skimmed example, we may consider a flat space M = R2 representing

a phase space with position and momentum coordinates, M = (x, p), where the Lie symmetry group is

given by the Heisenberg-Weyl group and is associated with standard commutation rules for position and

momentum [183, 64]. By the detailed calculations that can be found i.e. in [174, 28], the Ω̂(M) has the form

given by a displaced parity operator [48, 144, 71], leading to the original definition of the WDF [4].

We have now obtained a powerful tool for building a WDF for any quantum system, regarding the

underlying geometry of the system. Turning our attention to open quantum systems, an open system is, by

general definition, a subsystem of a total system that includes the environment (or a bath) and the system

in question, as explained in Sec. 1.2. Let us assume that the phase space of the total system is the flat

space R2+2N , where the constituent phase spaces, R2 and R2N , correspond to the phase space of the one-

dimensional open system and the phase space of the N -dimensional environment, respectively. This setup

is equivalent to considering a tensor product Hilbert space composed of two L2-spaces over R and RN ,

by (1.13). We can now apply the S-W correspondence for such systems by treating a WDF of the total

system ϱT as a starting point. Let us define a WDF of the total system as

ϱT (Q,K, t) := Tr
[
ρ̂(t)Ω̂(Q,K)

]
, (2.29)

where (Q,K) = (x,X, p,P ) ∈ R2+2N are position and momentum coordinates of the total system. These

consist of the coordinates (x, p) ∈ R2 corresponding to the open system, and (X,P ) ∈ R2N corresponding

to the environment. We will treat the total system T as an isolated system and thus it obeys the equation of

motion

∂tϱT (Q,K) = {HT (Q,K), ϱT (Q,K)}⋆T , (2.30)
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whereHT (Q,K) is the symbol of total the Hamiltonian. The form of the star product ⋆T in total, flat space,

for two smooth functions A,B : R2+2N → C, is given by

A(Q,K) ⋆T B(Q,P ) = lim
N→∞

N∑
n=0

(
iℏ
2

)n 1

n!

n∑
k=0

(
∇n−kQ A

)(
∇n−kK B

)
(−1)k

(
∇kKA

)(
∇kQB

)
= A(Q,K)e

iℏ
2

(←−−
∇Q
−−→
∇K−

←−−
∇K
−−→
∇Q

)
B(Q,K).

(2.31)

We also define the star product for constituent subsystems: the open system S and the bath B, in the follow-

ing way

AS(x, p) ⋆S BS(x, p) := AS(x, p)e
iℏ
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
BS(x, p), (2.32)

AB(X,P ) ⋆B BB(X,P ) := AB(X,P )e
iℏ
2

(←−−
∇X
−−→
∇P−

←−−
∇P
−−→
∇X

)
BB(X,P ), (2.33)

where AS , BS , AB, BB are smooth functions defined over associated subsystems.

We are strictly interested in the evolution of the open system S. To extract valuable information from the

total WDF ϱT (·, ·, t), we calculate its marginal distribution taken with respect to the environment variables,

that is

ϱS(x,p, t) :=

∫
B
ϱT (Q,K, t)dXdP =

∫
B
ϱT (x,X, p,P , t)dXdP . (2.34)

This has been proven to be a valid approach for defining an information medium for any open quantum

system [51]. To further simplify the equation of motion for the open system, let us consider a total system’s

Hamiltonian symbol given as a sum of three elements: the Hamiltonians of the open system, of the bath, and

the interaction term, which is precisely a symbol of (1.15), namely,

HT (Q,K) = HS(x, p) +HB(X,P ) +
∑
k

αkg
k
S(x, p) ⋆T g

k
B(X,P ), (2.35)

then the evolution of the open system is governed by the following Master equation

∂tϱS(x,p, t) = {HS(x, p), ϱS(x, p, t)}⋆S +
∑
k

αk

{
gkS(x, p),E

[
gkB|x, p, t

]
ϱS(x, p, t)

}
⋆S
, (2.36)

where E
[
gkB|x, p, t

]
is the conditional expected value of the k-th bath interaction term, namely

E
[
gkB|x,p, t

]
=

1

ϱS(x, p, t)

∫
B
gB(X,P )ϱT (x,X, p,P , t)dXdP . (2.37)

stripped of its physical meaning due to the possibility of a negative value of the total WDF. Apart from

dubious interpretation, the Eq. (2.36) gives no less and no more information than the initial problem, keeping

further analysis at undesirably high complexity. To simplify the dynamics of the open quantum system,

a Born-Markov approximation is usually invoked, leading to GKSL equation [cf. Chapter 4]. In Wigner

formalism it is read as

∂tϱS(t) = {HS , ϱS(t)}+
i

2

∑
k

γk ({Lk ⋆ ϱS(t), L∗k}⋆ + {Lk, ϱS(t) ⋆ L∗k}⋆) . (2.38)

Variable dependency was omitted to keep the equation graphically appealing.
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Chapter 3

Split operator approach to numerical
solution of evolution equations

3.1 Evolution type PDE

Undoubtedly, physicists thrive to describe reality in terms of mathematical structures and equations.

Throughout history, many phenomena have been described meticulously, and humanity has been provided

with mathematical tools to predict the behaviour of many complex systems. Examples of such systems can

be seen in every scientific area: a heat equation that encapsulates the behaviour of heat distribution within the

medium; or the Navier-Stokes equation that provides insights within the fluid dynamics; Schrödinger equa-

tion providing us with a description of the evolution of the amplitude of probability in quantum mechanics.

What all these equations have in common is their dependence on time t.

Definition 3.1. We say that a partial differential equation for function u ∈ Cn(Rk+1) is of the evolution

type if it can be written in the form [22, 113]

∂nt u = F (t,x, Dx,tu,D
2
x,tu, . . . ,D

n−1
x,t u,D

n
xu), (3.1)

where F is some function, and Dm
x,t is the multi-index notation for a partial derivative of the order m ∈ N

of variables x and t.

This definition is comprehensive, as it encapsulates nearly all time-dependent equations of classical and

quantum physics and is difficult to work with if one is interested in peculiar properties of such systems.

Simultaneously, in the literature, one may find that the definition of evolution equation contains only first-

order time derivative, thus we would say that

Definition 3.2. A partial differential equation for function u ∈ Cn(Rk+1) is of the evolution type [131, 130]

if it can be written as

∂tu = F (t, x,Dxu,D
2
xu, . . . ,D

n−1
x u,Dn

xu), (3.2)

for some function F , and Dm
x is the m−th order multi-index derivative with respect to the spatial variable

x.
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The latter definition of the evolution equation will be the focus of our attention. More importantly, we

will also consider cases where F (.) is not explicitly time dependent, ∂tF = 0, which we will call the

time-autonomous partial differential evolution equation [82]. With suitable assumptions, we shall now

rewrite (3.2) in the following operator form

∂tu = L̂u, (3.3)

where L̂ is an operator which, under certain assumptions [87] can be treated as a generator of a dynamical

semigroup, namely [46]

L̂u = lim
t→0+

Φ̂(t)u− u
t

, (3.4)

with u taken so that the limit on the right-hand side exists and Φ̂(t) being the aforementioned dynamical

semigroup associated with L̂, as this is one-to-one correspondence [152, 99]. With this setup, any solution

to the Cauchy problem with the initial condition u(x, 0) = u0(x), can be written as [100, 83, 171]

u(x, t) = Φ̂(t)u0(x) = eL̂tu0(x). (3.5)

Complementarily, if the initial problem was posed as a non-homogeneous, that is

∂tu = L̂u+ f, (3.6)

then u(·, t) can be expressed via the formula [99]

u(x, t) = eL̂tu0(x) +

∫ t

0
e(s−t)L̂f(x, s)ds. (3.7)

The exponential function, exp
(
L̂t
)

, is understood as the series expansion of the exponent, in the case of

a bounded L̂. However, if L̂ is unbounded, then the exponential operator should be treated carefully via

resolvent techniques (see [98, 87]). Many equations of mathematical physics, including quantum as well as

classical ones, can be written in forms given by Eqs. (3.3) and (3.6). Nonetheless, we are interested in linear

equations, that is, for any two functions u1, u2 and constants α, β we have the following property

L̂[αu1 + βu2] = αL̂u1 + βL̂u2. (3.8)

As a formal solution, the expression given by Eqn. (3.3) is direct and compact in its form. However, there

are only a few cases where such an expression can be calculated analytically, unproportionally less than the

number of interesting cases where the solution is desirable. In particular in quantum mechanics, when L̂
is given by the sum of two operators: the kinetic energy operator T̂ (p̂) and the potential energy operator

V̂ (x̂), the formula for time evolution might be too complicated to write down explicitly. An even more

complicated case arises when ∂tL̂ ≠ 0̂ or, equivalently, L̂ = L̂(t) is a time-dependent generator, leading

to non-autonomous problem. Physically, in quantum mechanics, those can be associated in with oscillatory

potentials [160, 89, 96] or moving barriers [32, 34] in particular cases laying the foundation of computational

tools [150].

Recall an integral representation of Eq. (3.3)

u(x, t) = u0(x) +

∫ t

0
L̂(s)u(x, s)ds. (3.9)
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By repetitive substitution, we arrive at the time-ordered expression

u(x, t) = T̂ e
∫ t
0 L̂(s)dsu0(x), (3.10)

where T̂ is Dyson’s time-ordering operator [57]. Yet again, we obtained a formal expression for a solution

to the Cauchy problem; still, no explicit formula can be written down to provide us with the information

about the solution to the equation of motion. In the upcoming section, we will discuss the idea of finding

the approximate expression for the solution of the Cauchy problem where the dynamics is given by the

exponential operator, as in (3.5) or (3.10).

3.2 Splitting method

In the previous section, we discussed the notion of the evolution equation. Their main advantage lies in

the compact form of the formal solution to the Cauchy initial problem. In physics, many problems are

concentrated around the dynamics generated by the sum of two operators Â, B̂. As previously mentioned,

in quantum mechanics, in the Schrödinger equation, the total Hamiltonian Ĥ is given by the sum of two

operators: the kinetic part Â = p̂2/(2m), and the potential part associated with the potential energy B̂ =

Û(x̂). With no explicit time dependence in the Hamiltonian, i.e. ∂tĤ = 0, the näive solution to the evolution

initial value problem can be given by

u(x, t) = et(Â+B̂)u0(x) = etÂetB̂u0(x). (3.11)

However, the last equality does not hold for kinetic and potential operators, and more importantly for general

operators Â, B̂, and is only true provided that [Â, B̂] = 0̂. This idea of direct splitting of the exponent of

the sum to the product of two exponents is known as Lie-Trotter splitting [132, 166]. It treats Â, B̂ as two

independent dynamic generators, at all times t > 0. It allows us to reconstruct the dynamics of the system

by sequential composition of the dynamics generated by Â and B̂ independently, as exponential operators

(see graphics below).

u0(x)

et(A + B)u0(x)etAu0(x)

etBu0(x)

Figure 3.1: A visual explanation of Lie-Trotter approximation. The vector field can be associated with a

generator of the dynamics Â+ B̂ whereas its action on the given function u0(x) is depicted in the inset. In

the Lie-Trotter approximation, the dynamics can be decomposed as a product of two shifts, one along the

vertical and the other along the horizontal axis, associated with operators Â and B̂ respectively.
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The order of error we conduct under such a transformation is of the second power of the time step,

namely [52]

et(Â+B̂)u0(x) = etÂetB̂u0(x) +O(t2), (3.12)

whereO(t2) means that the error is no greater than the 2-nd power of t. For higher accuracy of the solution,

we might apply Strang approximation that reads [132, 162]

u(x, t) = e
t
2
ÂetB̂e

t
2
Âu0(x) +O(t3). (3.13)

Whether such a formula exists for any order of accuracy we desire is a valid question, which fortunately has

already been answered. The first, and most reasonable answer to this question can be given by undermining

the usefulness of such approximation. For numerical computations, exponentiation is a costly transformation

that will ultimately prevail over the solution’s accuracy. The second and formal answer is given by the non-

existence theorem [166]

Theorem 3.1. (Suzuki nonexistence theorem) For noncommutative operators Â, B̂ there is no decomposi-

tion of the form

et(Â+B̂) = et1Âet2B̂ . . . etM Â +O(tm+1), (3.14)

with all positive tj and finite M for m ≥ 3.

For proof see Ref. [166].

An example of a decomposition that achieves a higher order of accuracy and is compliant with the Suzuki

theorem is the Chin approximation. It is the fourth order approximation given by the following formula [33]

u(x, t) = e
t
6
Âe

t
2
B̂e

2
3
Ŵ e

t
2
B̂e

t
6
Âu0(x) +O(t5), (3.15)

where Ŵ = Â + t2/(48)[Â, [B̂, Â]]. Noticeable is the fact that this decomposition is not given purely by

exponential operators of Â and B̂, but includes the nested commutator expression Ŵ . Generally, the splitting

coefficients are determined by applying the Baker-Campbell-Hausdorff (BCH) formula [7] and its inverse,

the Zassenhaus formula [114], along with a Taylor expansion to match the expansion coefficients up to the

desired precision1. For the error analysis of the approximations presented here see Ref. [44].

Within the first sections of this work, we will assume that the generator L̂ of the dynamics of the system

in interest is, first and foremost, time-independent ∂tL̂ = 0, and given as the sum of a function of only

variable x, here V (x), and a polynomial expression W (x, p, ∂x, ∂p)

L̂ =W (x, p, ∂x, ∂p) + V (x), (3.16)

where W ∈ C[x1, x2, x3, x4] is the polynomial of four variables with complex coefficients. In such cases,

the unitary equivalence relation between the position and momentum operators enables us, numerically,

to implement the split-operator scheme without the need to approximate the derivative operator with a

difference scheme. To see this, let us first recall the definition of the unitary equivalence [134]

1BCH and Zassenahus formula will be provided further within the thesis.
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Definition 3.3. Let Â, B̂, be two operators. We say that B̂ is unitarily equivalent to Â if there exists a unitary

transformation Û such that

B̂ = Û ÂÛ †, (3.17)

where Û † is the adjoint of operator Û , and the equality sign is understood in the operator sense.

Then, in the sense of the previous definition, the multiplication and derivation operators are unitarily equiv-

alent via the Fourier transform. We shall use the following convention for Fourier transform [153, 139]

F1,x→λϱ(x, p, t) =
1√
2πℏ

∫
R
e−

i
ℏλxϱ(x, p, t)dx, (3.18)

F−11,λ→xϱ̃(λ, p, t) =
1√
2πℏ

∫
R
e

i
ℏλxϱ̃(λ, p, t)dλ, (3.19)

F2,p→yϱ(x, p, t) =
1√
2πℏ

∫
R
e−

i
ℏpyϱ(x, p, t)dp, (3.20)

F−12,y→pϱ̃(x, y, t) =
1√
2πℏ

∫
R
e

i
ℏpyϱ̃(x, y, t)dy. (3.21)

Then, the unitary equivalence can be read as follows [138, 149]

F−11,λ→xλF1,x→λ =
i

ℏ
∂x, F−12,y→pyF2,p→y =

i

ℏ
∂p, (3.22)

mostly known as a property of the Fourier transform. This implies a natural association between variables:

x, λ and p, y hereafter referred to as Fourier conjugated or simply conjugated variables. Thus, by (3.22), we

can substitute every occurrence of the derivative operator with the conjugated variable and vice versa, pro-

vided that we transform the total expression through this equivalence, namely for any polynomialK(x1, x2)

the following equality holds

K(∂x, ∂p) = F−12,y→pF−11,λ→xK(λ, y)F1,x→λF2,p→y. (3.23)

Now, the expression "sandwiched" between Fourier transform is simply a polynomial expression of two

variables λ, y, instead of a polynomial of derivatives, allowing for further numerical manipulations and

calculations.

Further within the work we will obtain the time-dependent generator as a result of algebraic manip-

ulations performed. If we want to extend the splitting algorithm on time-dependent operators, as desired,

we shall recall the following key result by Suzuki [167]: a time-ordered exponential operator (3.10) can be

reformulated in terms of the ordinary exponential operator as follows

T̂ exp

[
−i
∫ t

0
L̂(s)ds

]
= exp

[(
L̂(t) + D̂

)
t
]
, (3.24)

where the operator exp
(
D̂η
)

is defined via the formulae

Â(t)eD̂ηB̂(t) = Â(t+ η)B̂(t). (3.25)

In simple terms, D̂ is equivalent to the time-derivative operator acting on the left expression D̂ =
←−
∂ t,

leading to the time-shift operator definition for the exponential of D̂. This equivalence between the time-

ordered exponential and the time-derivative formulation significantly simplifies the numerical algorithm,

particularly when the analytic form of the potential V (x, t) is known. Further, within this work, we show

the application of this identity in the case of a time-dependent potential.
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Results

4.1 Microscopic derivation of the GKSL equation in the phase space

The result presented here can be achieved via W-S correspondence used in the context of the microscopic

derivation of the GKSL equation for the density operator [24]. Let us consider a total system T consisting of

an open system S and an environmentB, just as stated in Sec. 2.3 with the same Hamiltonian symbol (2.35).

We already know that the WDF for the total system ϱT (Q,K, t) obeys the Moyal equation (2.30) and the

open system’s WDF is related to the total system WDF via the integration over the bath coordinates (2.34).

To unveil the real form of open system dynamics, we start with the initial equation of an isolated total

system, but written in the interaction picture, that is, any symbol F defined over quantum phase space is

transformed to the interaction representation via the interaction picture

F (Q,K, t)→ F I(Q,K, t) = e
i
ℏ (HS+HB)t ⋆ F (Q,K, t) ⋆ e−

i
ℏ (HS+HB)t. (4.1)

Then, the dynamics of the total quantum system can be rewritten as

∂tϱ
I
T (Q,K, t) =

{
HI
I (Q,K, t), ϱIT (Q,K, t)

}
⋆
, (4.2)

from now on the upper I index, standing for interaction picture, will be omitted.

Integrating the Eq. (4.2) once, with respect to time t, then inserting it back into the initial equation (4.2) and

lastly integrating the result with respect to the bath variables (X,P ), we arrive at the equation of motion

for the open system

∂tϱS(x, p, t) =

∫
B
{HI(Q,K, t), ϱT (Q,K, 0)}⋆ dXdP

+

∫
B

∫ t

0
{HI(Q,K, t), {HI(Q,K, s), ϱT (Q,K, s)}⋆}⋆ ds dXdP ,

(4.3)

but still containing the dependence on the state of the total system. From now on, some assumptions must

be introduced to simplify the equation of evolution. Firstly, without an in-depth explanation, which we will

provide later, we shall assume that∫
B
{HI(Q,K, t), ϱT (Q,K, 0)}⋆ dXdP = 0. (4.4)
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This yields the new equation

∂tϱ(x, p, t) =

∫
B

∫ t

0
{HI(Q,K, t), {HI(Q,K, s), ϱT (Q,K, s)}⋆}⋆ ds dXdP . (4.5)

To exclude the dependency on the state of the total system we introduce Born approximation [24]

ϱT (Q,K, t) ≈ ϱS(x, p, t) · ϱB(X,P ), where the state of the environment ϱB is stationary. Now, the

equation in question can be summarised as

∂tϱ(x,p, t) =

∫
B

∫ t

0
{HI(Q,K, t), {HI(Q,K, s), ϱS(x, p, s) · ϱB(X,P )}⋆}⋆ ds dXdP , (4.6)

whereas the previous assumption (4.4), after recalling the form of the interaction Hamiltonian (2.35) and

substituting the separated WDF for the total system, now reads∑
k

αk⟨gkB(t)⟩{gkS(x, p, t), ϱS(x, p, t)} = 0, (4.7)

implying that the average environmental disturbance that comes from the interaction with the open system

⟨Bk(t)⟩ is nullified. To finish this part of algebraic manipulations, we impose the Markov approximation [24,

122], that is, we assume that the Wigner function at time t is independent of its previous states, at times

0 ≤ τ < t, which gives

∂tϱS(x, p, t) =

∫
B

∫ t

0
{HI(Q,K, t), {HI(Q,K, s), ϱS(x, p, t) · ϱB(X,P )}⋆}⋆ ds dXdP . (4.8)

Simultaneously, we assume the vanishing of the integrand in long-time scales, allowing us to substitute,

after the change of variables s = t− u, the integration limit to infinity, that is, t→ +∞, leading to

∂tϱS(x, p, t) =

∫
B

∫ ∞
0
{HI(Q,K, t), {HI(Q,K, t− u), ϱS(x, p, t) · ϱB(X,P )}⋆}⋆ ds dXdP . (4.9)

For next steps, we introduce a new family of operators {qkS(x, p;ω)}ω defined via projectors of the Hamil-

tonian HS , with the assumption of a discrete spectrum, namely

qkS(x, p;ω) =
∑

εn−εm=ω

Π(x, p; εm) ⋆ g
k
S(x, p) ⋆Π(x, p; εn). (4.10)

The operators Π(x, p; εk) can be seen as the Weyl symbols of the projection operator P̂εk onto the eigenspace

associated with the εk eigenvalue of the Hamiltonian ĤS . To see it, we shall notice that 1̂ =
∑

k P̂εk is the

identity operator given by the completeness relation, which allows us to rewrite each operator Â as

Â =
∑
n,m

P̂εmÂP̂εn . (4.11)

As we are working with double summation, we shall conduct it over all possible differences between the

eigenvalues εn − εm = ℏω, the angular frequencies, leading to

Â =
∑
ω

∑
εn−εm=ω

P̂εmÂP̂εn . (4.12)

This trick allows us to rephrase the gkS(x, p) interaction term as follows

gkS(x, p) =
∑
ω

qkS(x, p;ω) =
∑
ω

∑
εn−εm=ω

Π(x, p; εm) ⋆ g
k
S(x, p) ⋆Π(x, p; εn). (4.13)

The operators qkS(x, p;ω) satisfy the following relations:
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• they are the eigenoperators1 of superoperator {HS , ·}:

{HS , Sk(ω)} = −
ω

iℏ
qkS(ω), (4.14)

{HS , S
∗
k(ω)} =

ω

iℏ
qkS
∗
(ω), (4.15)

• they are preserved, up to a phase factor, by a unitary evolution of system S:

e
i
ℏHSt ⋆ qkS(ω) ⋆ e

− i
ℏHSt = e−

i
ℏωtqkS(ω), (4.16)

e
i
ℏHSt ⋆ qkS

∗
(ω) ⋆ e−

i
ℏHSt = e

i
ℏωtqkS

∗
(ω), (4.17)

• they are parity-reversal symmetric with respect to the frequency ω:

qkS
∗
(−ω) = qkS(ω). (4.18)

One can now rephrase the time-dependent interaction Hamiltonian symbol with the help of the properties

above

HI(t) = e
i
ℏ (HS+HB)t ⋆

∑
k,ω

αkq
k
S(ω)g

k
B ⋆ e

− i
ℏ (HS+HB)t =

∑
k,ω

αke
− i

ℏωtqkS(ω)g
k
B(t)

=
∑
k,ω

αke
i
ℏωtqkS

∗
(ω)gkB

∗
(t).

(4.19)

To keep the equations more transparent, we omit the dependency upon variables connected to the degrees of

freedom, both for open systems and baths. Introducing new operators allows us to rewrite the equation for

the Wigner function in the following manner

∂tϱS(x, p, t) =
∑
k,ω

∑
j,δ

∫
B

∫ ∞
0

(
αkαje

i
ℏωte−

i
ℏ δ(t−u)

×
{
qkS
∗
(ω)gkB

∗
(t),

{
qjS(δ)g

j
B(t− u), ϱS(x, p, t)ϱB(X,P )

}
⋆

}
⋆

)
du dXdP

=
∑
k,ω

∑
j,δ

αkαje
i
ℏ t(ω−δ)

×
∫ ∞
0

∫
B

(
e

i
ℏ δu
{
qkS
∗
(ω)gkB

∗
(t),

{
qjS(δ)g

j
B(t− u), ϱS(x, p, t)ϱB(X,P )

}
⋆

}
⋆

)
dXdP du.

(4.20)

Furthermore, conducting necessary manipulations of the integrated expression is required to simplify the

form of the equation. We start with the expansion of the inner and outer Moyal brackets, leading to

I = qkS
∗
(ω) ⋆ qjS(δ) ⋆ ϱS(x, p, t)g

k
B
∗
(t) ⋆ gjB(t− u) ⋆ ϱB(X,P )

− qkS
∗
(ω) ⋆ ϱS(x, p, t) ⋆ q

j
S(δ)g

k
B
∗
(t) ⋆ ϱB(X,P ) ⋆ gjB(t− u)

− qjS(δ) ⋆ ϱS(x, p, t) ⋆ qkS
∗
(ω)gjB(t− u) ⋆ ϱB(X,P ) ⋆ gkB

∗
(t)

+ ϱS(x, p, t) ⋆ q
j
S(δ) ⋆ q

k
S
∗
(ω)ϱB(X,P ) ⋆ gjB(t− u) ⋆ gkB

∗
(t).

(4.21)

1The term eigenoperator was used e.g. in Ref. [68], as a natural generalisation of eigenfunction to the language of superoperators.
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Now integrating this expression with respect to bath degrees of freedom (X,P ) gives

I ′ =
〈
gkB
∗
(t) ⋆ gjB(t− u)

〉 [
qkS
∗
(ω) ⋆ qjS(δ) ⋆ ϱS(x, p, t)− q

j
S(δ) ⋆ ϱS(x, p, t) ⋆ q

k
S
∗
(ω)
]

+
〈
gjB(t− u) ⋆ gkB

∗
(t)
〉 [
ϱS(x, p, t) ⋆ q

j
S(δ) ⋆ q

k
S
∗
(ω)− qkS

∗
(ω) ⋆ ϱS(x, p, t) ⋆ q

j
S(δ)

]
.

(4.22)

Including the integration with respect to u, and preceding the exponential expression one gets

I ′′ = Γkj(δ)
[
qkS
∗
(ω) ⋆ qjS(δ) ⋆ ϱ(x, p, t)− q

j
S(δ) ⋆ ϱ(x, p, t) ⋆ q

k
S
∗
(ω)
]

+ Γ∗kj(δ)
[
ϱ(x, p, t) ⋆ qjS(δ) ⋆ q

k
S
∗
(ω)− qkS

∗
(ω) ⋆ ϱ(x, p, t) ⋆ qjS(δ)

]
.

(4.23)

resulting in

∂tϱ(x,p, t) =
∑
k,ω

∑
j,δ

αkαje
i
ℏ t(ω−δ)

(
Γkj(δ)

{
qkS
∗
(ω), qjS(δ) ⋆ ϱS(x, p, t)

}
+ Γ∗kj(δ)

{
ϱS(x, p, t) ⋆ q

j
S(δ), q

k
S
∗
(ω)
})

,

(4.24)

where

Γkj(δ) =

∫ ∞
0

e
i
ℏ δu
〈
gkB
∗
(t) ⋆ gjB(t− u)

〉
du, (4.25)

is the one-sided Fourier transform of the autocorrelation function. Assuming that only resonant terms ω = δ

contribute to the dynamics, as they average out, known as secular approximation [24, 116], leads to

∂tϱS(x, p, t) =
∑
ω

∑
k,j

αkαj

(
Γkj(ω)

{
qkS
∗
(ω), qjS(ω) ⋆ ϱS(x, p, t)

}
+ Γ∗kj(ω)

{
ϱS(x, p, t) ⋆ q

j
S(ω), q

k
S
∗
(ω)
})

.

(4.26)

Lastly, to excavate the final form of the equation of motion, the following decomposition of Γkj(δ) must be

imposed: Γkj(ω) = γkj(ω)/2 + iskj(ω). This, after long, nontrivial, tedious manipulations, led to

∂tϱS(x, p, t) =
{
H̃(x, p), ϱS(x, p, t)

}
S
+D(ϱS(x, p, t)), (4.27)

where

H̃(x, p) =
∑
ω

∑
k,j

αkαjskj(ω)q
k
S
∗
(ω) ⋆ qjS(ω), (4.28)

and

D(·) = i

2

∑
ω

∑
k,j

αkαjγkj(ω)

{
qkS
∗
(ω),

{
qjS(ω), ·

}(+)

⋆

}
⋆

= − i

ℏ2
∑
ω

∑
k,j

γkj(ω)

(
qjS(ω) ⋆ (·) ⋆ qkS

∗
(ω)− 1

2
{qkS
∗
(ω) ⋆ qjS(ω), ·}

(+)
⋆

)
.

(4.29)

As a result, we obtained the GKSL equation in the phase space by microscopic derivation. However, as

mostly stated in the literature, an algebraically appealing form of the equation was provided in Eq. (2.38).
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4.2 Splitting of the exponential expression describing the model

The results of the presented thesis are anchored by the Wigner-Lindblad equation for a Weyl symbol of a

single linear Lindblad operator Lk = L(x, p), given by

L(x, p) = ax+ bp, a, b ∈ C. (4.30)

This form leads to the following equation of motion for the WDF for an open quantum system, with an

initial condition at time t = 0∂tϱ = − p
m∂xϱ+ {V (x), ϱ}⋆ + Γ [∂x(xϱ) + ∂p(pϱ)] +

1
2Dxx∂

2
ppϱ+

1
2Dpp∂

2
xxϱ−Dxp∂

2
xpϱ,

ϱ(t = 0) = ϱ0,

(4.31)

where coefficients present within the equation are related to initial quantities a, b by the following relation:

Dxx = |a|2, Dpp = |b|2,
Dxp = Re(a∗b), Γ = Im(a∗b).

(4.32)

This Liouvillian operator, with Lindblad operators taken as the linear combination of position and momen-

tum operators, leads to the dynamics of the system subjected to the decoherence and dissipation effects.

However, this approach does not embed the simplest example of an open quantum system, that is, Brow-

nian particle dynamics, because its dynamics is not completely positive [24, 119, 95]. To include it in our

approach, we would like to reduce some of the requirements posed on the coefficients of the Eq. (4.31), so

that a Brownian motion for high temperatures can be reconstructed from our model [109, 94]. Consider the

following dynamics generator

L̂B = {H(x, p), ·}⋆ + γ∂p(p(·)) +D∂2pp, (4.33)

which generates the motion of a quantum Brownian particle. Our model (4.31) does not allow for manipula-

tion of constants Γ, Dxx, Dxp, Dpp which keeps the complete positivity of the evolution and simultaneously

reproduces the case of Brownian particle for certain values of the parameters given. With that in mind, we

focus our attention to the scaling part, namely:

Ŝ = Γ [∂x(x(·)) + ∂p(p(·))] = Γ∂x(x(·)) + Γ∂p(p(·)),

and assume that constants connected to the x-rescaling and p-rescaling are independent of each other allow-

ing us to rewrite this expression as

Ŝ = Γx∂x(x(·)) + Γp∂p(p(·)), (4.34)

where we have introduced new constants Γx and Γp. Separating the influences of spatial and momentum

scaling allows for broader analysis of the dynamics. This introduction of the modified operator gives the

following dynamics generator

L̂ = − p

m
∂x + {V (x), ·}⋆ + Γx∂x(x(·)) + Γp∂p(p(·)) +

1

2
Dxx∂

2
pp +

1

2
Dpp∂

2
xx −Dxp∂

2
xp. (4.35)
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The dynamics given by such operator cannot be solved analytically unless U(x) is polynomial of at most

2nd order. To prepare for the numerical analysis of this equation we define the following set of operators:

the closed dynamics operators

V̂ = {V (x), ·}⋆, T̂ = − p
m∂x, (4.36)

the scaling operators

Ŝ1 = Γx + Γp, Ŝ2 = Γxx∂x, Ŝ3 = Γpp∂p, (4.37)

and the second-order operators

Ĝ1 = 1
2Dxx∂

2
pp, Ĝ2 = 1

2Dpp∂
2
xx Ĝ3 = −Dxp∂

2
xp, (4.38)

where Ĝ1 can be seen as a decoherence operator [191, 190], Ĝ2 is a diffusion operator [60, 142] whereas the

mixed derivative operator Ĝ3 can be seen as a measure of correlation between (x, p) or inseparability. The

operator L̂, for the potential in the form of a polynomial of at most 2nd order, has the following properties:

• the initial value problem with initial condition ϱ(x, p, 0) = ϱ0(x, p) is exactly solvable,

• if ϱ0(x, p) is a Gaussian function, then ϱ(x, p, t) is Gaussian for t ≥ 0,

for both results see Appendix B.

The commutation relations between the previously defined operators are the clue to derive, in some cases

exact, formulas which allow to calculate the exponential of the operator L̂. Thus, for the set of operators

{T̂ , Ĝ1, Ĝ2, Ĝ3, Ŝ1, Ŝ2, Ŝ3} the commutation relation between them is presented in the Tab. 4.1.

Table 4.1: Commutation relation table for set of operators considered. The potential energy operator V̂ was

omitted due to its general form.

[↓,→] T̂ Ĝ1 Ĝ2 Ĝ3 Ŝ1 Ŝ2 Ŝ3

T̂ 0 − 1
m
Dxx
Dxp

Ĝ3 0 − 2
m
Dxp

Dpp
Ĝ2 0 ΓxT̂ −ΓpT̂

Ĝ1 − 0 0 0 0 0 2ΓpĜ1

Ĝ2 − − 0 0 0 2ΓxĜ2 0

Ĝ3 − − − 0 0 ΓxĜ3 ΓpĜ3

Ŝ1 − − − − 0 0 0

Ŝ2 − − − − − 0 0

Ŝ3 − − − − − − 0

Due to the property of a commutator: [Â, B̂] = −[B̂, Â], it is sufficient to fill only the overdiagonal (or

underdiagonal) part of the table. For further analysis, we introduce the following notation

Ĝ = Ĝ1 + Ĝ2 + Ĝ3,

Ŝ = Ŝ2 + Ŝ3,

Π̂ = T̂ + Ŝ.

(4.39)
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Substituting just-introduced operators to the dynamics generator yields the following operator

L̂ = V̂ + Π̂ + Ĝ, (4.40)

and with that we can write a formal solution to the Wigner-Lindblad equation, for given initial condition

ϱ0(x, p), namely

ϱ(x, p, t) = etL̂ϱ0(x, p) = et(V̂+Π̂+Ĝ)ϱ0(x, p). (4.41)

As mentioned in the previous chapter, the exponential operator of a sum does not factorise to independent

exponentials, unless the underlying operators commute. We will show that there exists a direct factorisation

for the term Π̂ + Ĝ. Beforehand, we shall recall the definition of the adjoint action operator

Definition 4.1. [81] Let Â, B̂ be two operators. We define the adjoint operator of Â, acting on B̂ as

AdÂ(B̂) = [Â, B̂]. (4.42)

Naturally, we define the k-th adjoint by recursive relation

Adk
Â
= Adk−1

Â
AdÂ, Ad0

Â
= 1̂. (4.43)

Continuing, let us point out some relevant properties of operators Π̂, and Ĝ

1. Operators Ĝ and Ĝi for i = 1, 2, 3 commute pairwise;

2. The k–th adjoint operator with respect to Ĝ acting on operators Ĝi for i = 1, 2, 3 gives zero operator

Adk
Ĝ

(
{Ĝ1, Ĝ2, Ĝ3}

)
= {0̂}, (4.44)

for k ∈ N;

3. The k–th adjoint operator with respect to Π̂ acting on operators Ĝi for i = 1, 2, 3 is a subset of set

spanned by these operators

Adk
Π̂

(
{Ĝ1, Ĝ2, Ĝ3}

)
⊂ span{Ĝ1, Ĝ2, Ĝ3}, (4.45)

for k ∈ N.

These properties are a direct result of the commutation relation between operators collected in Table 4.1.

Furthermore, we define a function Ψ by the following relation

Ψ(Ĝ1) = (1, 0, 0)T , Ψ(Ĝ2) = (0, 1, 0)T , Ψ(Ĝ3) = (0, 0, 1)T , (4.46)

then each element of the set spanned by Ĝ1, Ĝ2, Ĝ3 can be associated with a three-dimensional vector,

whereas adjoint operations such that with AdΠ̂Ĝj =
∑3

i=1 αijĜi are given by matrices

Ψ(AdΠ̂) =


α11 α12 α13

α21 α22 α23

α31 α32 α33

 = AΠ̂. (4.47)
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As this is common practice, we will omit the function Ψ when performing calculations.

To find the exact splitting for the exponent of the sum Π̂+ Ĝ, first the identity for non-commuting operators

must be used [56, 165]

exp
[
t(X̂ + Ŷ )

]
= exp

[
tX̂
]
exp
[
tŶ
]
exp

[∫ t

0
e−sAdŶ

(
e−sAdX̂ − 1̂

)
Ŷ ds

]
= exp

[
tŶ
]
exp
[
tX̂
]
exp

[∫ t

0
e−sAdX̂

(
e−sAdŶ − 1̂

)
X̂ds

]
.

(4.48)

Associating X̂ = Ĝ, Ŷ = Π̂ and using previously defined function Φ one gets

exp
[
∆t(Ĝ+ Π̂)

]
= exp

[
∆tΠ̂

]
exp
[
∆tĜ

]
exp

[∫ ∆t

0
e−sAdĜ

(
e−sAdΠ̂ − 1̂

)
Ĝ ds

]
= exp

[
∆tΠ̂

]
exp
[
∆tĜ

]
exp

[∫ ∆t

0
e−sAĜ

(
e−sAΠ̂ − 1

)
(1, 1, 1)T ds

]
.

(4.49)

The restriction of the adjoint with respect to Ĝ to the set spanned by operators Ĝi for i = 1, 2, 3 yields a

zero operator, that is

AdĜ|span{Ĝ1,Ĝ2,Ĝ3} = 0̂,

and thus

AĜ = 0 ∧ e−sAĜ = 1.

This is great simplification for further manipulations by 3rd property [cf. Eq. (4.45)], as the integral expres-

sion simplifies to∫ ∆t

0
e−sAĜ

(
e−sAΠ̂ − 1

)
(1, 1, 1)T ds =

∫ ∆t

0

(
e−sAΠ̂ − 1

)
(1, 1, 1)T ds. (4.50)

Furthermore

AdΠ̂Ĝ1 = −2ΓpĜ1 + 0 · Ĝ2 −
1

m

Dxx

Dxp
Ĝ3,

AdΠ̂Ĝ2 = 0 · Ĝ1 − 2ΓxĜ2 + 0 · Ĝ3,

AdΠ̂Ĝ3 = 0 · Ĝ1 +−
2

m

Dxp

Dpp
Ĝ2 − (Γx + Γp)Ĝ3,

(4.51)

and thus

AΠ̂ =


−2Γp 0 0

0 −2Γx − 2
m
Dxp

Dpp

− 1
m
Dxx
Dxp

0 −(Γx + Γp)

 . (4.52)

Secondly, the exponential under the integral containing adjoint action generated by operator Π̂ is given by

e−sAΠ̂ − 1 =

∞∑
n=1

(
−sAΠ̂

)n
n!

=


e2Γps − 1 0 0

1
m2

Dxx
Dpp

(esΓp−esΓx)
2

(Γp−Γx)2
e2Γxs − 1 2

m
Dxp

Dpp

es(Γp+Γx)−e2Γxs

Γp−Γx
1
m
Dxx
Dxp

e2Γps−es(Γp+Γx)

Γp−Γx
0 es(Γp+Γx) − 1

 . (4.53)

Integrating, in the limits 0 to ∆t, the action of this operator on vector (1, 1, 1)T yields the following expres-

sion ∫ ∆t

0
dse−sLĜ

(
e−sLΠ̂ − 1̂

)
Ĝ = c1(∆t)Ĝ1 + c2(∆t)Ĝ2 + c3(∆t)Ĝ3, (4.54)
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where the coefficients ci(∆t) for i = 1, 2, 3 are equal to

c1(∆t) = −∆t+
e2Γp∆t − 1

2Γp
, (4.55a)

c2(∆t) =
1

2Dppm2ΓxΓp(Γp − Γx)2(Γp + Γx)

×
[
Dxx

(
Γ2
p

(
e2∆tΓx − 1

)
+ Γ2

x

(
e2∆tΓp − 1

)
+ 2ΓxΓp

(
1− e∆t(Γx+Γp)

)
+ ΓxΓp

(
e∆tΓx − e∆tΓp

)2)
+mΓp(Γp − Γx)

(
−2Dxp

(
Γp(e

2∆tΓx − 1) + Γx

(
1 + e2∆tΓx − 2e∆t(Γx+Γp)

))
+ Dppm

(
Γ2
p − Γ2

x

) (
−2Γx∆t+ e2Γx∆t − 1

))]
, (4.55b)

c3(∆t) = −∆t+
e∆t(Γx+Γp) − 1

Γx + Γp
− Dxx

2mDxpΓp(Γp − Γx)

(
1− e2∆tΓp

)
+

Dxx

Dxpm(Γ2
p − Γ2

x)

(
1− e∆t(Γx+Γp)

)
. (4.55c)

Following performed calculations with the fact that Ĝ commutes with a linear combination of Ĝi, we are

allowed to write the final splitting in the form

e∆t(Π̂+Ĝ) = e∆tΠ̂e∆tĜec1(∆t)Ĝ1+c2(∆t)Ĝ2+c3(∆t)Ĝ3

= e∆tΠ̂e(∆t+A1(∆t))Ĝ1+(∆t+A2(∆t))Ĝ2+(∆t+A3(∆t))Ĝ3

= e∆tΠ̂eF1(∆t)Ĝ1+F2(∆t)Ĝ2+F3(∆t)Ĝ3 ,

(4.56)

where Fi(∆t) = ci(∆t) +∆t, for i = 1, 2, 3. It should be borne in mind that operators Ĝ1, Ĝ2, Ĝ3 must be

held under a common exponential expression, as their Fourier transform is of the form −Dxxλ
2−Dppy

2 +

2Dxpλy which can introduce divergent evolution traits if DxxDpp ≤ D2
xp The complementary splitting for

the operator exp
(
∆tΠ̂

)
is done according to properties presented in [56]. Recall Π̂ = T̂ + Ŝ where the

commutator of its components is equal to

[T̂ , Ŝ2 + Ŝ3] = uT̂ + v(Ŝ2 + Ŝ3) + c1̂, (4.57)

where u = Γx − Γp, v = 0, c = 0. According to [56] operators that satisfy the commutation relation

[X̂, Ŷ ] = uX̂ + vŶ + c1̂,

for some constants u, v, c ∈ R undergo exact splitting

eX̂+Ŷ = egl(u,v)[X̂,Ŷ ]eX̂eŶ ,

where gl(u, v) is given by the expression

gl(u, v) =
(ev−u − ev) + u (ev − 1)

uv(v − u) . (4.58)

Using it, we get the following equality for exact splitting

e∆t(T̂+Ŝ2+Ŝ3) = egl(∆t(Γx−Γp),0)(Γx−Γp)(∆t)2T̂ e∆tT̂ e∆t(Ŝ2+Ŝ3)

= e

(
∆t− e−∆t(Γx−Γp)−1+∆t(Γx−Γp)

Γx−Γp

)
T̂
e∆t(Ŝ2+Ŝ3).

(4.59)
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Combining previous results, the following exact splitting for the exponential of the sum of two operators

Π̂ + Ĝ might be presented, as follows

e∆t(T̂+Ŝ+Ĝ) = e

(
∆t− e−∆t(Γx−Γp)−1+∆t(Γx−Γp)

Γx−Γp

)
T̂
e∆t(Ŝ2+Ŝ3)

× eF1(∆t)Ĝ1+F2(∆t)Ĝ2+F3(∆t)Ĝ3 .

To sufficiently calculate expressions containing derivatives as exponential, we use the Fourier transform,

and the equivalence between multiplication and derivative operators. For scaling operators Ŝi for i = 2, 3

this procedure leads nowhere, as both operators are in the form

Ŝi = eλxi∂xi , (4.60)

and the Fourier transform preserves the form of these operators, marking our method futile. However, they

can be implemented as four consecutive Fourier transforms with suitable exponentials. Namely, given the

transformation of scaling of xi variable, by the factor η > 0, that is

Ŝif(xi) := f(ηxi) = eln(η)xi∂xif(xi), (4.61)

it can be expressed as [12]

f(ηx) = η−1/2e−iϵαη∂2xe−iβηx
2
eiϵβη∂

2
xeiαηx2f(x), (4.62)

where ϵ = −1, if η > 1 or ϵ = 1, if 0 < η ≤ 1 and

αη =
1

2

√
|η−1 − 1|η−1, βη =

1

2

√
|1− η|. (4.63)

For operators Ŝi where i = 2, 3 the scaling parameter is equal to η = exp[Γxi∆t] with x2 = x and x3 = p.

With this in mind, we can introduce the full split-operator method for the considered evolution generator:

the second-order (Strang splitting) (3.13)

ϱ(x, p,∆t) ≈ e∆t
2
V̂ e∆t(T̂+Ŝ+Ĝ)e

∆t
2
V̂ ϱ0(x, p, 0) = e∆tŜ1e

∆t
2
V̂ e

(
∆t− e−∆t(Γx−Γp)−1+∆t(Γx−Γp)

Γx−Γp

)
T̂

× η−1/2x e−iϵαηx∂
2
xe−iβηxx

2
eiϵβηx∂

2
xeiαηxx

2

× η−1/2p e−iϵαηp∂
2
pe−iβηpp

2
eiϵβηp∂

2
peiαηpp

2

× eF1(∆t)Ĝ1+F2(∆t)Ĝ2+F3(∆t)Ĝ3e
∆t
2
V̂ ϱ0(x, p, 0),

(4.64)

and the fourth-order (3.15):

ϱ(x, p,∆t) ≈ e∆t
6
V̂ e

∆t
2
(T̂+Ŝ+Ĝ)e

2
3
Ŵ e

∆t
2
(T̂+Ŝ+Ĝ)e

∆t
6
V̂ , (4.65)

where ηx, ηp, α, β, ϵ are constants associated with the scaling operator presented earlier, and

Ŵ = V̂ +
(∆t)2

48

[
V̂ ,
[
T̂ + Ŝ + Ĝ, V̂

]]
. (4.66)

For time-dependent potentials, there is no need to repeat the process, even though the formal solution to the

evolutionary type equation with time-dependent generator is given by the Dyson series

∂tϱ(x, p, t) = L̂(t)ϱ(x, p, t) =⇒ ϱ(x, p, t) = T̂ e
∫ t
0 L̂(s)dsϱ0(x, p). (4.67)
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Using the aforementioned Suzuki’s relation (3.24) and the fact that the time-shift operator commutes with

the kinetic operator T̂ , we arrive at the splitting formula for time-dependent potentials with splitting of the

second order:

ϱ(x, p, t0 +∆t) ≈ e∆t
2
V̂ (t0)e∆t(T̂+Ŝ+Ĝ+D̂)e

∆t
2
V̂ (t0)ϱ0(x, p, t0)

= e
∆t
2
V̂ (t0+∆t)e∆t(T̂+Ŝ+Ĝ)e

∆t
2
V̂ (t0)ϱ0(x, p, t0),

(4.68)

and fourth order

ϱ(x, p, t0 +∆t) ≈ e∆t
6
V̂ (t0)e

∆t
2
(T̂+Ŝ+Ĝ)e

2
3
Ŵ (t0)e

∆t
2
(T̂+Ŝ+Ĝ)e

∆t
6
V̂ (t0)ϱ(x, p, t0)

= e
∆t
6
V̂ (t0+∆t)e

∆t
2
(T̂+Ŝ+Ĝ)e

2
3
Ŵ (t0+

∆t
2
)e

∆t
2
(T̂+Ŝ+Ĝ)e

∆t
6
V̂ (t0)ϱ(x, p, t0).

. (4.69)

Thus, we have introduced iterative methods to generate a WDF in instances of time that are multiples of the

time step ∆t. The direct splitting for the exponential function of T̂ + Ŝ + Ĝ reduces the number of Fourier

transforms required to calculate the next iteration of the WDF, as per each partial derivative operator, we

should include 2 Fourier transforms: forward and backward. Certainly, there are possible reductions of the

number of Fourier transforms, depending on the form of preceding and subsequent exponentials. In addition

to the results provided, we have found that in the case of the 4th order approximation, the operator Ŵ can

be calculated using only operators T̂ , and V̂ , namely

Ŵ = V̂ +
(∆t)2

48
[V̂ , [T̂ , V̂ ]]. (4.70)

Consequently, no dissipative or decoherence terms affect this operator. The algorithms presented were im-

plemented in C++, with the help of the Fast Fourier Transform [65].

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



4. Results 38

4.3 A short comment on closed quantum systems

For the sake of the authors’ sense of fulfilment, a brief comment on the dynamics of closed quantum sys-

tems is in order. Although distant from the main topic of the thesis, the results obtained, by the authors’

standards, contribute to the broader sense of PhD research process. These results emerged as a byproduct

of tests, calculations, and creative exploration during which the algorithm was developed, tested, and used

to generate nontrivial findings. The main topic of the calculations mentioned in this short section refers to

the dynamics of Schrödinger Cat States and the behaviour of some descriptive parameters of quantum states

like nonclassicality parameter and Rényi entropies.

4.3.1 Dynamical entropic measure of nonclassicality of phase-dependent family of
Schrödinger cat states [185]

Within this work, we have tried to unify the concept of interaction time between the quantum state and an ab-

solutely integrable potential. Building purely on the phase-space approach to quantum mechanics, we used

the symplectic covariance property to define the interaction time. This new quantity is associated with dy-

namical properties of a quantum system. In this case, two representatives of the family of Rènyi’s entropies

were selected, namely entropies of order one-half and one. The first one is associated with the measure of

nonclassicality, as we displayed in [97], whereas the latter is equivalent to the continuous Shannon entropy.

To lay the foundation for this novel measure, we can start with a simple academic example of a scattering

of a free particle. Its evolution, before and after the interaction with the scatterer, can be described as a

movement within the constant potential - which is a simple model. On the contrary, the interaction with the

potential might be difficult to describe in terms of formulas, leading to an unsolvable equation of evolution.

It is crucial to notice that free particle evolution is assumed in the infinite distance from the potential as a

result of its absolute integrability over the real line. In terms of the WDF, the evolution of a free particle is

equivalent to the shearing transformation of the WDF, which is given by the symplectic matrix acting on the

(x, p) variables. With the assumption that the support of the Wigner function is compact in R2, we can say

that before and after the interaction any WDF-dependent functional doesn’t change in value, as the Jacobian

of the symplectic transformation is equal to 1, and no WDF is present close to the scatterer.

We start by adjusting the definition of the Wigner function as an integral transformation of a wave

function

ϱ(x, p) = Ŵ [ψ](x, p) :=
1

2πℏ

∫
R
ψ

(
x+

X

2

)
ψ∗
(
x− X

2

)
exp

(
− i
ℏ
pX

)
dX. (4.71)

This definition highlights the symplectic covariance property of the WDF, that is, for a metaplectic trans-

formation K̂Ŝ , associated with a symplectic matrix Ŝ, acting on the wave function, we have the following

identity [47]

Ŵ [K̂Ŝψ](x, p) = Ŵ [ψ](Ŝ−1(x, p)). (4.72)

It can be interpreted as statemenet that transforming a wave function through a particular transformation

is equivalent to symplectic change of variables of the Wigner function of pre-transformed wave function.
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Throught this identity, one can define the symplecitcally invariant measures as

ξ :=

∫
R2

f
(
Ŵ [ψ](x, p)

)
dxdp, (4.73)

where f : [−1/(πℏ), 1/(πℏ)] → R is chosen so that the integral exists and is finite. Currently, it is unclear

how to associate defined expressions with the time evolution of the quantum system. However, it is true

that for Hamiltonians of type Ĥ = p̂2/(2m) + αx̂2, where α ∈ {0, 2}, the evolution can be associated

with a metaplectic transformation K̂Ŝ(t) given by the time-evolution operator Û(t;α) for all t ≥ 0. We will

focus our attention on the case α = 0 which stands for the free-particle evolution. Our previous explanation

implies that

Ŵ [ψ(t)](x, p) = Ŵ [K̂Ŝ(t)ψ](x, p) = Ŵ [ψ](Ŝ−1(t)(x, p)), (4.74)

where we have used the fact, that K̂Ŝ(t) is given by the time evolution operator, yielding ψ(t) for ψ. Fur-

thermore

ξ(t) =

∫
R2

f
(
Ŵ [ψ(t)](x, p)

)
dxdp (4.75)

defines the natural generalisation of symplectically invariant measures for time-dependent wave functions.

Then, by a simple change of variables, we have

ξ(t) =

∫
R2

f
(
Ŵ [ψ(t)](x, p)

)
dxdp =

∫
R2

f
(
Ŵ [K̂Ŝ(t)ψ](x, p)

)
dxdp

=

∫
R2

f
(
Ŵ [ψ](Ŝ−1(t)(x, p))

)
dxdp =

∫
R2

f
(
Ŵ [ψ](x, p)

)
dxdp,

(4.76)

where the last equality holds by the fact that
∣∣∣det Ŝ(t)∣∣∣ = 1. This, by the previous considerations, implies

that ξ(t) = const. where evolution is governed equivalently by symplectic matrix. This can be easily

visualised as follows

U(x)

(t)

Figure 4.1: An idealised picture of the time evolution of the WDF subjected to the L1(R) potential U(x).

The blob on the LHS depicts the area occupied by the initial WDF. It evolves freely until it reaches a

certain area (middle segment, orange color) where evolution is no longer describable by the metaplectic

transformation. This reflects on the time evolution of the symplectic measure ξ(t) (background curve) where

prior to rapid evolvution within segment it behaved nearly constantly. After the interaction with the potential,

the symplectically invariant measure stabilizes again.

Such setup allowed us to define the interaction time τ , up to a certain tolerance ϵ, in the following manner:
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Proposition 4.1. For a symplectically invariant measure ξ(t), the interaction time τ , between state repre-

sented by the Wigner distribution function and potential energy belonging to the class of absolutely inte-

grable functions, can be defined as

τ = min {t ∈ R+ : |ξ(t)− ξ(∞)| > ϵ} −max {t ∈ R+ : |ξ(t)− ξ(0)| > ϵ}
= tf − ti, (4.77)

where ξ(0) is the value of the symplectically invariant measure at the beginning of the evolution, whereas

ξ(∞) is the value at the end of the evolution.M = maxt∈R+ξ(t) is the maximum of Wigner–Rényi entropic

measure, m = mint∈R+ξ(t) is its minimum, and 0 < ε ≪ 1 is a dimensionless threshold parameter that

can be understood as the precision of the measuring device.

The threshold parameter present in the proposition might seem to be chosen arbitrary small. However, it

should be small relative to the values of the symplectically invariant measure. Within our research, we

treated it as a percentile of the difference between maximal and minimal value of the symplectically invari-

ant measure. Moreover, we narrowed the class of symplectically invariant measures ξ(t) to the following

measures: the Wigner-Rényi entropy of order one-half and one. Those metrics can be derived directly from

the formula [97]

Sα(t) =
1

1− α ln

[
(2πℏ)2α−1

∫
R2

dxdp |ϱ(x, p, t)|2α
]
, (4.78)

where α is the order of the entropy. The main goal of our research was to propose a phase-space method

to estimate an interaction time of the quantum state subjected to the integrable potential, which shifts the

importance from the analysis of the dynamics of the system to the evolution of the symplectically invariant

measure. To visualise our findings we conducted a numerical calculation of Schrödinger cat state evolution

in the Gaussian barrier system, with time-dependent amplitude, in the form [185]

V (x, t;α) = V0 exp

[
−(x− xB)2

2w2

]
[1− α θ(t− ts)], (4.79)

where α ∈ {0.5, 2}. This greatly highlighted the advantages and limitations of our method, providing results

comparable with other interaction time measures, such as tunnelling time.

4.3.2 Interaction time of Schrödinger cat states with a periodically driven quantum system:
Symplectic covariance approach [186]

The idea of symplectic covariance of the Wigner distribution function was used to estimate the interaction

time between an oscillating Gaussian barrier, where the time dependence was included within the ampli-

tude of the potential, leading to frequent swaps between the barrier and a well; and a Schrödinger Cat State

Wigner distribution function (SC-WDF). We have numerically solved the equation of evolution, using the

split-operator method for time-dependent potentials, with initial state given by SC-WDF subjected to the

Gaussian potential with oscillating amplitude. Within this research, we investigated the behaviour of the

family of Wigner-Rényi entropies with emphasis on the hierarchy of interaction time based on those sym-

plectically invariant measures. The potential we considered is given by the following formula [186]

U(x, t;T ) = U0 exp

[
−(x− xB)2

2w2

](
θ(tb − t) + sgn

[
sin

2π(t− tb)
T

]
θ(t− tb)

)
, (4.80)
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where U0 is the maximum of the amplitude, xB is the position of the centre of the barrier, w is the width

of the barrier, T is the period of potential changes and tb is the delay time before the periodicity of the

potential is switched on. We distinguished three cases for system considered, based upon the timescale the

period of oscillations between barrier and well state of the potential: short, intermediate, and long. This

setup was ideal for previously defined interaction time, as we have time-dependent potential and initial state

in the backscattering regime for which the casual tunnelling is ill-defined. We have shown that the family of

Wigner-Rényi entropies is nonincreasing with respect to α ≥ 1/2, that is

Sα(t) ≤ Sβ(t) ⇐⇒ α ≥ β, (4.81)

for functions belonging to f ∈ L1(R, dxdp) ∩ Lα(R2, dxdp). A natural question arises if the interaction

time satisfies similar property, namely, if τα ? τβ ⇐⇒ α ≥ β for different periods T of the oscillatory

potential.
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Figure 4.2: An example of the family of Wigner-Rényi entropies for α ∈ {1/2, 1, 2,+∞}, and the interac-

tion time τ based upon them, as a function of potential’s period T , for the system in question. We can notice

the monotonicity of entropies but can not conclude that interaction time exhibits the same pattern although

it appears to be ordered reversely, i.e. monotonicly increasing as α increases.

We have noticed that after a certain value of period T , the interaction time exhibits monotone ordering where

τα ≤ τβ ⇐⇒ α ≤ β but this issue requires further in-depth analysis to prove it rigorously. Moreover, a

question of how to construct a measurement such that this method of calculating the interaction time is valid

and in the frame of physical theory, is also crucial to answer and will be investigated in the future.
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4.4 Averaged system dynamics

Convention: the averages with respect to position and momentum variables are noted via the angular brack-

ets, whereas statistical functions E[·], Var[·] are calculated with respect to the vector parameter λ.

Let us consider two general initial value problems with a common initial condition ϱ0(x, p)ϱ̄t(x, p, t) =
ˆ̄Lϱ̄(x, p, t) + g(x, p, t),

ϱ̄(x, p, 0) = ϱ0(x, p),
,

ϱt(x, p, t;λ) = L̂(λ)ϱ(x, p, t;λ),ϱ(x, p, 0;λ) = ϱ0(x, p),
(4.82)

where λ is a random vector of independent and identically distributed variables (IID) λi from PDF f(λi),

which implies that P (λ) = Πif(λi); ϱ̄ = E[ϱ] is the ensemble averaged solution function, ˆ̄L = E[L̂] is

the ensemble averaged dynamics generator. To find the correction to this dynamic, let us assume that the

function g can be expressed as a power series in time t with operator coefficients B̂n, namely

g(x, p, t) =
∑
n=0

tnB̂nϱ̄(x, p, t). (4.83)

By the theory of abstract evolutionary equations, the formal general solutions can be written consecutively

as: for the first, non-homogenous Cauchy problem [133]

ϱ̄(t) = et
ˆ̄Lu0 +

∫ t

0
e(t−s)

ˆ̄Lg(s)ds, (4.84)

whereas the second solution is given by

ϱ(x, p, t;λ) = et(
ˆ̄L+∆̂(λ))ϱ0(x, p). (4.85)

where ∆̂(λ) = L̂(λ)− ˆ̄L. To make a convincing comparison between these two solutions, we express their

functions through power series in time t. We are particularly interested in short periods of time, so we keep

terms that are at most of the 2nd order of t. As a result, from Eq. (4.84) one gets

ϱ̄(x, p, t) ≈ ϱ0(x, p) + t
[
ˆ̄L+ B̂0

]
ϱ0(x, p) +

t2

2

[
ˆ̄L2 + B̂1 + { ˆ̄L, B̂0}

]
ϱ0(x, p), (4.86)

where we have used the following identity [75]∫ t

0
(t− s)nsmds = n!m!

(n+m+ 1)!
tn+m+1, n,m ∈ Z+, (4.87)

and, after integrating both sides of equation (4.85) w.r.t λ, we get complementary

ϱ̄(x, p, t) ≈
∫
P (λ)

[
1̂ +

(
ˆ̄L+ ∆̂(λ)

)
t+

1

2

(
ˆ̄L+ ∆̂(λ)

)2
t2
]
dλ ϱ0(x, p)

= ϱ0(x, p) + t ˆ̄Lϱ0(x, p) +
t2

2

[
ˆ̄L2 +Var[∆̂(λ)]

]
ϱ0(x, p).

(4.88)

Comparing both expressions we arrive at the lowest correction to the averaged system dynamics

ϱ̄t(x, p, t) =
ˆ̄Lϱ̄(x, p, t) + tVar[∆̂(λ)]ϱ̄(x, p, t), (4.89)

with

Var[∆̂(λ)] =

∫
P (λ)

(
L̂(λ)− ˆ̄L

)2
dλ. (4.90)
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Still keeping the undefined character of operators above, one may notice that assuming that there exists

a real symbol G(x, p, t) such that ∆(λ) can be written in the star-product adjoint form, namely ∆(λ) =

{G(x, p, t;λ), ·}⋆, then

Var[∆̂(λ)] ∼
∫
P (λ){G(x, p, t;λ), {G(x, p, t;λ, ·}⋆}⋆dλ, (4.91)

is the continuous sum of quantum jump operators with positive coefficients, present in the Lindblad equation.

Leading to the conclusion, that the average of solutions of evolutionary equations with random parameters,

in short times, introduces a Lindbladian corrections to the dynamics. In the case of quantum mechanics,

L̂(λ) can be understood as the Moyal bracket for an isolated/closed system or Wigner-Lindblad generator

for an open system dynamics. In presented case, we will consider an open quantum system, where random

perturbation of the potential is present, namely V = V (x, t;λ). Such case lead to following averaged

Lindblad operator

ˆ̄L = − p

m
∂x +

∫
P (λ){V (x, t;λ), ·}⋆dλ+ Γx∂x(x(·)) + Γp∂p(p(·)) +

1

2
Dxx∂

2
pp +

1

2
Dpp∂

2
xx −Dxp∂

2
xp,

(4.92)

and complementary

∆(λ) = L̂(λ)− ˆ̄L = {V (x, t;λ)− V̄ (x, t), ·}⋆ = {δV (x, t;λ), ·}⋆ (4.93)

giving 〈
∆2(x, t,λ)

〉
λ
=

∫
P (λ){δV (x, t;λ), {δV (x, t;λ), ·}⋆}⋆dλ. (4.94)

To better visualise the operator Var[∆̂(λ)] we use the different representation of the Moyal bracket, leading

to

Var[∆̂(λ)] = − 1

ℏ2

[
δV

(
x+

iℏ
2
∇p, t;λ

)
− δV

(
x− iℏ

2
∇p, t;λ

)]2
, (4.95)

so total approximated equation of motion for averaged system is

∂tϱ̄ = − p

m
∂xϱ̄+

∫
P (λ){V (x, t;λ), ϱ̄}dλ+ Γx∂x(xϱ̄) + Γp∂p(pϱ̄)

+
1

2
Dxx∂

2
ppϱ̄+

1

2
Dpp∂

2
xxϱ̄−Dxp∂

2
xpϱ̄

− t

ℏ2

∫
P (λ)

[
δV

(
x+

iℏ
2
∇p, t;λ

)
− δV

(
x− iℏ

2
∇p, t;λ

)]2
ϱ̄ dλ.

(4.96)

Since the equation of motion for the WDF for the averaged system is not explicitly available in an an-

alytical or calculable form, we instead focus on the law of large numbers, which gives us the following

expression [110]:

E[ϱ](x, p, t) =
1

N

N∑
k=1

ϱ(x, p, t;λk), as N →∞, (4.97)

which will be used to calculate the averaged WDF for open system. As a model for simulations a time-

independent potential is considered in the form of the sequence of nearly periodic Gaussian barriers

V (x;λ) =
∑
k

V0
1√
2πσ

e−
(x−kµ−λk)2

2σ2 , (4.98)
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where it is assumed that all barriers are initially, without introducing the random vector λ, equidistant,

with equal amplitudes and standard deviations. We will consider two probability distributions from which

components of the vector λ are drawn:

1. A uniform distribution over a symmetric interval:

P (λk) =
1

2ασ
θ(|λk| ≤ ασ);

2. A Gaussian distribution centred around 0 with standard deviation w > 0:

P (λk) =
1√
2πw

e−
1

2w2 λ
2
k , λk ∈ R.

Generally, it will be assumed that parameters presented in the probability distributions are of the order of

single Gaussian barrier of the potential, so the influence of the λk is treated as a perturbation from periodicity

of the system rather than the complete anihilation of these characteristics. Then the following averaged value

of the potential holds

1. For the uniform distribution

V̄1(x) =
V0
4ασ

∑
k

[
erf

(
ασ − x+ kµ√

2σ

)
+ erf

(
ασ + x− kµ√

2σ

)]
; (4.99)

2. For the normal distribution of λ

V̄2(x) =
V0√

2π(σ2 + w2)

∑
k

e
− (x−kµ)2

2(σ2+w2) . (4.100)

With averaged potentials, we can re-express the Eq.(4.95) in terms of V̄i(x) and the value of
〈
V 2(x;λ)

〉
λ

as shown in the Appendix E.2. However, using standard statistical measures and their properties, we can

gain insight into the equation (4.96), holding as an assumption that the potential V (x) is smooth. Firstly,

let us rewrite the potential as a sum of potentials where each component depends only on one coordinate of

random vector λ, that is:

V (x;λ) =
∑
k

vk(x;λk). (4.101)

Here we do not specify the form of the function vk(x, λk), to keep the result as general as possible. Never-

theless, we make the assumption that it is a smooth function and that the integrals

E[vk(x;λk)] :=

∫
P (λk)vk(x;λk)dλk, (4.102)

and

Var[vk(x;λk)] :=

∫
P (λk)(vk(x;λk)− E[vk](x))

2dλk, (4.103)

are finite for any k. The integral expression in (4.96) can be rewritten as

−ℏ2
∫
P (λ){δV (x, t;λ), {δV (x, t;λ), ·}}dλ = Var

[
V

(
x+

iℏ
2
∂p;λ

)]
+Var

[
V

(
x− iℏ

2
∂p;λ

)]
− 2cov

[
V

(
x+

iℏ
2
∂p;λ

)
, V

(
x− iℏ

2
∂p;λ

)]
.

(4.104)
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With the form of the potential V (x;λ) provided previously we can simplify this expression, using the

properties of the variance and covariance, namely

Var [V (z;λ)] = Var

[∑
k

vk(z;λk)

]
=
∑
k,l

cov [vk(z;λk), vl(z;λl)]

=
∑
k

Var [vk(z;λk)] ,

(4.105)

where cov [vk(z;λk), vl(z;λl)] = 0 for k ̸= l as λk, λl are independent random variables. Complementarily,

the covariance present in the initial expression can be rewritten using the bilinearity property, i.e

cov [V (y;λ) , V (z;λ)] = cov

[∑
k

vk(y;λk),
∑
l

vl(z;λl)

]
=
∑
k,l

cov [vk(y;λk), vl(z;λl)]

=
∑
k

cov [vk(y;λk), vk(z;λk)] ,

(4.106)

where mixed-terms covariances are equal to 0, same as before. In conclusion, the correction to the dynamics

resulting from the randomness of the system can be expressed as∫
P (λ){δV (x, t;λ), {δV (x, t;λ), ·}}dλ =− 1

ℏ2
∑
k

(Var [vk(y;λk)] + Var [vk(z;λk)]

− 2cov [vk(y;λk), vk(z;λk)])

∣∣∣∣y=x+ iℏ
2
∂p

z=x− iℏ
2
∂p

=− 1

ℏ2
∑
k

Var
[
vk

(
x+

iℏ
2
∂p;λk

)
− vk

(
x− iℏ

2
∂p;λk

)]
.

(4.107)

Using now the assumption about the smoothness of the constituent functions uk(x;λk), we expand each in

Taylor series, leading to

vk

(
x+

iℏ
2
∂p;λk

)
− vk

(
x− iℏ

2
∂p;λk

)
= iℏ

+∞∑
n/0

(−1)n
(2n+ 1)!

(
ℏ
2

)2n

∂2n+1
x [vk(x;λk)]∂

2n+1
p , (4.108)

and consequently, the variance of the difference can be written as

Var
[
vk

(
x+

iℏ
2
∂p;λk

)
− vk

(
x− iℏ

2
∂p;λk

)]
=

− ℏ2
+∞∑
m=0
l=0

(−1)m+l

(2m+ 1)!(2l + 1)!

(
ℏ
2

)2(m+l)

cov
[
∂2m+1
x vk(x;λk), ∂

2l+1
x vk(x;λk)

]
∂2(m+l)+2
p .

(4.109)

The lowest order correction to the dynamics can be achieved by taking m = l = 0, then

Var
[
vk

(
x+

iℏ
2
∂p;λk

)
− vk

(
x− iℏ

2
∂p;λk

)]
= −ℏ2Var[v′k(x;λk)]∂pp, (4.110)

or in the context of the equation of motion

∂tϱ̄ = − p

m
∂xϱ̄+ {V̄ (x, t), ϱ̄}+ Γx∂x(xϱ̄) + Γp∂p(pϱ̄)

+
1

2
Dxx∂

2
ppϱ̄+

1

2
Dpp∂

2
xxϱ̄−Dxp∂

2
xpϱ̄+ t

(∑
k

Var[v′k(x;λk)]

)
∂ppϱ̄.

(4.111)
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As a result, the derived correction can be treated in the lowest order as a position-dependent decoherence

term, and its strength is coupled to the variance of the potential components’ derivative. Moreover, it displays

the emergence of decoherence in averaged systems. Even further simplification of the problem is possible,

allowing us to bound the decoherence to the spread of the random parameter. Let us recall that for a function

f(x;λ) parameterised by a random variable λ, with mean E[λ] = 0, we can approximate its variance via

the following relation

Var[f(x;λ)] ≈ σ2λ
(
∂f

∂λ

)2 ∣∣∣∣
λ=E[λ]=0

, (4.112)

which is known as the delta method [30], which reduces to applying the Taylor expansion with respect to λ

for function f(x; ·). In our case, this approximation leads to

Var[v′k(x;λk)] ≈ σ2λ
(
∂2vk
∂x∂λk

)2 ∣∣∣∣
λk=E[λk]=0

. (4.113)

Within this work, we will consider constituent potentials, vk, dependent on the difference between position

x, and random variable λk, vk(x;λk) = vk(x−λk) allowing for further simplifications, where the derivative

with respect to λ can be substituted with the derivative with respect to position, taken with a negative sign,

−∂x, giving us the following equation:

∂tϱ̄ = − p

m
∂xϱ̄+ {V̄ (x, t), ϱ̄}+ Γx∂x(xϱ̄) + Γp∂p(pϱ̄)

+
1

2
Dxx∂

2
ppϱ̄+

1

2
Dpp∂

2
xxϱ̄−Dxp∂

2
xpϱ̄+ tσ2λ

∑
k

(∂2xxvk(x; 0))
2∂2ppϱ̄.

(4.114)

For a better understanding of the derived dynamics, an example was considered for the linear potential

V (x;λ) = V (x;E) = Ex, in Appendix D.
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4.5 Numerical results

Within this section, we have used the algorithm developed in Sec. 4.2 to investigate the dynamics of the

system described by equation (4.114). The numerical calculations were performed on a symmetric Nx ×
Np = 1024 × 1024 (x, p) grid with the initial WDF state taken as a Gaussian function with uncorrelated

position and momentum.

ϱ(x, p, 0) = ϱ0(x, p) =
1

2πσxσp
e
− 1

2

(
x−x0
σx

)2
− 1

2

(
p−p0
σp

)2

, (4.115)

with the following parameters: x0 = −300 [a.u.], p0 = 0.15 [a.u.], σx =
√
500 [a.u.], σp = 1/(2 ·

√
500)

[a.u.]. This gives the mean energy of the initial state at the value ⟨E⟩ ≈ 0.0113 [a.u.]. The maximum

position value on the grid was set to xmax = 1500 [a.u.] while for the momentum pmax = 1.5 [a.u.] which

gives the grid steps ∆x = 2.93 [a.u.] and ∆p = 0.00293 [a.u.], as the grid is rectangular [−xmax, xmax]×
[−pmax, pmax]. The time step for the closed single barrier and chain of barriers systems was set as ∆t = 10

[a.u.]. For the single-barrier system, it overlaps with the parameters used in our publications [185, 186, 97].

The parameters of the environment were chosen so that the whole evolution resembles Brownian evolution,

with Γx = Dpp = Dxp = 0 while Γp = 10−5, Dxx = 10−6. The values of the parameters were guided by

the stability of the algorithm. As for the perturbation vector λ of the potential, we considered 50 cases, each

having either 1 (single barrier) or 20 (chain of barriers) coordinates, which together constitute a statistical

ensemble.

4.5.1 Dynamical parameters of the system

To characterise the dynamical properties of the system, we considered a group of parameters which can be

classified as follows:

1. The statistical parameters
Measures which stem directly from the definition and properties of the WDF and have physical and

statistical interpretation. Those include: mean values of position and momentum and centralised sec-

ond moments. We define those as follows: the mean position and momentum

⟨x⟩ (t,λ) =
∫
R2

xϱ(x, p, t;λ)dxdp, (4.116)

and

⟨p⟩ (t,λ) =
∫
R2

pϱ(x, p, t;λ)dxdp, (4.117)

complementarly, the second centralised moments:

σ2x(t,λ) =
〈
x2
〉
(t,λ)− ⟨x⟩2 (t,λ),

σ2p(t,λ) =
〈
p2
〉
(t,λ)− ⟨p⟩2 (t,λ),

cov[x, p](t,λ) = ⟨xp⟩ (t,λ)− ⟨x⟩ ⟨p⟩ (t,λ).

(4.118)

The pair (⟨x⟩ (t,λ), ⟨p⟩ (t,λ)) will be understood as quantum phase-space trajectories, and are in

close relation with classical ones. They are the main concern of Ehrenfest theorem [149], drawing
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similarities between classical and quantum mechanics. Additionally, we recieve the trajectory for each

realisation of the system. Using the linearity of mean value, with respect to the (quasi-)probability

density function, we expect that average Wigner function ϱ̄ moves along the average of phase-space

trajectories. Complementarly, the second moments allow us to characterize the deviation from the

mean trajectory and also the correlation between both variables considered. The evolution equation

for mentioned moments is given by the following system of coupled ordinary differential equations:

the first moments (means) ∂t ⟨x⟩ =
1

m
⟨p⟩ − Γx ⟨x⟩ ,

∂t ⟨p⟩ = −⟨∂xV (x;λ)⟩ − Γp ⟨p⟩ .
(4.119)

and second centralised moments (variations and covariance)
∂tσ

2
x =

2

m
cov(x, p)− 2Γxσ

2
x +Dpp,

∂tσ
2
p = −2cov(p, ∂xV (x;λ))− 2Γpσ

2
p +Dxx,

∂tcov(x, p) =
1

m
σ2p − cov(x, ∂xV (x;λ))− (Γx + Γp)cov(x, p)−Dxp.

(4.120)

Yet again, we see that Gaussian states are preserved in the case of potentials of the polynomial type

of at most second order, as the system of presented equations is then closed, and gives full evolution

of the parameters of the Gaussian state.

This can also be debated in the case of the averaged dynamics. Then the system of ODEs describing

the moments is given by ∂t
¯⟨x⟩ = 1

m
⟨p⟩ − Γx ⟨x⟩ ,

∂t ¯⟨p⟩ = −
〈
∂xV̄ (x)

〉
− Γp ⟨p⟩ .

(4.121)

and complementarily

∂tσ̄
2
x =

2

m
¯cov(x, p)− 2Γxσ̄

2
x +Dpp,

∂tσ̄
2
p = −2cov(p, ∂xV̄ (x))− 2Γpσ̄

2
p +Dxx + tσ2λ

∑
k

(∂xxvk(x;0))
2,

∂t ¯cov(x, p) =
1

m
σ2p − cov(x, ∂xV̄ (x))− (Γx + Γp) ¯cov(x, p)−Dxp.

(4.122)

which especially changes in the evolution of the momentum-variance of the average solution.

2. The phase-space characteristics
Measures that are a functionals of the WDF. Between all possibilities, the most recognizable is the

nonclassicality parameter [101]. It classifies the negativity of the WDF, simultaneously quantifying the

quantum effects [148]. According to Ref. [91], the WDF is classified as real probability distribution

function, thus is non-negative, only when the underlying wave function of the quantum system is

Gaussian exponential. This yields yet another interpretation of the nonclassicality parameter - as the

measure of deviation from Gaussian distribution function. Moreover, it was shown that negativity

of the WDF is required to witness the tunneling effects in quantum systems [111]. nonclassicality

parameter found its applications in the Resource Theory [161], as logarithmic nonclassicality which
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is a computable resource measure, capturing the negativity of the WDF and behaving monotonically

under Gaussian free operations [2].

In the case of mixed quantum states, however, there exist postivie WDFs that are simultanously non-

Gaussian [117]. The nonclassicality parameter is defined as [101]

δ :=

∫
R2

(|ϱ(x, p)| − ϱ(x, p))dxdp =
∫
R2

|ϱ(x, p)|dxdp− 1, (4.123)

and it satisfies the following bound δ ∈ [0,+∞). The time and λ dependence is naturally transfered

from the WDF to δ(t;λ).

The second measure, quantifying the amount of information the WDF possesses, is the Wigner-

Shannon entropy. It is associated with a deformation of the area occupied in the phase space, that

was caused by quantum position-momentum correlations [186]. It is a special case of a family of

Wigner-Rényi entropy [172, 97]

Sα(t;λ) =
1

1− α ln

[
(2πℏ)α−1

∫
R2

dxdp
(
|ϱ̃(x, p, t;λ)|2

)α]
, (4.124)

which for α→ 1 has the form

S1(t;λ) = −2
∫
R2

dxdp |ϱ̃(x, p, t;λ)|2 ln
(
|ϱ̃(x, p, t;λ)|2

)
, (4.125)

where ϱ̃ = ϱ/∥ϱ∥L2(R2). Additionally, according to [1], the rate of change of the Shannon entropy

can be associated with the rate of diffusion of the quasiprobability function over the phase space.

It should be noted, that the topic of quantum entropy for quasiprobability distributions is quite vast,

and many definitions and directions were considered that resemble the standard differential Shannon

entropy [172, 53, 173, 118]. However, the definition provided in Eq. (4.125) uses the interpretation

of the Wigner function as the probability amplitude function [21, 38]. In our work [97], we have

shown the relationship between the nonclassicality parameter, and the Wigner-Rényi entropy of order

α = 1/2.

3. State characteristics
We shall recall one of the previously mentioned parameters. By theorem 1.1 the purity of the state can

be used to determine whether the state of the system is pure or mixed. In terms of Wigner function,

the purity is defined as

D(t;λ) = 2πℏ
∫
R2

ϱ2(x, p, t;λ)dxdp, (4.126)

and can be used to track the characteristic trait of the quantum state. However, as underlying Hilbert

space of the system is infinite-dimensional, the crucial property is missed, namely we are not able to

state which state of the system is maximally mixed. This is especially interesting, as the maximally

mixed state has the maximal Shannon entropy, equal to ln d [128], where d is the dimension of the

Hilbert space, providing connection between two measures and their physical interpretations. More-

over, under Liouvillian dynamics (2.38), the purity of the system is non-increasing function of time,

namely Ḋ(t) ≤ 0. This is proven as great criterion for correctness of the dynamics of the system, as

increasing purity would suggest that the motion of the system is no longer governed by the GKSL

equation.
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Another measure, associated mostly with the investigation of the influence of the perturbation of the

system on its dynamics, is the Lochschmidt Echo, introduced by A. Peres [135]. It can be defined as a

overlap measure between unperturbed system Wigner function ϱ(x, p, t;0) = ϱ(x, p, t) and perturbed

one ϱ(x, p, t;λ) [73, 41]

M(t;λ) := 2πℏ
∫
R2

ϱ(x, p, t)ϱ(x, p, t;λ)dxdp. (4.127)

Its interpretation, based on the mathematical formula, is straight forward: it measures the overlap

between the two types of the dynamics with similar initial condition ϱ0(x, p) allowing for quantita-

tive describtion of the divergence from unperturbed evolution. However, the main physicall question

standing behind this measure is the reversibility of the dynamics. Due to its simplicity, it especially

found applications in chaos theory for quantum mechanical systems [135, 187] as a tool for analysis

of reversibility of the evolution but it can also be interpreted as sensivity of the quantum system to

perturbations.

4. The distances between states
The distance between two density operators, ρ̂1, ρ̂2 is given by the trace distance defined as fol-

lows [128, 108]

d(ρ̂1, ρ̂2) :=
1

2
Tr(|ρ̂1 − ρ̂2|), (4.128)

which can not be easily transferred to the quantum phase space, as by the Weyl quantisation procedure

we get

d(ϱ1, ϱ2) :=
1

2

∫
R2

|ϱ1(x, p, t)− ϱ2(x, p, t)|⋆dxdp, (4.129)

where modulus function presented in the integrand expression is understood as ⋆-modulus. Its defini-

tion is rather complicated and can be given in terms of a limit, instead of an analytic formula

|ϱ(x, p, t)|⋆ := lim
k→+∞

tanh⋆(kϱ(x, p, t)) ⋆ ϱ(x, p, t). (4.130)

which is one of many ways to define a standard modulus within the scope of commutative product.

Thus, a different distance measure should be considered, where an explicit formula can be written

down and then calculated - even numerically. Fortunately, the Hilbert-Schmidt distance is one of such

measures, that can be directly translated in terms of Weyl transform, namely

d̃1(ϱ1, ϱ2) :=

√∫
[ϱ1(x, p, t)− ϱ2(x, p, t)]2dxdp, (4.131)

where ϱ1, ϱ2 are the WDFs of density operators ρ̂1, ρ̂2. By the triangle inequality ∥ϱ1 − ϱ2∥2 ≤
∥ϱ1∥2 + ∥ϱ2∥2 we can normalize this expression to identity, namely

d1(ϱ1, ϱ2) :=

√∫
[ϱ1(x, p, t)− ϱ2(x, p, t)]2dxdp√∫

ϱ21(x, p, t)dxdp+
√∫

ϱ22(x, p, t)dxdp
. (4.132)

The integral of the square of the WDF, as previously stated, is proportional to the purity of the state,

hence, the distance considered allows for measuring what fraction of the sum of purities of two states,
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calculated independently, is covered by the difference between these states. For the sake of this work,

we are interested in two distances: the one between the average of the solution and the approximated

average solution, and the other between states and the unperturbed system. This approach should

quantify the discrepancies between the approximation and the amount of deviation from the dynamics

without the vector of random parameters λ.
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4.5.2 Single barrier with perturbed centre

For the first case of the system, we considered a closed quantum system with a potential of the form

V (x;λ) = V0
1√
2πσ

e−
(x−λ)2

2σ2 , (4.133)

where for each λ, being a random variable. In this setting, the perturbation λ corresponds to shifting of

the barrier towards or away from the initial state WDF, as it is centralised at point (x0, p0) in the phase

space, according to Eq. (4.115). Therefore, for each value of λ, the evolution is either delayed or advanced:

λ > 0 gives a delay, while λ < 0 gives an advance. This repulsive Gaussian potential model can be related

to nanowire defects models [184, 103], to studies of interacting Bose-Einstein condensate through a bar-

rier [120, 92], or considered for a tunnelling model for estimation of tunnelling time [55] and semiclassical

analysis [13]. In this first simulation, we did not include the environmental effects to see if our intuition

behind the isolated model is right. As noted earlier, both the averaged system and its approximation should

be influenced by the effective environmental effects introduced through averaging, rather than by a physical

coupling to an external system. Classically, this system corresponds to a simple λ-shifted barrier, which

exhibits two types of dynamics: reflection from the barrier or free evolution above it.

Figure 4.3: An artistic visualisation of the types of dynamics in the presented system. The classical particle

(blue-bottom or red-top ball) can either back-scatter from the potential or transfer right above the barrier,

depending on the initial energy it has. The curves represent a phase-space trajectories associated with those

dynamics.
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Isolated system

Convention: In all subsequent figures, the results for Gaussian disorder are shown in the left panel (or

column), and the results for uniform disorder are shown in the right panel (or column). The grey band

represents the ensemble of realisations of the parameters for the disordered system, while the green line is

associated with the parameters of the unperturbed system. The red and blue lines indicate the parameters of

the ensemble average WDF and of our approximation, respectively.

The phase-space trajectories of this system, as expected, form a family of shifted curves on the x, p-

plane, as visible in Fig. 4.4
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Figure 4.4: The phase-space trajectories of the WDFs for the isolated system.

One can immediately notice that the grey curves are not only shifted, but also their extrema are lower for

each λ vector considered. This behaviour results from the evolution associated with a free particle. When

the potential energy vanishes V (x;λ) = 0 or when there are unbounded regions where V (x;λ) ≈ 0 within

some tolerance, the evolution follows (or is close to) a transformation known as shearing [47]. In particular,

for the free particle potential, the general solution to the Moyal equation, with the initial condition ϱ0, is

given by

ϱ(x, p, t) = ϱ0(x− pt, p), (4.134)

which means that the solution is constant along the characteristics x − pt = c1 and p = c2. Although the

momentum p does not change, it still governs the behaviour of the position through its amplitude and sign.

As a result, parts of the Wigner function, lying below the x axis (p < 0), move to the left, while those above

move to the right, and the shift increases over time t > 0. The closer the barrier is to the initial state, the less

sheared the Wigner function becomes before reaching it. This creates a shifted and lowered maximum on the

(x, p)-plane. It is also noticeable that all phase-space trajectories, except the one given by the approximate

average solution, have a final momentum smaller than the initial value. Looking at the second moments of

the WDF, they exhibit the following evolution patterns, displayed in Fig. 4.5
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Figure 4.5: The standard deviation and covariance of momentum and position of the WDF for the isolated

single barrier system. In this particular case, the grey band associated with the second centralised moments

of the perturbed systems is not visible in the figure (covered by the red line), which suggests that the random

location of the potential does not influence these parameters.
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We can see that for both cases of random location distributions P (λ), the behaviour of second moments of

the WDF is similar. In particular, the standard deviation and the covariance of the average WDF seem to

be kept within the bounds of the evolution, and more importantly, the shift of the potential does not exhibit

crucial changes to its moments. Therefore, we can state that the structural change of a barrier does not

influence the spreading of the WDF. In contrast, the blue line in Fig. 4.5, which represents the approximated

average solution parameters, is visibly different from its previous counterparts. The sigmoid-like structure

for both σx and σp is inconsistent with the ensemble average and should be treated rather as a worst-case

scenario. This leads to the appearance of the maximum covariance between position and momentum, which

is delayed in the case of a uniform distribution.

Since the initial state is given by a Gaussian function, which is a proper classical PDF, it is natural to

investigate how the nonclassicality parameter changes during evolution together with the Wigner-Shannon

entropy, as seen in Fig. 4.6 From the evolution of δ(t;λ), it is visible that before the interaction with the
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Figure 4.6: The nonclassicality parameter and Wigner-Shannon entropy of the isolated single barrier system.

centre of the barrier, the Wigner function stays positive and Gaussian. As discussed earlier, away from

the barrier, the potential resembles that of a free particle, and the evolution is governed by the shearing

transformation. This preserves the form of a function, which implies that δ(t;λ) = 0 or, more precisely,

δ(t;λ) ≈ 0 since some interaction between the Gaussian tail and the barrier is still expected. Once the barrier

is reached, the value of δ(t;λ) increases, indicating an enlargement of the area where the WDF is negative,

and suggesting the appearance of quantum effects, such as quantum interference. After the interaction,
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δ(t;λ) slowly approaches a fixed nonzero value. For the ensemble’s average WDF, however, δ(t;λ) tends

towards zero, while for the approximated solution, the nonclassicality parameter begins to increase again.

To examine whether the nonclassicality parameter continues to change under further evolution, we can

analyse the Wigner-Shannon entropy shown in the Figs 4.6b, 4.6d. After approximately t = 3× 103 [a.u.],

the entropy remains nearly constant, which means that the system no longer interacts with the potential.

Therefore, the nonclassicality reaches asymptotically a fixed value. Additionally, the spread of the WDF for

the ensemble and its average, after the interaction with the potential, slows down as dS(t;λ)/dt ≈ 0, which

is consistent with the expected behaviour.

For the analysis of the type of dynamics of the system, we shall consider the purity and Loschmidt

echo, displayed in Fig. 4.7 The purity of each realisation of the system is constant and equal to unity, which
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Figure 4.7: The purity and Loschmidt echo for the isolated single barrier system. For the purity, the grey

band is perfectly tracing the green line of the unperturbed system, as the evolution is unitary.

confirms that the evolution of the system is isolated. In contrast, the purity of the averaged case shows

unusual behaviour. It initially decreases and later returns to unity. This rules out interpreting the dynamics of

the average as isolated, or even as Lindbladian, since in that case the value of purity should be nonincreasing.

On the other hand, the approximated average purity decreases monotonically, which is consistent with the

evolution guided by Eq. (4.114). Furthermore, as shown in the Figs 4.7b, 4.7d, the system itself exhibits

reversible dynamics, whereas the approximated average solution’s echo suggests the complete loss of the

information within the system, with simultaneous overdamping of the ensemble’s dynamics. On the other
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hand, the system’s reversibility is largely insensitive to spatial perturbations of the potential. Apart from a

single extremum in the Loschmidt echo, its value tends to unity for each realisation within the ensemble,

apart from the proposed average approximation, where the reversibility is lost.

To gain a deeper understanding of the relationship between constituent realisation of the system, we

analysed the distance between each WDF, including the average WDF and its approximation, and the un-

perturbed system WDF in the Fig. 4.8 With an additional analysis of the distance between the averaged
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Figure 4.8: The distance between the WDF for the unperturbed potential and each of the following for the

isolated single barrier system: the perturbed WDF, the ensemble average, and the proposed approximation

of the average.

WDF and the proposed approximation, in Fig. 4.9 The distance between the unperturbed WDF and the
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Figure 4.9: The distance between the ensemble average E[ϱ] and proposed approximation ϱ̄ in the case of

the isolated single barrier system.

perturbed cases and averages starts from zero, then changes upon reaching the centre of the potential, and

eventually stabilises at a nonzero constant value. Since the initial evolution resembles that of a free particle,

it is expected that the perturbed solution initially overlaps with the unperturbed one. The same behaviour is

observed for the ensemble average and its approximation. It suggests that states, after the interaction, stay in

constant separation from each other. The averaged WDF does not fully resemble the unperturbed WDF, as

their distance stabilises at a value greater than 0. The same reasoning can be applied for the distance between
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the suggested approximation and the average WDF, seen in Figs 4.9a, 4.9b, and thus it poorly approximates

the evolution, especially when interaction with the potential starts and after it.

Open system

As a next step, we open the system by introducing the environmental effects, which are included by keeping

the coefficients Γp and Dxx non-zero in Eq. (4.35). This leads to the following dynamics of the WDFs

considered, seen in Figs 4.10 Compared to the isolated system, the phase-space trajectories of the open
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Figure 4.10: The phase-space trajectories of the WDFs for the open system.

system do not appear to differ significantly. However, there is a visible constant loss of momentum for all

cases after interaction with the barrier, due to the loss of energy. The same conclusions can be applied to

the phase-space trajectories of the ensemble average. This result is not surprising, as the constants present

in the evolution equation are taken small, so that the decoherence and dissipation effects are prolonged

through evolution. However, the small amplitude of those coefficients does not significantly influence the

decoherence constant present in the approximated equation for the ensemble average WDF, and thus its

trajectory remains similar to that of the isolated dynamics. As a next set of parameters, we consider the

second moments of the WDFs, seen in Fig. 4.11
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Figure 4.11: The standard deviation and covariance of momentum and position of the WDF for the isolated

single barrier system. As is the case with the isolated system, there is no grey band present in the figures.

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



4. Results 60

The second moments of the WDFs considered align almost perfectly with the case of the isolated system.

This would imply that environmental effects do not affect their behaviour. However, the standard deviation

of the momentum increases in the case of the open system, while it was almost constant for the isolated one.

Consequently, we try to notice differences between the systems using the phase-space and state measures,

displayed in Figs 4.12, 4.13 Although the phase-space trajectories of the WDFs do not differ significantly
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Figure 4.12: The nonclassicality parameter and Wigner-Shannon entropy of the open single barrier system.

between isolated and open systems, the nonclassicality parameter and entropy exhibit completely different

behaviour. In the long-time limit, the nonclassicality parameter for all WDFs considered approaches zero. As

a consequence, the asymptotic state of the system is represented by a positive WDF for all random vectors λ,

which implies that the final state of the system is a Gaussian or a positive mixed quantum state. The Wigner-

Shannon entropy increases monotonically, with a small "bump" around the time instant t ≈ 2 × 103 [a.u.].

This result suggests a further spread of the distribution as time increases. The rate of spreading is similar for

the perturbed WDF and the ensemble average, while the approximated average initially diffuses faster but

eventually stabilises at a constant rate. However, the presence of the environment reduces the spread of the

Wigner-Shannon entropy across the contributing realisations of the system. It acts as a barrier to information

spreading, limiting the possible dispersion of the WDF among ensemble elements, and controlling the rate

at which entropy increases.

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



4. Results 61

0 1 2 3 4 5

t [103a.u.]

0.0

0.2

0.4

0.6

0.8

1.0
D

(a)
Perturbed 
 cases

Unperturbed
 case Average Approximated 

 average

0 1 2 3 4 5

t [103a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

M

(b)
Perturbed 
 cases Average Approximated 

 average

0 1 2 3 4 5

t [103a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

D

(c)
Perturbed 
 cases

Unperturbed
 case Average Approximated 

 average

0 1 2 3 4 5

t [103a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

M

(d)
Perturbed 
 cases Average Approximated 

 average

Figure 4.13: The purity and Loschmidt echo for the open single barrier system. Yet again, the randomised

location of the barrier does not significantly influence the measures considered.

Both the purity and the Loschmidt echo, shown in Fig. 4.13, are monotonic functions that tend to zero as

t → +∞. This shows that the system, in addition to becoming a strong mixture of quantum states, also

loses reversibility during evolution. This tendency is precisely depicted by the echo of the approximated

average WDF, where, after the time t ≈ 2× 103 [a.u.], the approximation is overdamped, leading to a much

faster loss of purity and information. Thus, opening the initially isolated system, the interaction with the

environment decreases the purity of the state, simultaneously disallowing for any reversibility within the

ensemble, as the grey band narrows for the Loschmidt echo in Figs 4.13b, 4.13d.
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Figure 4.14: The distance between the WDF for the unperturbed potential and each of the following for the

open single barrier system: the perturbed WDF, the ensemble average, and the proposed approximation of

the average.
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Figure 4.15: The distance between the ensemble average E[ϱ] and proposed approximation ϱ̄ in the case of

the open single barrier system.

A notable property that occurs after the introduction of environmental effects is the asymptotic behaviour of

the distance between the considered WDFs and unperturbed dynamics. From the Fig. 4.14a, we can deduce

that this measure also tends to zero, suggesting that in the long time t → +∞, the final state of the system

is similar regardless of the scale of the barrier perturbation and their mean averages to the stationary state.

This last implication is straightforward, since the mean of identical states is the same state. However, the

same does not apply to the approximation in Fig. 4.15, which converges to some distribution, but one that

differs from that of the perturbed system.
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4.5.3 Chain of Gaussian barriers with perturbed centres

In this case, the potential has the form

V (x;λ) =
∑
k

V0
1√
2πσ

e−
(x−kµ−λk)2

2σ2 , (4.135)

where the index k is restricted by the length of the calculation box and µ is the distance between the centres

of the barriers. Due to the presence of random perturbations in the positions of the barrier centres, the system

loses its displacement symmetry. In other words, the Hamiltonian of the system no longer commutes with the

spatial translation operator T̂µ = exp((−i/ℏ)µp̂), where a is the period of the potentnial, deeming the Bloch

approach inapplicable. We shall refer to this system as a structurally disordered system [159, 106, 58]. The

natural point of comparison for such systems is the non-perturbed structurally periodic potential V (x;0) that

represents a chain of Gaussian barriers. Unlike the previous case, this system cannot be simply interpreted

in classical terms, even when λ = 0, unless the position variable covers the whole real line x ∈ R. To

illustrate where the classical interpretation fails, let us consider the unperturbed potential V (x;0). In this

case, the system can indeed be interpreted as a periodic potential, namely a Gaussian chain of barriers, each

separated by distance µ. Let xj denote the position of the j-th barrier centre, that is, xj = jµ. From the

formula above, we compute the derivative with respect to x in order to locate the extrema:

∂xV (x;0) = − V0√
2πσ3

∑
k

(x− kµ)e−
(x−kµ)2

2σ2 . (4.136)

Substituting x = xj = jµ, we obtain a nonzero remainder term:

∂xV (xj ;0) = −
V0µ√
2πσ3

∑
k ̸=j

(j − k)e−
µ2(j−k)2

2σ2 , (4.137)

where the summand is antisymmetric in j, k and vanishes only for k ∈ Z. However, in numerical calcu-

lations, especially in the perturbed case, the system is restricted to a finite grid, allowing only for a finite

number of centres. As a result, antisymmetry is broken, and a nonzero contribution remains. Furthermore,

additional extrema may emerge at positions other than integer multiples of µ, depending on the width of

the Gaussian barriers. The classical dynamics of this system is therefore more involved, but can still be

described qualitatively. It is a combination of bounded motion around fixed points, unbounded motion over

the barriers, and semi-bounded motion over smaller barriers up to a higher-energy barrier where reflection

occurs. Nevertheless, as the number of barriers increases and the width of each Gaussian increases, this

classical description becomes progressively less traceable.
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x

p

Figure 4.16: An example of a classical flow of a perturbed Gaussian chain. The variety of the types of dy-

namics is diverse: from bounded motion in local wells (blue-colored closed curves) to unbounded evolution

of the classical system (red curves going from far left to far right), existing without any regularity.

Isolated system

For the simulations, we considered an isolated system with the potential defined in Eq. (4.135), using the

parameters V0 = 0.015 [a.u.] for the barrier amplitude, σ =
√
50 [a.u.] for the barrier width and µ = 50 ·∆x

[a.u.] for the mean separation. For these parameters, the mean phase-space trajectories of the system and the

corresponding averages are shown in Fig. 4.17
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Figure 4.17: The phase-space trajectories of the WDFs for the open system.

We can notice that no closed phase-space trajectories form under time evolution for all the considered cases,

where for some cases of λ, a trajectory is a straight line, regardless of the underlying probability distribution.

Additionally, the ensemble average almost precisely follows the dynamics of the unperturbed system. The

approximated average of the ensemble is strongly damped, where shortly after the start of the simulation, it

loses all of the momentum, jittering around p ≈ 0− [a.u.]. To complement this picture, we investigated the

statistical parameters of the WDF and their change, which leads to the behaviour displayed in Fig. 4.18.
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Figure 4.18: The standard deviation and covariance of momentum and position of the WDF for the isolated

multiple barrier system.
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At first glance, the second centralised moments for the perturbed system and the ensemble average follow

almost identical behaviour, with the average resembling the dynamics of the unperturbed system. The grey

band is narrow, suggesting that, yet again, the structural disorder of the system does not impact the spread

of the WDFs drastically. In contrast, the approximation predicts excessive growth of the moments, which

is inconsistent with the isolated ensemble. The structure of the potential can be noticed in the oscillatory

character of the ensemble average and in the grey band that represents the elements of the ensemble.
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Figure 4.19: The nonclassicality parameter and the Wigner-Shannon entropy of the isolated multiple barrier

system.

In the isolated case, the nonclassicality parameter increases with time, while the Wigner-Shannon entropy

increases modestly, as seen in Fig. 4.19. This reflects the persistence of the interference patterns within the

system when there are no environmental effects present. The values of the parameters for each perturbed

system stay relatively close to those for the WDF of the unperturbed system. However, the introduction

of multiple barriers reduces the effectiveness of ensemble averaging, as the parameters for the averaged

WDF lie below the values for the unperturbed case, indicating that more samples should be considered for

such systems. Although the parameters for the ensemble average display a similar but weaker behaviour, the

approximated average overshoots the entropy values and overdamps the interference within the system. This

is especially visible in the nonclassicality parameter, Figs 4.19a, 4.19c, where shortly after the beginning

of the evolution, the system ends up in a positive state with nonclassicality equal to 0. Of course, this
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is unsurprising, as the decoherence term appears in the evolution equation for the approximated Wigner

function.
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Figure 4.20: The purity and the Loschmidt echo for the isolated multiple barrier system.

The purity of the system remains the same for both perturbed and unperturbed evolutions, in

Figs 4.20a, 4.20c, confirming that static disorder alone does not induce mixing. Due to the dephasing be-

tween each realisation, the purity of the ensemble average is lower than 1. However, it appears to tend to

a constant in a long time limit with vanishing oscillations around it, which suggests a consistent mixture

throughout the rest of the evolution. In contrast, the approximation overestimates the drop in purity, leading

to a perfect mixture in a finite time. Moreover, we are unable to notice the narrow grey band in the case of

the Loschmidt echo, in Figs. 4.20b, 4.20d, as was present in the single-barrier systems. It suggests a strong

susceptibility of the system to perturbation. Based on the dual interpretation of the Loschmidt echo, we can

also say that the system loses the dynamical invertibility property, but only to some extent, as it does not

tend to 0. However, as it also measures the overlap between each realisation and the unperturbed WDF, we

can say that the disorder within the initially periodic potential greatly influences the state of the system,

which will be emphasised in the subsequent figures. To further investigate the system, we now consider the

distance measures in Figs 4.21 and 4.22.
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Figure 4.21: The distance between the WDF for the unperturbed potential and each of the following for the

isolated multiple barrier system: the perturbed WDF, the ensemble average, and the proposed approximation

of the average.
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Figure 4.22: The distance between the ensemble average E[ϱ] and proposed approximation ϱ̄ in the case of

the isolated multiple barrier system.

In the barrier chain case, the distance measure from the unperturbed case forms a nearly constant-width

band from perturbed realisations. Each realisation of the system stays within a certain distance from the

unperturbed WDF throughout the evolution period and does not tend, as t → +∞, to a common final

state. Disorder alone does not diverge trajectories in the phase space of initially structurally symmetric

systems. The ensemble average is confined within this band, however, in all cases, the distance remains

strictly positive d1 > 0. This indicates that, in terms of the L2-norm, both functions differ regardless of

the underlying probability distribution of the random vector λ. However, the ensemble average stays closest

to the unperturbed WDF. By contrast, the blue line representing the distance between the approximated

average and the unperturbed WDF rapidly increases towards unity, meaning that it is nearly orthogonal to the

unperturbed WDF. This contradictory divergence is clearly visible in Fig. 4.22. Therefore, the approximation

does not track the ensemble but instead provides a bound on possible decoherence effects.

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



4. Results 69

Open system

Like in previous cases, we start with the phase-space trajectories of the system, displayed in Fig. 4.23.
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Figure 4.23: The phase-space trajectories of the WDFs for the open system.

Judging by the type of phase-space trajectories, we can state that there are no premises for the closed

trajectory within the system. By including the environmental effects, we can notice the gradual decrease

of the average momentum value for all functions considered, which was also present in the case of the

open single-barrier system 4.10. Moreover, there is a visible decrease in the oscillatory character of the

phase-space trajectory compared to the isolated system 4.17. The phase-space trajectory for the average of

the ensemble WDF traces the unperturbed dynamics, while its approximation also depicts the worst-case

scenario of the damping of the system. We complement the discussion of the statistical parameters for the

WDF by considering the centralised second moments, as done previously. Those are shown in the Fig. 4.24.
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Figure 4.24: The standard deviation and covariance of momentum and position of the WDF for the open

multiple barrier system.
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In addition to the prior discussion, the bandwidth depicting the influence of the disorder of the system

is greatly reduced, suggesting that no significant spreading of the position and momentum between the

realisations takes place. This narrowing of the grey band results from the interaction with the environment

and was not visible in the case of the single-barrier system. However, this effect might result from the

choice of the potential rather than the interaction with the environment. Moreover, the σp is nearly constant.

Additionally, the average Wigner distribution’s statistical parameters are closer to the unperturbed dynamics,

whilst the approximation does not resemble the behaviour of the real system, but still is held within the

system’s bounds.
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Figure 4.25: The nonclassicality parameter and the Wigner-Shannon entropy of the open multiple barrier

system.

The introduction of environmental effects drastically changes the behaviour of nonclassicality parameter and

Wigner-Shannon entropy. Let us start by noticing that the grey band formed by the values of the nonclassi-

cality and Wigner-Shannon entropy from all considered realisations is becoming narrower during the time

evolution. Both measures are monotone after the initial evolution: the nonclassicality is strictly decreasing

towards some unknown constant while the Wigner-Shannon entropy increases. Moreover, the nonclassical-

ity of the ensemble-averaged WDF is drastically lower than the nonclassicality of each realisation of the

system. In contrast, the Wigner–Shannon entropy of the averaged WDF closely follows the values for the

unperturbed case. This behaviour is clearly different from that observed in the isolated system, where both

measures underperformed. Yet again, it confirms that the environment influences the spread of informa-
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tion between the realisations of the system, as in the case of the single-barrier open system 4.12b, 4.12d.

Surprisingly, the nonclassicality parameter of the approximated ensemble average is strictly closer to the

ensemble average value but still overdamps the value. However, the entropy production is still higher in the

approximated case, especially in the long-time limit.
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Figure 4.26: The purity and the Loschmidt echo for the open multiple barrier system.

Both the purity and the Loschmidt echo decrease, reflecting the expected loss of coherence, tending to 0

for both measures. Thus, as time progresses, the system becomes a perfect mixture of states. The echo of

the ensemble average WDF is kept within the grey band of the realisations of the ensemble. However, for

purity, it underestimates the initial values, so that later during the evolution, it aligns with the green line. The

approximation yields a significantly faster decay, consistently underestimating both quantities. In contrast

to the isolated case, the purity of the system does not form a narrow band. Instead, a dependence on the

realisation of the system is observed. Complementarily, the echo of the system forms a narrower band in

the case of the open system. This behaviour confirms that static disorder and decoherence perturb the purity

and reversibility of the dynamics, while the lack of environmental effects preserves purity and allows for

some degree of reversibility within the system. However, as evolution progresses, the interaction with the

environment results in a decreased spread between each component of the ensemble.
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Figure 4.27: The distance between the WDF for the unperturbed potential and each of the following for the

open multiple barrier system: the perturbed WDF, the ensemble average, and the proposed approximation

of the average.
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Figure 4.28: The distance between the ensemble average E[ϱ] and proposed approximation ϱ̄ in the case of

the open multiple barrier system.

Ensemble averages remain close to the unperturbed state, while the approximation diverges. The growth

and saturation of distances involving the approximation confirm that it overestimates the effect of disorder,

irrespective of its distribution. The small separations among realisations and the ensemble average highlight

the limited role of disorder in modifying the dynamics.
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4.5.4 Discussion of numerical results

Comparisons of considered measures across Gaussian and uniform disorder reveal qualitatively similar be-

haviour for isolated and open quantum systems. Starting with the single-barrier system, we noticed that the

phase-space trajectories, as well as the second moments, do not differ between the isolated and the open

system for a weakly interacting environment. By Eq. (4.119), the difference in the phase-space trajectories

is visible in the asymptotic region, where away from the potential barrier we can assume ⟨∂xV (x;λ)⟩ ≈ 0.

Then, the solutions to the respective ODEs can be presented as follows: for the isolated system

⟨x⟩ (t) = pas
m
t+ xas,

⟨p⟩ (t) = pas,
(4.138)

and the open system

⟨x⟩ (t) = e−Γxtxas +
pas

m(Γx − Γp)
e(Γx−Γp)t,

⟨p⟩ (t) = pase
−Γpt.

(4.139)

This leads to the conclusion that if Γp > 0 then p(t) → 0, as t → +∞. This decreasing tendency of

p(t) is already visible in Fig. 4.10 for the evolution of an open system, due to the scale of Γp chosen for

the simulations. Most importantly, however, the average momentum should be constant as time approaches

infinity, while in the case of the open system, it should decrease towards 0, unless Γp = 0.

In the case of second moments, the asymptotic equations of Eq. (4.120) yield

σ2x(t) =
1

m2
σ2past

2 +
2

m
covas(x, p)t+ σ2xas

σ2p(t) = σ2pas ,

cov(x, p)(t) =
1

m
σ2pas + covas(x, p).

(4.140)

while the solution to the system for the open system is given by
σ2x(t)

σ2p(t)

cov(x, p)(t)

 = etM


σ2xas

σ2pas

covas(x, p)

+

∫ t

0
e(t−s)M


Dpp

Dxx

−Dxp

 ds, (4.141)

where

M =


e−2tΓx 1

m2(Γp−Γx)2

(
e−Γxt − e−Γpt

)2 2e−Γxt

m(Γp−Γx)

(
e−Γxt − eΓpt

)
0 e−2Γpt 0

0 e−tΓp

m(Γp−Γx)

(
e−tΓx − e−tΓp

)
e−t(Γx+Γp)

 , (4.142)

where the matrix form was used for convenience. Taking the limit t→ +∞we see that the isolated system’s

x-standard deviation and covariance tend to infinity while σ2p is constant. On the contrary, the same limit

applied to the parameters of the open system gives
σ2xas

σ2pas

covas(x, p)

 =


1

2Γx

1
2m2ΓxΓp(Γx+Γp)

1
m(Γx+Γp)Γx

0 1
2Γp

0

0 1
2m(Γx+Γp)Γp

1
Γx+Γp



Dpp

Dxx

−Dxp

 , (4.143)
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keeping the asymptotic values of the second moments finite.

Unfortunately, similar asymptotic approximations cannot be applied to the case of the chain of Gaussian

barriers because the potential is no longer vanishing at infinity. This would imply that ⟨∂xV (x;λ)⟩ ̸= 0.

We shall, however, approximate the function in the following manner: let ∂xV (x) = F (x) and define

δ = x− ⟨x⟩. Assuming F is smooth, we can expand it in the Taylor series around the mean ⟨x⟩

F (x) = F (δ + ⟨x⟩) ≈ F (⟨x⟩) + d

dx
F (⟨x⟩)δ + 1

2!

d2

dx2
F (⟨x⟩)δ2 +O(δ3), (4.144)

assuming ⟨δ⟩ = 0. Averaging this equality gives

⟨F (x)⟩ = ⟨V (x)⟩ ≈ F (⟨x⟩) + 1

2!

d2

dx2
F (⟨x⟩)

〈
(x− ⟨x⟩)2

〉
. (4.145)

Omitting further terms, we see that the last term is the square of the standard deviation of position, and thus

the average momentum is coupled with second moments. The total system of equations reads

∂t ⟨x⟩ =
1

m
⟨p⟩ − Γx ⟨x⟩ ,

∂t ⟨p⟩ = −∂xV (⟨x⟩ ;λ)− 1

2!
∂3xxxV (⟨x⟩ ;λ)σ2x − Γp ⟨p⟩ ,

∂tσ
2
x =

2

m
cov(x, p)− 2Γxσ

2
x +Dpp,

∂tσ
2
p = −2cov(p, ∂xV (x;λ))− 2Γpσ

2
p +Dxx,

∂tcov(x, p) =
1

m
σ2p − cov(x, ∂xV (x;λ))− (Γx + Γp)cov(x, p)−Dxp.

(4.146)

We shall do the same approximation in the case of terms: cov(x, ∂xV (x;λ)), cov(p, ∂xV (x;λ)). Ap-

plying previous calculations to the first expression yields cov(x, ∂xV (x;λ)) ≈ ∂2xxV (⟨x⟩ ;λ)σ2x and

cov(p, ∂xV (x;λ)) ≈ ∂xxV (⟨x⟩ ;λ)cov(x, p). Substituting those expressions into the system of ODEs, we

arrive at the following system of coupled equations

∂t ⟨x⟩ =
1

m
⟨p⟩ − Γx ⟨x⟩ ,

∂t ⟨p⟩ = −∂xV (⟨x⟩ ;λ)− 1

2!
∂3xxxV (⟨x⟩ ;λ)σ2x − Γp ⟨p⟩ ,

∂tσ
2
x =

2

m
cov(x, p)− 2Γxσ

2
x +Dpp,

∂tσ
2
p = −2∂2xxV (⟨x⟩ ;λ)σ2p − 2Γpσ

2
p +Dxx,

∂tcov(x, p) =
1

m
σ2p − ∂2xxV (⟨x⟩ ;λ)σ2x − (Γx + Γp)cov(x, p)−Dxp.

(4.147)

For further simplification, the values of parameters Γx, Dpp and Dxp are fixed corresponding to the simula-

tions performed, leading to the following equations

∂t ⟨x⟩ =
1

m
⟨p⟩ ,

∂t ⟨p⟩ = −∂xV (⟨x⟩ ;λ)− 1

2!
∂3xxxV (⟨x⟩ ;λ)σ2x − Γp ⟨p⟩ ,

∂tσ
2
x =

2

m
cov(x, p),

∂tσ
2
p = −2∂2xxV (⟨x⟩ ;λ)σ2p − 2Γpσ

2
p +Dxx,

∂tcov(x, p) =
1

m
σ2p − ∂2xxV (⟨x⟩ ;λ)σ2x − Γpcov(x, p).

(4.148)
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We notice that in the lowest order of approximation, the system strongly depends on the form of the potential

V (x;λ). The most standard approach, assuming that V can be treated locally as a harmonic potential drops

the information about the coupling between the momentum average and standard deviation of position. From

this system, we can identify the stationary points of the phase-space trajectories, that is, by assuming that

the LHS is equal to zero. The solution to the stationary problem is given by the following 5-tuple

(⟨x⟩ , ⟨p⟩ , σ2x, σ2p, cov(x, p))stationary = (⟨x⟩0 , 0, σ2x0 , σ2p0 , 0), (4.149)

where ⟨x⟩0, σ2x0 , σ2p0 are solutions, provided they exist, to the following algebraic equations

⟨x⟩0 : ∂x(∂xV )2(⟨x⟩0 ;λ))(∂2xxV (⟨x⟩0 ;λ) + Γp) =
Dxx

2m
∂3xxxV (⟨x⟩0 ;λ),

σ2x0 : σ2x0 = 2
∂xV (⟨x⟩0 ;λ)
∂3xxxV (⟨x⟩0 ;λ)

,

σ2p0 : σ2p0 = m
∂x(∂xV )2(⟨x⟩0 ;λ))
∂3xxxV (⟨x⟩0 ;λ)

.

(4.150)

First of all, we shall start with the fact that it is not necessary to consider the case of the isolated system

separately, since substituting Γp = Dxx = 0 leads to the equivalent system of equations. The existence

of the solution to the first equation gives us qualitative insight into the dynamics of the system around

the stationary point. It is especially important due to the Grobman-Hartman theorem [8], which states that

the dynamics of the linearised system around a stationary point is the same as that of the original system.

Knowing that ⟨p⟩0 = 0 is the coordinate of the stationary point, it would imply that the system might be

approaching the average momentum equal to 0 or diverge from it. In the case of the isolated system, we

see that the first or second derivative of the potential vanishes at the stationary mean position, which means

that ⟨x⟩0 is simply an extremum or an inflection point. In this case, σ2p0 = 0 and σ2x0 < +∞. However, the

existence of the stationary point does not mean that the whole dynamics of the system is dependent upon it,

as the Grobman-Hartman theorem works only locally. As can be seen in the phase-space trajectories of the

system of chain of barriers 4.17, the isolated system’s average momentum is not approaching 0, and neither

its average position approaches a finite value. The dynamic is visibly unbounded. However, in the case of

the open system, where Γp, Dxx > 0, the first of the equations (4.150) may produce the stationary point,

depending on the parameters of the potential and the environment. By Fig. 4.23, we suspect that this system

has a unique solution, associated with the parameters of the stationary state of the equation of motion, as

by the remark that the nonclassicality, in Figs. 4.25a, 4.25c, tends to 0 as t → +∞, and by Hudson’s

theorem [91] we expect the final state to be of the type of Gaussian distribution or a positive mixed state

with parameters given by the stationary points.

Continuing with the evolution of the state, let us answer the question of how the introduction of the

environment changes the positivity of the WDF. By the definition of the nonclassicality parameter, we can

investigate its time derivative
d

dt
δ(t) =

∫
R2

∂t |ϱ(x, p, t;λ)| dxdp. (4.151)

Using the fact that, in the distributional sense, ∂t|ϱ| = sgn(ϱ)∂tϱ, we can write

d

dt
δ(t) =

∫
R2

δ(ϱ(x, p, t;λ))∂tϱ(x, p, t;λ)dxdp, (4.152)
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where the delta under the integral is the Dirac delta composed with a Wigner function. For the next step,

we substituted for the time derivative the form of the equation of motion (4.31), and used the Dirac delta,

interpreted as the simple layer integral [153]∫
R2

δ(u(x, p))φ(x, p)dxdp :=

∫
Σ

φ(x, p)

|∇u(x, p)|dΣ, (4.153)

together with its derivative with respect to the composed function, that is∫
R2

d

du
[δ(u(x, p))]φ(x, p)dxdp = −

∫
R2

δ(u(x, p))

[∇φ(x, p) ◦ ∇u(x, p)
|∇u(x, p)|2

−φ(x, p)∇|∇u(x, p)| ◦ ∇u(x, p)|∇u(x, p)|3
]
dxdp,

(4.154)

where Σ = {(x, p) : u(x, p) = 0} is the level set of the function u(x, p), and φ ∈ C∞0 (R2). Performing a

few cumbersome manipulations, we arrive at the following expression

d

dt
δ(t) = 2

∫
R2

δ(ϱ(x, p, t;λ))

+∞∑
k=0

(−1)k
(2k + 1)!

(
ℏ
2

)2k

∂2k+1
x [V (x;λ)]∂2kp [ϱ(x, p, t;λ)]∂pϱ(x, p, t;λ)dxdp

−
∫
R2

δ(ϱ(x, p, t;λ))∇ϱ(x, p, t;λ)TD∇ϱ(x, p, t;λ)dxdp,

(4.155)

where

D =

[
Dpp −Dxp

−Dxp Dxx

]
. (4.156)

As we can observe, the time evolution of the nonclassicality parameter is strictly linked to the appearance of

negative regions of the Wigner function. The first term on the right-hand side of Eq. (4.155) corresponds to

isolated dynamics and arises solely from the potential. In particular, if the potential V (x;λ) is a polynomial

of at most second order, the nonclassicality parameter in isolated systems remains constant. This is consistent

with the results we have presented in [185]. Furthermore, the first derivative of the potential does not affect

the time evolution of the nonclassicality parameter. In general, the only difference between the evolution

of the nonclassicality parameter of isolated and open quantum systems lies in the presence of the matrix D
and the form of ϱ(x, p, t;λ). Considering a single-barrier system away from the potential, we may assume

V (x;λ) ≈ 0. This leaves the only nonvanishing contribution associated with the environment, while the

dynamical term originating from the potential vanishes. In our scenario with Dpp = Dxp = 0, we have

d

dt
δ(t) = −Dxx

∫
R2

δ(ϱ(x, p, t;λ))(∂xϱ(x, p, t;λ))
2dxdp = −Dxx

∫
Σ

(∂xϱ(x, p, t;λ))
2

|∇ϱ(x, p, t;λ)| dΣ ≤ 0,

(4.157)

and since nonclassicality parameter is bounded from below by 0, we conclude that δ(t)→ 0+ as t→ +∞.

This argument remains valid for nonzero Dpp and Dxp, since Lindbladian dynamics require that the matrix

D be positive.

Turning our attention to the case of the system of a sequence of Gaussian barriers, we notice in

Fig. 4.19a, 4.19c that the nonclassicality of the unperturbed and disordered system in the isolated case

increases with time. Simultaneously, for the open system 4.25a, 4.25c , it initially increases and then in-

flects. We can associate it with the possible increase of the negative area of the WDF, which contributes to
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the second term of the right-hand side of the Eq. (4.155), surpassing the contribution from isolated dynam-

ics. A particularly interesting phenomenon arises in the case of a single barrier, where disorder leads to a

grey bandwidth of allowed nonclassicality values, regardless of whether the system is isolated 4.6a, 4.6c or

open 4.12a, 4.12c. In contrast, for a chain of Gaussian barriers, the grey band exhibits a different geometric

structure in the open system. The environment gradually filters the disordered system toward a specific fi-

nal state, as the initially broad grey band shrinks with increasing time. This implies that the nonclassicality

parameter in this scenario is becoming disorder-insensitive.

For further analysis, we shall consider together the purity of the state and the Wigner-Shannon entropy.

According to the provided definition, the Wigner-Shannon entropy is coupled with the purity of the state.

This is the result of the normalisation used. Namely, during our previous [97, 185, 186], we investigated

the interpretation of the Wigner function as a probability amplitude, rather than the quasi-probability distri-

bution, leading to the refined Wigner-Shannon entropy for the Wigner function (4.125). From the fact that

∥ϱ∥2L2(R2) = D(t;λ)/(2πℏ), where D(t;λ) is the purity of the state, we have the following equality

S1(t;λ) = 2 ln
D(t;λ)

2πℏ
− 2

2πℏ
D(t;λ)

∫
R2

ϱ2(x, p, t;λ) ln
(
ϱ2(x, p, t;λ)

)
dxdp. (4.158)

For all considered cases, we observe that the entropy increases over time. Consequently, the square of

WDF divided by the purity gradually occupies an increasingly larger area in the phase space. In the case

of the isolated single-barrier system, however, entropy increases only over a finite time interval, due to

the interaction with the potential barrier, as the purity is equal to the identity. Further evolution, driven

by shearing transformation, does not influence the area occupied. Since entropy is associated with a rate

of diffusivity of the distribution, we also conclude that interaction with the potential induces spreading of

the distribution over the phase space. On the other hand, in the case of the open system, the spreading of

the distribution is simultaneously driven by the interaction with both the potential and the environment.

This continuous interaction with the environment prevents the appearance of visible plateau intervals in

Figs 4.12b, 4.12d, which were observed in Figs 4.6b, 4.6d. However, in the entropy of the open system,

the moment of interaction with the potential barrier is visible as a small inflection of the entropy curve,

around t ≈ 2 × 103 [a.u.], not as severe as in the case of the isolated system. Nonetheless, just like in the

case of the nonclassicality parameter, the grey band of the Wigner-Shannon entropy created from different

realisations of the system tightens consequently. The entropy is strictly constrained, and no λ-dependent

deviations occur in the evolution.

The width of the band can be estimated in terms of the standard deviation of a given measure with

respect to the probability distribution P (λ). Let us define a function ν(x, p, t;λ) as

ν(x, p, t;λ) := ∇λϱ(x, p, t;λ), (4.159)

that is, a λ derivative or a gradient of a WDF. This rate of change of the WDF with respect to the vector λ

satisfies the modified equation of motion

∂tν = −p∂xν + {V (x;λ), ν}

+ Γx∂x(xν) + Γp∂p(pν) +
1

2
Dpp∂

2
xxν +

1

2
Dxx∂

2
ppν −Dxp∂

2
xpν

+ {∇λV (x;λ), ϱ(x, p, t;λ)}⋆.

(4.160)
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The only difference in the form of the equation of motion for ν(x, p, t;λ) and ϱ(x, p, t;λ) is the appearance

of the driving term associated with the sensitivity of the potential to the random parameter. By the fact that

the initial condition for the equation of motion of the WDF is independent of λ, ν(x, p, 0;λ) = 0, we can

write a solution in the form

ν(x, p, t;λ) =

∫ t

0
e(t−s)L̂(λ){∇λV (x;λ), ϱ(x, p, s;λ)}⋆ ds. (4.161)

Simultaneously, let us consider any functional of the WDF. Namely, let f : [−1/(πℏ), 1/(πℏ)] → R be a

function such that the following integral

F [ϱ](t;λ) :=

∫
R2

f(ϱ(x, p, t;λ))dxdp, (4.162)

is well-defined for any t ≥ 0. This functional encapsulates the most of the phase-space measures used to

quantify the WDF, namely for f(u) = |u|−u, we regain the nonclassicality parameter, while for f(u) = u2

we reclaim the rescaled purity.

Let us re-express the WDF in terms of the Taylor series with respect to the random parameter λ

ϱ(x, p, t;λ) ≈ ϱ(x, p, t;0) +∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

◦ λ, (4.163)

then expanding the function f in the Taylor series yields

f(ϱ(x, p, t;λ)) ≈ f
(
ϱ(x, p, t;0) +∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

◦ λ
)

≈ f(ϱ(x, p, t;0)) + f ′(ϱ(x, p, t;0))∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

◦ λ.
(4.164)

Integrating the expression above over dxdp gives the following equality

F [ϱ](t;λ) = F [ϱ](t;0) +

∫
R2

f ′(ϱ(x, p, t;0))∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

dxdp ◦ λ. (4.165)

Notice that F [ϱ](t;0) is nothing different but the measure of the unperturbed WDF. Then, the variance of

the functional F is given by

σ2(F [ϱ]) = E
[
(F [u]− E[F [u]])2

]
= E

[(∫
R2

f ′(ϱ(x, p, t;0))∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

dxdp ◦ λ
)2
]

= σ2λ

∥∥∥∥∫
R2

f ′(ϱ(x, p, t;0))∇λϱ(x, p, t;λ)

∣∣∣∣
λ=0

dxdp

∥∥∥∥2,
(4.166)

where the last expression was obtained due to the statistical independence of the coordinates of the vector

λ. Using now the formula (4.161) we obtain the following

σ2(F [ϱ]) ≈ σ2λ
∥∥∥∥∫

R2

f ′(ϱ(x, p, t;0))

∫ t

0
e(t−s)L̂(0){∇λV (x;0), ϱ(x, p, s;0)}⋆ dsdxdp

∥∥∥∥2. (4.167)

We conclude that the width of the band of the realisations in this setup is only associated with the sensitivity

of the potential to the perturbations. To emphasise this dependence even further, we assume that the time

instance is so short that exp
{
((t− s)L̂(0))

}
≈ 1̂, then

σ2(F [ϱ]) ≈ σ2λ
∥∥∥∥∫

R2

f ′(ϱ(x, p, t;0)){∇λV (x;0), ϱ0(x, p)}⋆ dxdp
∥∥∥∥, (4.168)
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which depends only on the sensitivity of the underlying measure function f to changes in the values of the

unperturbed WDF, and the potential sensitivity to the disorder.

The previous formula can be applied to any measure, however, we would like to focus on the following

pair: the purity and the Loschmidt echo. Both of those measures evolve according to the following equations,

for the purity

d

dt
D(t;λ) = (Γx + Γp)D(t;λ)−

∫
R2

∇ϱ(x, p, t;λ)TD∇ϱ(x, p, t;λ) dxdp, (4.169)

and for the Loschmidt echo

d

dt
M(t;λ) = (Γx + Γp)M(t;λ)

+ 2πℏ
∫
R2

[
{V (x;0)− V (x;λ), ϱ(x, p, t;0)} − ∇ϱ(x, p, t;0)TD∇ϱ(x, p, t;λ)

]
dxdp.

(4.170)

Both satisfy similar evolution equations, yet the Loschmidt echo evolution depends on one additional term,

namely the difference of the unperturbed and perturbed potentials. Unlike purity for the isolated system,

which does not vary in time, the Loschmidt echo might still exhibit changes, as the potential difference

term influences its time derivative, as visible in Figs 4.20b 4.20d and especially in Figs 4.26b 4.26d. The

latter figure distinctively shows the irreversibility of the dynamics, as, unlike in the single barrier case, the

Loschmidt echo does not return to the initial value. This highlights its power, as purity in the case of iso-

lated systems does not exhibit any change, while qualitative properties of the system drastically change.

Opening both systems leads to natural decreas in their purities as seen in both equations. There is a possi-

bility to estimate the bound on the rate of decrease of purity, however it requires a bounded domain. Let us

assume that instead of an unbounded domain R2 we are considering some bounded domain Ω ⊂ R2, and

suitable class of functions ϱ(x, p, t;λ) vanishing on the boundary, that is, ϱ
∣∣
∂Ω

= 0. Then by Friedrichs’

inequality [140, 40, 60] we have∫
R2

∇ϱ(x, p, t;λ)TD∇ϱ(x, p, t;λ) dxdp ≥ min(σ(D))∥∇ϱ(x, p, t;λ)∥2L2(Ω)

≥ min(σ(D))
diam(Ω)

∥ϱ∥2L2(Ω) =
min(σ(D))
2πℏdiam(Ω)

D(t;λ).

(4.171)

Thus, the rate of decrease of purity for bounded domains cannot be greater than

D(t;λ) ≥ et
(
Γx+Γp− min(σ(D))

2πℏdiam(Ω)

)
, (4.172)

where min(σ(D)) is the smallest of the eigenvalues of D and diam(Ω) = supx,y∈Ω |x − y| is the diameter

of the set Ω. While it holds for bounded domains, the author was not aware of the similar inequalities for

unbounded ones, believing that for suitably weighted spaces, a similar inequality can be achieved.

Before concluding, we focus on the behaviour of the parameters of the proposed approximation of the

ensemble average. Let us recall, that we define the approximated ensemble averaged WDF, ϱ̄(x, p, t), as a

solution to the equation (4.114), with the initial condition in the form of the Gaussian function (4.115). In

most figures, the ensemble average’s parameters nearly perfectly trace behind the values obtained for the

unperturbed system, whereas the WDF for the ensemble average is relatively "close" to the unperturbed
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WDF, given the distance (4.132). Even more significantly, in the case of the single barrier, the interaction

with the potential V (x;λ) temporarily breaks this similarity, after which the system returns close to the

unperturbed behaviour, as seen in Figs 4.8 4.14. This is not the case in the chain of barriers, where the

distance between those distributions initially increases to a certain level, around which it stays for further

evolution, by Figs 4.21 4.27. Tracing the evolution of the parameters of the approximated ensemble aver-

age, we can conclude that they do not resemble the parameters of the real ensemble average WDF. The

values are generally over- or underestimated, while some similarities can be found in a very short time.

However, the distance between approximation and ensemble average or the unperturbed WDF increases

quickly, saturating the distance up to a nearly maximal value. This would imply that the time-proportional

decoherence term in Eq. (4.114) suppresses the initial state very quickly in comparison to the decoherence

associated with averaging the realisations of the system. Let us consider one more property of the system

under study. In general, it is expected that, for each λ, the initial value problem given by (4.31) possesses

what is known as a stationary solution. It is defined as the limit of the solution to the initial value problem

as t→ +∞ [3, 77, 188]

ϱ∞(x, p;λ) := lim
t→+∞

ϱ(x, p, t;λ). (4.173)

Although the existence of such solutions was proved for the Fokker-Planck equation with harmonic poten-

tial [5, 158], these results do not cover the case of a time-dependent dissipative term, as presented in our

approximate solution. From the form of the equation of motion (4.114) we observe that for t ≫ 1, the

following relation holds

∂tϱ̄ = {V̄ (x), ϱ̄}⋆ + tσ2λ
∑
k

(∂2xxvk(x; 0))
2∂2ppϱ̄, (4.174)

Introducing the effective dissipation functionDeff (x) := σ2λ
∑

k(∂
2
xxvk(x; 0))

2 the solution to this equation

can be expressed as

ϱ̄(x, p, t) =

∫
R
R(x, p′)K(x, p, p′, t)dp′, (4.175)

where R(x, p′) is an unspecified time-independent asymptotic function of the system, and the kernel

K(x, p, p′, t) has the following form

K(x, p, p′, t) =
1

2πℏ

∫
R
e−

i
ℏ t[V̄ (x+

y
2 )−V̄ (x−

y
2 )]−

t2

2ℏ2Deff (x)y
2

e
i
ℏy(p−p

′)dy. (4.176)

From this expression, it follows that

|ϱ̄(x, p, t)| =
∣∣∣∣∫

R
R(x, p′)K(x, p, p′, t)dp′

∣∣∣∣ ≤ 1√
2πDeff (x)t

∫
R
|R(x, p′)|dp′. (4.177)

Thus, as long as the integral of the RHS is finite, the solution tends pointwise to 0, as t → +∞, for all x

such that Deff (x) > 0. The bound of the function is independent of the type of potential, since the potential

only contributes oscillatory terms, which vanish under the modulus. In the case of an ensemble of single-

barrier systems, each perturbed by the random vector λ, the average potential V̄ (x) is expected to be mostly

confined around the mean x = 0. This corresponds to the regions whereD(x) > 0 and where the dissipation

occurs, as shown in Figs. 4.6 4.12. During further evolution, where V̄ (x) ≈ 0 and also Deff (x) ≈ 0, the

decay of a function slows down. This effect is visible in the same figure, where the nonclassicality parameter

exhibits inflection around t ≈ 3 × 103 [a.u.]. In contrast, for the open system, the decoherence introduced

D. Woźniak Dynamics of Quantum State: Phase-Space Approach



4. Results 82

by the environment enhances dissipation, suppressing nonclassicality to 0, and driving ϱ̄ → 0. Certainly,

the average potential V̄ (x) has a more exotic form, in the case of multiple Gaussian barriers, as it does not

exhibit a typical asymptotic of the barrier, that is, V̄ (x) → 0+ as |x| → +∞. This property influences the

effective dissipation term Deff (x) as Deff (x) > 0 almost everywhere, leading to the rapid disappearance

of the approximated solution. Those results are supported by the distance measures 4.21 4.27, as they do not

decrease during the simulation period.

Nonetheless, for each realisation of the ensemble in the single barrier case, we expect that advection in

the position variable x, resulting from the absence of a confining potential, dominates the dynamics. This

implies that whether the system is isolated or open, long-time behaviour is governed primarily by advection,

with additional momentum spreading in the open case. Consequently, no stationary state is expected. In

contrast, the ensemble of chains of Gaussian barriers, the constant interaction with the potential suppresses

the advection in position and momentum, allowing for the formation of the stationary state for each case.

However, the form of this state is unknown and must be investigated separately.
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Summary and perspectives

The phase-space approach to quantum mechanics provides well-structured and intuitive tools, closely re-

lated to the mathematical framework of classical mechanics, for analysing the dynamics of various complex

quantum systems. This strong connection to the classical formalism has motivated its application across

various areas of physics, typically through slight modifications of the underlying Moyal equation. Examples

include the study of carrier transport in semiconductors via the Wigner-Boltzmann equation, or the evolu-

tion of relativistic plasmas described by the Wigner-Vlasov equation. Moreover, this formulation facilitates

semiclassical analysis, since its classical counterpart, the Liouville equation, has already been extensively

studied. However, several challenges remain, one of which is the difficulty of determining whether a given

Wigner function corresponds to a physical quantum state without referring back to the density operator.

More significantly, the phase-space approach inherently doubles the number of variables required to de-

scribe the system. Although this issue is not a major obstacle in theoretical analysis, it imposes substantial

limitations on the numerical implementation of computational algorithms.

Throughout this work, many of these challenges have been encountered. Still, the use of phase-space

methods for open quantum systems offers clear advantages, particularly in terms of interpretability. The

results presented in this work can be summarised in three main steps: (1) the derivation of the equation of

motion for the Wigner function of an open quantum system, (2) the development of a numerical algorithm

and a split-operator scheme for subsequent calculations, (3) the derivation of the equation of motion for

the approximated ensemble average Wigner function, and the analysis of numerical results for the phase-

space characteristics of the quantum system. We began with the phase-space formulation of the evolution of

the total system, where integration over the bath degrees of freedom was carried out, along with a series of

approximations. These included the assumption of weak interaction between the system and its environment,

allowing for separability of the Wigner function of the total system; the Markovian approximation, which

neglects memory effects; and the secular approximation, which averages out non-resonant terms in the

equation of motion. Although this approach proved successful, the author’s initial aim was to obtain the

equation through a derivation more directly related to phase-space quantum mechanics. The final equation

of motion of the system consisted of the Hamiltonian of the isolated system in the form of either a Gaussian

barrier or a chain of Gaussian barriers and a linear Lindblad operator. To solve this equation, we employed

the split-operator method, rewriting the exponential of the full operator as a product of separate exponentials,

up to a certain approximation error. However, we found that the kinetic and Lindbladian parts of the operator

can, in fact, be separated exactly. This result improves the algorithm, as no approximation is needed to

separate these contributions, which greatly simplifies the implementation.
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Although this work has focused on two specific potential models, a more general analysis of phase-

space parameters in quantum systems is clearly required. Given the extent of this topic, several directions

for future research emerged during the preparation of this thesis. The first, currently under development, is

the construction of a general splitting scheme for quadratic operators. We have found that an exact splitting

method can be achieved for such operators, yielding precise solutions in terms of Fourier transforms without

the need for approximation. A second direction of research concerns the analysis of the Lindblad equation

for Cohen-class functions, i.e., functions expressed as the convolution of a kernel with a Wigner function.

We have already demonstrated that for the family of the so-called τ -Wigner functions, the Lindblad-Wigner

equation of motion introduces imaginary terms dependent on the diffusion coefficients. Finally, the study of

symmetries in disordered open quantum systems, along with the conditions for the existence of steady-state

solutions, represents another promising direction for further investigation.
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Appendix A

Useful definitions and theorems

Definition A.1. [74] LetH be a vector space over field C. We callH a Hilbert space if:

1. It is equipped with a sesquilinear inner product ⟨·|·⟩ : H×H → C (inner product space);

2. It is a complete metric space with respect to the norm induced by inner product (convergence of all

Cauchy sequences).

Moreover, we say thatH is separable Hilbert space if there exists a dense, countable subset ofH.

An element belonging to the Hilbert space is called a state vector.

Definition A.2. [138, 128, 80] Let H1 ⊗ H2 denote a set of all linear combinations of formal products of

the type ϕ ⊗ ψ for ϕ ∈ H1 and ψ ∈ H2. A tensor product of Hilbert spaces H1, H2, is a completion of

H1 ⊗H2 with respect to an inner product defined as

⟨ϕ1 ⊗ ψ1|ϕ2 ⊗ ψ2⟩ := ⟨ϕ1|ϕ2⟩H1
· ⟨ψ1|ψ2⟩H2

,

for ϕ1, ϕ2 ∈ H1, and ψ1, ψ2 ∈ H2. Moreover such defined space is valid Hilbert space.

Definition A.3. [10] Let Â be a linear operator defined in a Hilbert space D(Â) ⊂ H1 with image in H2,

Â(D(Â)) ⊂ H2. Moreover, let ∥·∥H1
, ∥·∥H2

be norms in respective spaces. We say that Â is a bounded

(continuous) operator if

∃c > 0 ∀ψ ∈ D(Â) :
∥∥∥Âψ∥∥∥

H2

≤ c∥ψ∥H1
. (A.1)

The smallest such constant c is called the norm of the operator Â.

By B(H1,H2) we shall understand the set of all bounded operators from H1 to H2, and if H = H1 = H2,

then B(H1,H2) = B(H) .

Definition A.4. [138, 10, 16] LetH1 andH2 be two Hilbert spaces with inner products ⟨·|·⟩1, ⟨·|·⟩2 respec-

tively. If there exists a linear operator Û : H1 → H2 such that〈
Ûψ
∣∣∣Ûϕ〉

H2

= ⟨ψ|ϕ⟩H1
(A.2)

holds for all ψ, ϕ ∈ H1 then we say that H1 and H2 are isomorphic. If two space coincide H1 = H2 = H
and of the domain and range of the operator are equal to H, namely D(Û) = Ran(Û) = H then we say

that Û is a unitary operator.
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Definition A.5. [138] Let H be a separable Hilbert space with inner product ⟨·|·⟩ and let {φn}+∞n=1 be an

orthonormal basis. For a positive operator Â we define the trace of Â as a number

Tr Â =
+∞∑
n=1

〈
φn

∣∣∣Âφn〉 . (A.3)

The trace is independent of the chosen basis.

Definition A.6. [78, 24] Let H be a Hilbert space. By L we denote a set of all operators Â over H for

which the trace

Tr
[
Â†Â

]
<∞ (A.4)

is finite. Additionally, we define a sesquilinear form: ⟨.|.⟩ : L× L→ C given as〈
Â
∣∣∣B̂〉 := Tr

[
Â†B̂

]
. (A.5)

The pair (L, ⟨.|.⟩) is called the Liouville space and it is a proper Hilbert space [138].

Definition A.7. An operator Φ̂ acting on elements of Liouville space L is called a superoperator.

Definition A.8. Let u ∈ Ck(Rn) be a k−differentiable function defined over Rn with coordinates x =

(x1, x2, . . . , xn). We define the m-th, 0 ≤ m ≤ k multi-index derivative as

Dm
x u(x) =

∂mu

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

(A.6)

where α1 + α2 + . . .+ αn = m.

Analogously we define the m-th multi-index power of vector variable x, that is

xm = xα1
1 xα2

2 . . . xαn
n , (A.7)

where α1 + α2 + . . .+ αn = m.

Definition A.9. [153, 50, 123] Let S(Rn) denote the space of infinitely differentiable functions φ(x)

defined over Rn for which the following inequality holds

∀α ≥ 0, β ≥ 0 sup
x∈Rn

|xαDβφ| < +∞ (A.8)

then we call S(Rn) the Schwartz space or the space of smooth, rapidly vanishing functions.

Theorem A.1. [50] The following inclusion holds S(Rn) ⊂ L2(Rn) and the Schwartz space is dense in

L2(Rn).

Definition A.10. [153, 60, 123] A Fourier transform of a φ ∈ S(R)n is an integral transformF : S(Rn)→
S(Rn) defined as

(Fφ)(ξ) := 1

(2π)n/2

∫
Rn

φ(x)e−ix·ξdnx, (A.9)

with an inverse given by

(F−1ψ)(ξ) := 1

(2π)n/2

∫
Rn

ψ(x)eix·ξdnx. (A.10)
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Theorem A.2. [60] The previous definition of Fourier transform can be used for functions in L1(Rn). Then

φ ∈ L1(R2) =⇒ Fφ ∈ L∞(Rn).

Definition A.11. [146] Let B be a normed space, that is a vector space with a defined norm ∥.∥, then we

say that B is a Banach space if it is a complete space, namely every Cauchy sequence is convergent to an

element of this space.

Definition A.12. [141] Let B be a Banach space. The family of bounded linear operators {Û(t)}, t ≥ 0 is

called a strongly continuous semigroup if it satisfies the following conditions

• Û(t+ s) = Û(t)Û(s) for t, s ≥ 0

• Û(0) = 1̂

• the mapping [0,+∞) ∋ t→ Û(t)v is continuous for every v ∈ B.
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Appendix B

Exact solution for polynomial potentials of
order at most 2

In this Appendix, we will consider a quadratic potential V (x) = ax2 + bx+ c with a > 0, b, c ∈ R to seek

a general solution for the evolution equation. First, let us recall a form of the Lindblad-Wigner equation for

such a potential

∂tϱ = − p

m
∂xϱ+ ax∂pϱ+ b∂pϱ+ Γp∂p(pϱ) + Γx∂x(xϱ) +

1

2
Dxx∂

2
ppϱ+

1

2
Dpp∂

2
xxϱ−Dxp∂

2
xpϱ (B.1)

Using Fourier’s transform with respect to (x, p) variables we arrive at

∂tϱ̂ =
λ

m
∂yϱ̂− ay∂λϱ̂+ ibyϱ̂− Γxλ∂λϱ̂− Γpy∂yϱ̂−

1

2

(
Dxxy

2 +Dppλ
2 − 2Dxpyλ

)
ϱ̂ (B.2)

or equivalently

∂tϱ̂+ (ay + Γxλ)∂λϱ̂+

(
Γpy −

1

m
λ

)
∂yϱ̂ =

(
−1

2
Dxxy

2 − 1

2
Dppλ

2 +Dxpλy + iby

)
ϱ̂, (B.3)

that leads to the characteristic equation

dt

1
=

dλ

ay + Γxλ
=

dy

Γpy − 1
mλ

=
dϱ̂(

−1
2Dxxy2 − 1

2Dppλ2 +Dxpλy + iby
)
ϱ̂
, (B.4)

and further, it can be written as a system of ordinary differential equations
dλ
dt = ay + Γxλ,

dy
dt = Γpy − 1

mλ,

dϱ̂
dt =

(
−1

2Dxxy
2 − 1

2Dppλ
2 +Dxpλy + iby

)
ϱ̂,

(B.5)

where two matrices were introduced

Γ =

[
Γx a

− 1
m Γp

]
, D =

[
Dpp −Dxp

−Dxp Dxx

]
. (B.6)

For upcoming manipulations, we decided to write this system in the following matrix-scalar form
dv
dt = Γv

dϱ̂
dt =

(
−1

2v
TDv + ibTv

)
ϱ̂,

(B.7)
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where v = (λ, y)T . By the results in the theory of systems of ordinary differential equations, the first pair

is solved by the following vector v = exp(tΓ)ω where ω is a vector of integration constants. Then, the

second equation can be rephrased as

dϱ̂

dt
=

(
−1

2
ωT
(
etΓ

T
DetΓ

)
ω + i

(
bT etΓ

)
ω

)
ϱ̂, (B.8)

which can also be directly solved via the following function

ϱ̂(λ, y, t) = Φ(ω) exp

[
−1

2
ωT
∫ (

etΓ
T
DetΓ

)
dt ω + i

(
bT
∫
etΓdt

)
ω

] ∣∣∣∣
ω=e−tΓv

. (B.9)

The integrals within the exponential can be evaluated directly if needed. However, we notice one peculiarity:

the first integral in the expression on the RHS yields a symmetric matrix. To see this, we mark that such an

integral is equivalent to finding a solution to the Sylvester matrix equation [14]

ΓTX+ XΓ = D. (B.10)

which results from the time derivative of the following expression: exp
(
tΓT

)
X exp(tΓ) that might be as-

sociated with the antiderivative of the initial integrand, only if the Sylvester equation is satisfied. Moreover,

assuming D is a symmetric matrix, DT = D, we obtain the associated equation for the transpose of X

XTΓ+ ΓTXT = D, (B.11)

that coincides with the initial equation. According to Sylvester theorem [90], this equation has a unique

solution, for any D, if and only if σ(ΓT ) ∩ σ(−Γ) = ∅, that is, ΓT and −Γ do not share a common

eigenvalue. By the standard result of matrix algebra, a transpose of a matrix has the same eigenvalues, and

thus former condition can be rephrased as σ(Γ) ∩ σ(−Γ) = ∅, meaning that there are no pairs of the type

(λ,−λ) within the spectrum of matrix Γ. Assume for now that σ(Γ) = {λ1, λ2}, then

Γx + Γp = λ1 + λ2 (B.12)

and

ΓxΓp +
a

m
= λ1λ2 (B.13)

imposing λ2 = −λ1 = −λ, we have the following system of equations0 = 1
2(Γx + Γp)

λ2 = −ΓxΓp − a
m .

(B.14)

If no such λ can be found, then the Sylvester equation (B.10) has a unique solution and thus X = XT ,

meaning X is symmetric. Bearing that in mind, we arrive at the following conclusion, the solution to the

Lindblad-Wigner equation for the potential U(x) with initial condition ϱ0(x, p) is given by a convolution of

a Gaussian with the function ϱ0(x, p). Even more, if the initial state is given as a Gaussian function, then the

solution, at all times t > 0, is still Gaussian thus, a set of Gaussian functions is invariant under the evolution

generated by the Wigner-Lindblad operator for the potential associated with at most 2nd order polynomial.
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Appendix C

The scaling operator implementation

Recall that the scaling operator Ŝ [12]

Ŝf(x) := f(ηx) = eln(η)x∂xf(x) (C.1)

can be expressed as

f(ηx) = η−1/2e−iϵαη∂2xe−iβηx
2
eiϵβη∂

2
xeiαηx2f(x) (C.2)

The general issue encountered in the given expression is the size of the grid of the conjugated space to the

variable x. From Fast Fourier Transform implementation, we know that being given an initial grid with an

amplitude Xmax and size N

X = (−Xmax,−Xmax +∆X, . . . , 0,∆X, . . . ,Xmax −∆X), (C.3)

the set of conjugated variables L has the amplitude equal to

maxL =
π

∆X
. (C.4)

Thus, if one considers highly populated grids with small amplitude Xmax ≪ 1 and N ≫ 1, then maxL

is a huge number. This implies that, especially near the endpoints of the conjugated interval, the exp
{
iL2
}

takes values that might contribute to numerical errors. To omit this issue, we take a step back to investigate

the definition of a scaling operator, precisely its exponent x∂x. We shall define it as a special case of the

Weyl operator

x∂x = Ŵ
(
ixξ − 1

2

)
. (C.5)

By this definition, we notice that the simultaneous division of x by some constant γ, and the multiplication

of ξ by the same constant, does not change the initial expression

x∂x = Ŵ
(
i
x

γ
(γξ)− 1

2

)
. (C.6)

This allows us to rescale each grid considered by a constant γ, diminishing the numerical errors appearing

due to the exponential function, without changing the value of the total result.
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Appendix D

Example of averaged dynamics

Let us consider a simple closed system where V (x;λ) = Ex, where E is a random variable with mean

⟨E⟩ = 0 with PDF P (E). For simplicity, we set the Lindblad operator to 0̂ to see the influence of the

averaging procedure upon the averaged evolution. We can approach solving the equation of motion in the

case of a Gaussian state as an initial condition. This leads to the following equation for the system

∂tϱ = −p∂xϱ+ E∂pϱ, (D.1)

whereas for the averaged system, the approximated equation is

∂tw = −p∂xw + tν∂2ppw, (D.2)

where ν =
〈
E2
〉
. Both equations can be solved in terms of the Fourier transform, leading to

ϱ(x, p, t;E) =

∫
R2

Φ0(x
′, p′)K1(x

′, p′;x, p, t;E)dx′dp′,

w(x, p, t) =

∫
R2

Φ0(x
′, p′)K2(x

′, p′;x, p, t;E)dx′dp′,

(D.3)

where

K1(x
′, p′;x, p, t;E) = δ

(
x′ − x+ pt− Et2

2

)
δ(p′ − p+ Et),

K2(x
′, p′;x, p, t) =

3
√
2

2πνt3
e−

9ν
t4
[ 16 t

2(p2+3p′2+2pp′)+ 2
3
t(2p′x′−2p′x−px)+(x−x′)2].

(D.4)

Then, the averaged result for different realisations of the amplitude parameter E is simply

R(x, p, t) =

∫
R2

Φ0(x
′, p′)

∫
P (E)K1(x

′, p′;x, p, t;E)dE dx′dp′. (D.5)

The general difference between the two solutions is given by the kernels of the integration, thus, we are

interested in discrepancies occurring in

K̃1 =

∫
P (E)δ

(
x′ − x+ pt− Et2

2

)
δ(p′ − p+ Et)dE =

1

t
P

(
p′ − p
t

)
δ

(
x− x′ − t

2
(p′ + p)

)
,

(D.6)
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and

K2 =
3
√
2

2πνt3
exp

{
−9ν

t4

[
1

6
t2(p2 + 3p′2 + 2pp′) +

2

3
t(2p′x′ − 2p′x− px) + (x− x′)2

]}
. (D.7)

To visualise the discrepancies between two kernels, a common initial condition Φ0(x, p) was considered in

the form of a multivariate Gaussian function with mean µ = 0 and covariance matrix Σ, namely

Φ0(x, p) =
1

2π
√
detΣ

e−
1
2
(x,p)Σ−1(x,p)T , (D.8)

with

Σ =

(
σ11 σ12

σ12 σ22

)
, σ11, σ22 > 0 ∧ σ11σ22 ≥ σ212, (D.9)

being the covariance matrix. Then, the solution to the initial value problem (IVP) is given by

R(x, p, t) =
1

2π
√
detΣ

∫
P (E)e−

1
2(−

E
2
t2+pt−x,p−Et)Σ−1(−E

2
t2+pt−x,p−Et)

T

dE

=
1

2π
√
detΣ

∫
P (E)e−

1
2
(z−Â−1µ)T ÂTΣ−1Â(z−Â−1µ)dE

=

∫
P (E)N(x,p)

(
Â(t)−1µ(t, E), Â(t)−1Σ(Â(t)T )

−1)
dE

=

∫
P (E)N(x,p)

(
Â(−t)µ(t, E), Â(−t)ΣÂ(−t)T

)
dE,

(D.10)

where z = (x, p),

Â = Â(t) =

(
1 −t
0 1

)
, Â(t)−1 = Â(−t) ∧ det Â = 1, (D.11)

and µ = µ(t, E) =
(
E
2 t

2, Et
)T

. Complementarily, the solution to the second IVP is given by

w(x, p, t) =
3

π
√
Ξ
× e
− 3

Ξ
(x,p)

 6(σ22 + t2ν) −2(3σ12 + 3σ22t+ t3ν)

−2(3σ12 + 3σ22t+ t3ν) t4ν + 6σ22t
2 + 12σ12t+ 6σ11

(x,p)T

,

(D.12)

where Ξ = Ξ(t, ν, σ11, σ22, σ12) = 2ν2t6 + 18νσ22t
4 + 48νσ12t

3 + 36νσ11t
2 + 36|Σ|. The state w can be

rewritten in a much more appealing form

w(x, p, t) =
1

2π

√
|Σ̂−1|

e−
1
2
(x,p)Σ̂(x,p)T = N (0, Σ̂−1), (D.13)

where

Σ̂ =
6

Ξ

(
6(σ22 + t2ν) −2(3σ12 + 3σ22t+ t3ν)

−2(3σ12 + 3σ22t+ t3ν) t4ν + 6σ22t
2 + 12σ12t+ 6σ11

)
, (D.14)

so w is just a Gaussian function centred around 0 with the covariance matrix given by Σ̂−1. As an approach

to distinguish between these two states, we calculate two metrics, the normalised Hilbert-Schmidt norm

d1(ϱ1, ϱ2) :=

√∫
[ϱ1(x, p, t)− ϱ2(x, p, t)]2dxdp√∫

ϱ21(x, p, t)dxdp+
√∫

ϱ22(x, p, t)dxdp
, (D.15)
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and normalised overlap function

d2(ϱ1, ϱ2) := 1−
∫
ϱ1(x, p, t)ϱ2(x, p, t)dxdp√∫

ϱ21(x, p, t)dxdp
√∫

ϱ22(x, p, t)dxdp
, (D.16)

as these two measures can be directly translated from the density matrix approach in terms of the Weyl trans-

form. Both functions considered are in the Gaussian form with respect to (x, p) variables, thus calculations

can be conducted analytically. The distance d1 between the approximated state w and the mean state R is

equal to

d1(w,R) =

(
3

2π

1√
Ξ
+

∫ ∫
P (E)P (E′)Nµ(t,E)(µ(t, E

′), 2Σ)dEdE′

−2
∫
P (E)NÂ(−t)µ(t,E)(0, Â(−t)ΣÂ(−t)T + Σ̂−1)dE

) 1
2

×
(√

3

2π
Ξ−

1
4 +

(∫ ∫
P (E)P (E′)Nµ(t,E)(µ(t, E

′), 2Σ)dEdE′
) 1

2

)−1
,

(D.17)

whereas d2 is given by

d2(w,R) =
1

2

√√√√√√√√2− 2

∫
P (E)NÂ(−t)µ(E,t)(0, Â(−t)ΣÂ(−t)T + Σ̂−1)dE√

3
2πΞ

− 1
4

(∫ ∫
P (E)P (E′)Nµ(t,E)(µ(t, E

′), 2Σ)dEdE′
) 1

2

. (D.18)

The simplest check for the validity of the results presented is taking P (E) = δ(E), which simultaneously

implies ν = 0, by the previous assumption ⟨E⟩ = 0, and the dynamics resembles that of the free particle

for both equations. Then

d1(w,R) = d2(w,R) = 0. (D.19)

This equality should also hold for an arbitrary probability distribution P (E), at t = 0. For further analysis,

we consider distributions P (E) such that ⟨E⟩ = 0 and 0 < σ(E) < +∞. As a first distribution, the

continuous uniform distribution is considered with the domain extending over the interval E ∈ [−1, 1], thus

P (E) = 1/2. As a second case, the Gaussian distribution centred around 0 is considered. For simplicity and

to reduce the number of parameters, the standard normal distribution will be used, that is, E ∼ NE(0, 1).
Last but not least, a generalised Gaussian distribution centred around E = 0 will be considered. As depicted

in the charts, the discrepancy between two WDFs increases quickly throughout the evolution, To provide

the order of change of the di(t) with respect to time t, a log-log scale was applied to the chart, and linear

regression was performed. The tangent coefficient was equal to 2.89 which suggests that for t ≪ 1 the

order of increase in distance is of di(t) ∼ t3. To keep states closer to each other, one may sharpen the

probability distribution around E = 0, as by the previously mentioned property, for P (E) = δ(E) one has

d1(t) = d2(t) = 0.
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Figure D.1: Comparison of the distance functions d1(t), d2(t) for different probability distributions P (E).

Starting from the left: the uniform distribution, the standard normal distribution and generalised Gaussian

distribution
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Figure D.2: The distance functions d1(t), d2(t) for normal distribution with standard deviation σ = 0.01.

The similarity of the states holds longer than in previous cases, for both measures.

This is rather a property of system considered, than the general trait of the averaged system.
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Appendix E

The
〈
∆2
〉

formula for considered
distributions.

In this appendix, we would like to show the exact form for the
〈
∆2
〉

operator present in the approximated

equation of motion for the averaged WDF. We will consider a random (2N + 1) dimensional vector λ with

uncorrelated entries. Each random variable contributing to this vector will be drawn from either a uniform

or a Gaussian probability distribution. Before providing an explicit formula for probability distributions, we

will simplify the −
〈
∆2(λ)

〉
λ

expression (4.94). We keep ℏ = 1 throughout the calculations.

−
〈
∆2(λ)

〉
λ
=

∫
P (λ)

[
δV

(
x+

iℏ
2
∇p;λ

)
− δV

(
x− iℏ

2
∇p;λ

)]2
dλ

=

∫
P (λ)

[
δV 2

(
x+

iℏ
2
∇p;λ

)
+ δV 2

(
x− iℏ

2
∇p;λ

)
−2δV

(
x+

iℏ
2
∇p, t;λ

)
δV

(
x− iℏ

2
∇p;λ

)]
dλ.

(E.1)

Recall, that the minus sign is a result of a composition of two Moyal brackets. Let us introduce an operator

x̂± := x± i
2∇p. Then using the definition of δV (4.93) this expression can be simplified to the following

−
〈
∆2(λ)

〉
λ
=

∫
P (λ)

[
V 2
(
x̂+;λ

)
+ V 2

(
x̂−;λ

)
− 2V

(
x̂+;λ

)
V
(
x̂−;λ

)]
dλ

−
[
V̄ 2(x̂+) + V̄ 2(x̂−)− 2V̄ (x̂+)V̄ (x̂−)

]
.

(E.2)

Consequently, to calculate the correction to the dynamics, we have to find the following quantities

〈
V 2(x̂±;λ)

〉
λ
=

∫
P (λ)V 2(x̂±;λ)dλ, (E.3)

and 〈
V (x̂+;λ)V (x̂−;λ)

〉
λ
=

∫
P (λ)V (x̂+;λ)V (x̂−;λ)dλ. (E.4)

We will use the following notation N (x;µ, σ2) for the x-dependent Gaussian distribution with mean µ and

deviation σ. Now, we calculate all the expressions using the following forms of the PDF P (λ):
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E.1 The Gaussian distribution

We considered a constituent PDFs in the following form

f(λk) =
1√
2πw

e−
1

2w2 λ
2
k = N (λk; 0, w

2) λk ∈ R, (E.5)

then the full probability distribution for the random vector λ is

P (λ) =
N∏

k=−N
f(λk) =

(
1√
2πw

)2N+1

e−
1

2w2 |λ|2 . (E.6)

Recall that the mean potential field is given by the following formula (4.99)

V̄2(x) =
V0√

2π(σ2 + w2)

N∑
k=−N

e
− (x−kµ)2

2(σ2+w2) = V0

N∑
k=−N

N (x; kµ, σ2 + w2), (E.7)

then we get the following expressions:

〈
V 2(x̂±;λ)

〉
λ
= V 2

0

N∑
k1,k2=−N
k1 ̸=k2

N
(
k1µ; k2µ, 2(w

2 + σ2)
)
N
(
x̂±;

µ

2
(k1 + k2),

1

2
(w2 + σ2)

)

+
V 2
0

2
√
πσ

N∑
k=−N

N
(
x̂±; kµ,

σ2

2
+ w2

)
,

(E.8)

and furthermore

〈
V (x̂+;λ)V (x̂−;λ)

〉
λ
= V 2

0

N∑
k1,k2=−N
k1 ̸=k2

N
(
x̂+; k1µ,w

2 + σ2
)
N
(
x̂−; k2µ,w

2 + σ2
)

+ V 2
0 N

(
x̂+ − x̂−; 0, 2σ2

) N∑
k=−N

N
(
x̂+ + x̂−

2
; kµ,

σ2

2
+ w2

)
.

(E.9)

Then, the expression (E.2) can be rewritten with the help of the following differences

〈
V 2(x̂±;λ)

〉
λ
− V̄ 2(x̂±) =

V 2
0

2
√
π

N∑
k=−N

[
1

σ
N
(
x̂±; kµ,

σ2

2
+ w2

)

− 1√
σ2 + w2

N
(
x̂±; kµ,

σ2 + w2

2

)]
,

(E.10)

and

〈
V (x̂+;λ)V (x̂−;λ)

〉
λ
− V̄ (x̂+)V̄ (x̂−) = V 2

0

N∑
k=−N

[
N (x̂+ − x̂−; 0, 2σ2)N

(
x̂+ + x̂−

2
; kµ,w2 +

σ2

2

)
− N (x̂+; kµ, σ2 + w2)N (x̂−; kµ, σ2 + w2)

]
.

(E.11)
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E.2 The uniform distribution

We considered a constituent PDFs in the following form

f(λk) =
1

2ασ
θ(|λk| ≤ ασ), (E.12)

then the full probability distribution for the random vector λ is given by

P (λ) =
N∏

k=−N
f(λk) =

(
1

2ασ

)2N+1

. (E.13)

Recall that the mean potential field is given by the following formula (4.99)

V̄1(x) =
V0
4ασ

N∑
k=−N

[
erf

(
ασ − x+ kµ√

2σ

)
+ erf

(
ασ + x− kµ√

2σ

)]
, (E.14)

with it, we get the following expressions:

〈
V 2(x̂±;λ)

〉
λ
=

V 2
0

16α2σ2

N∑
k1,k2=−N
k1 ̸=k2

[
erf

(
u+ k1µ− x̂±√

2σ

)]∣∣∣∣u=ασ
u=−ασ

[
erf

(
v + k2µ− x̂±√

2σ

)]∣∣∣∣v=ασ
v=−ασ

+
V 2
0

8
√
πασ2

N∑
k=−N

[
erf

(
u+ kµ− x̂±

σ

)]∣∣∣∣u=ασ
u=−ασ

,

(E.15)

and complementarily

〈
V (x̂+;λ)V (x̂−;λ)

〉
λ
=

V 2
0

16α2σ2

N∑
k1,k2=−N
k1 ̸=k2

[
erf

(
u+ k1µ− x̂+√

2σ

)]∣∣∣∣u=ασ
u=−ασ

[
erf

(
v + k2µ− x̂−√

2σ

)]∣∣∣∣v=ασ
v=−ασ

+
V 2
0

4ασ
N
(
x̂+ − x̂−; 0, 2σ2

) N∑
k=−N

[
erf

(
u− 2kµ+ x̂+ + x̂−

2σ

)]∣∣∣∣u=ασ
u=−ασ

.

(E.16)

Thus, in general, we can express the differences present in Eq. (E.2) as

〈
V 2(x̂±;λ)

〉
λ
− V̄ 2(x̂±) =

V 2
0

8
√
πασ2

N∑
k=−N

[
erf

(
ασ + kµ− x̂±

σ

)
+ erf

(
ασ − kµ+ x̂±

σ

)]

− V 2
0

16σ2α2

N∑
k=−N

[
erf

(
ασ + kµ− x̂±√

2σ

)
+ erf

(
ασ − kµ+ x̂±√

2σ

)]2 (E.17)

whereas mixed terms can be written as〈
V (x̂+;λ)V (x̂−;λ)

〉
λ
− V̄ (x̂+)V̄ (x̂−) =

V 2
0

4ασ
N (x̂+ − x̂−; 0, 2σ2)

×
N∑

k=−N

[
erf

(
ασ − 2kµ+ x̂+ + x̂−

2σ

)
+ erf

(
ασ + 2kµ− x̂+ − x̂−

2σ

)]

− V 2
0

16α2σ2

N∑
k=−N

([
erf

(
ασ + kµ− x̂+√

2σ

)
+ erf

(
ασ − kµ+ x̂+√

2σ

)]
×
[
erf

(
ασ + kµ− x̂−√

2σ

)
+ erf

(
ασ − kµ+ x̂−√

2σ

)])
(E.18)
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Both cases lead to overcomplicated expressions, and any way of implementing them numerically seems

futile, bearing in mind the possibility of encountering an infinite series of operators. However, the operators

x̂±, under the Fourier transformation, can be re-expressed as x± 1
2y where y is a Fourier variable associated

with momentum p. In conclusion, both expressions can be implemented, and the behaviour of the proposed

equation of motion for the averaged WDF can be investigated. However, this was not the approach we used

in this work, as manual rewriting of such expressions is error-prone, and thus statistical estimators of those

expressions were used instead.
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Wignerian symplectic covariance 
approach to the interaction-time 
problem
D. Woźniak1, M. Kalka1, D. Kołaczek2, M. Wołoszyn1 & B. J. Spisak1

The concept of the symplectic covariance property of the Wigner distribution function and the 
symplectic invariance of the Wigner–Rényi entropies has been leveraged to estimate the interaction 
time of the moving quantum state in the presence of an absolutely integrable time-dependent 
potential. For this study, the considered scattering centre is represented initially by the Gaussian 
barrier. Two modifications of this potential energy are considered: a sudden change from barrier to 
barrier and from barrier to well. The scattering state is prepared in the form of a Schrödinger cat, 
and the Moyal equation governs its further time evolution. The whole analysis of the considered 
scattering problem is conducted in the above-barrier regime using the phase-space representation 
of quantum theory. The presented concept shifts the focus from the dynamics of the quantum state 
to a symplectically invariant state functions in the form of the Wigner–Rényi entropies of order one 
and one-half. These quantities serve as indicators of the beginning and end of the interaction of the 
non-Gaussian state with the sufficiently fast decaying potential representing the scattering centre. 
The presented approach is significant because it provides a new way to estimate the interaction time 
of moving quantum states with the dynamical scattering centre. Moreover, it allows for studying 
scattering processes in various physical systems, including atoms, molecules, and condensed matter 
systems.

Keywords  Symplectic covariance, Traversal time, Wigner distribution function, Schrödinger cat state, 
Wigner–Rényi entropy

It is widely assumed that the scattering experiments provide valuable information about the quantum systems 
studied1. The elementary model of the scattering process assumes the existence of a region of space (interaction 
zone) where a relevant scatterer effectively interacts with an incident beam or an impulse of light or particles. 
As a result of this interaction, the outgoing state of the beam or impulse changes depending on the mechanism 
of this interaction, and analysis of this state allows one to draw conclusions regarding the scatterer. One of the 
most intriguing issues arising from this description concerns the traversal time, i.e. the time it takes for a particle 
to traverse the considered region2,3. Light and matter’s wave nature makes this issue complex, especially when 
the scattering description is beyond the plane-wave approximation4,5. Such approximation is highly desired 
in real situations because the incident wave is rarely monoenergetic. This variety of energy spectrum of the 
state allows for simultaneous mixture of scattering and tunneling behavior leading to challenging analysis of 
these components of the dynamics on the experimental basis. Hence, the traversal time can be rather viewed 
as the time of interaction of the quantum state with the finite-range potential barrier. This problem has been 
arousing widespread interest for a long time, but also some controversy6,7. Nevertheless, due to the development 
of measurement techniques8,9, it seems advisable to generalize the question6 ‘How long does it take to tunnel 
through a barrier?’, and instead of asking about the tunnelling time, we should ask about the interaction time. 
This issue is now becoming particularly relevant because the results of Spierings and Steinberg’s experiments10 
have paved the way for the comparison of measurements with the direct and indirect theoretical measures of 
barrier crossing times, see Ref.11 and references therein. Those inspiring results create the possibility of searching 
methods and research tools enabling a quantitative determination of the interaction time, regardless of whether 
we are in the scattering or tunnelling regime. Analyzing this issue within Wigner’s phase-space formalism, we 
discovered a universally applicable method of assessing the interaction times based on well-established physical 
concepts like entropy or entropic measures. This method is deeply embedded in the symplectic covariance 

1Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, 
Poland. 2Department of Applied Mathematics, University of Agriculture in Kraków, ul. Balicka 253c, 30-198 Kraków, 
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property of the Wigner distribution function (WDF)12–14. This function is commonly used to describe the 
quantum states of the system in the phase space15–22. Especially for pure states, the WDF is defined as follows23,24

	
W (ψ)(x, p) = 1

2πℏ

∫

R

dX ψ
(

x + X

2

)
ψ∗

(
x − X

2

)
exp

(
− i

ℏ
pX

)
,� (1)

where ψ(·) ∈ L2(R, dx) is the wave function, and the rest of the symbols have the usual meaning. Surprisingly, 
if one is considering only pure states, then the interpretation of WDF not only as the phase-space distribution but 
rather the probability amplitude function is valid, as stated in25, allowing for wider entropic analysis26. It is worth 
noting here that the WDF, up to a multiplicative constant, is the only quasi-probability distribution function 
that is covariant under both translations and all symplectic transformations (including shear transformations, 
rotations and scalings)27. The fundamental characteristic of these transformations lies in their ability to maintain 
the area occupied by the WDF regardless of the deformations they impose. Generally the area occupied by the 
WDF in the phase space is invariant with respect to the group of symplectic transformations28

	 Sp(1, R) =
{

S ∈ M2×2(R) : ST JS = J
}

= {S ∈ M2×2(R) : det S = 1} ,� (2)

where M2×2(R) is the set of 2 × 2 real matrices and J is the standard symplectic matrix (JT = −J and 
J2 = −I, where I is the identity matrix). On the other hand, a symplectic change of variables performed on 
arguments of the WDF is equivalent to calculating the WDF for the transformed wave function at previous 
points. This property is known as the symplectic covariance of the WDF29, and formally it can be expressed by 
the following equality:

	 W
(
K̂Sψ

)
(x, p) = W (ψ)

(
S−1[x p]T

)
,� (3)

where S ∈ Sp(1, R) is the aforementioned symplectic matrix and K̂S is an associated operator belonging to 
the metaplectic group Mp(1) of unitary operators30 that act in the Hilbert space of square-integrable functions 
ψ(·) ∈ L2(R, dx). Let us note that the relation between K̂S and S is two-to-one, so the difference in the choice 
of the operator K̂S is barely in its sign31. This issue can be omitted in the presented discussion due to the 
insensitivity of the WDF to phase disturbance of the wave function. The meaning of the metaplectic operators 
is revealed in the description of the WDF dynamics. For this purpose, we consider the time dependence of the 
WDF that results from the time evolution of the wave function ψ(·; t) generated by the Cauchy problem in the 
form

	

{
iℏ∂tψ(·, t) = Ĥ(t)ψ(·, t), t > 0
ψ(·, 0) = ψ0(·), � (4)

where the wave function ψ0(·) represents the initial condition and Ĥ(t) is the time-dependent one-particle 
Hamiltonian defined as the sum of the kinetic and potential parts of the considered system. The formal solution 
of Eq. (4) can be written as follows,

	 ψ(·, t) = Û (t, 0)ψ0(·),� (5)

where Û (t, 0) is the unitary time evolution operator32. If we assume the potential energy to be in the form of 
a polynomial of order two with time-dependent coefficients33, then the operator Û (t, 0) is a product of two 
unitary operators. The first one translates the wave function in position and momentum and also shifts the global 
phase of the wave function. The second one is a product of three metaplectic operators belonging to the group 
Mp(1) hence it is also a metaplectic operator as shown in Refs.34,35. In particular, this statement holds in the 
case of motion in the free space. This observation is a starting point of our analysis; the time-evolution operator 
generated by the free-particle Hamiltonian is a metaplectic operator, and according to symplectic covariance 
property of WDF the following formula holds:

	

∫

R2
dxdp f

(
W

(
e− i

ℏ
p̂2
2m

tψ0

)
(x, p)

)
=

∫

R2
dxdp f (W (ψ0)(x, p)) ,� (6)

where the function f : [−1/(πℏ), 1/(πℏ)] → R and both integrals are finite. This characteristic serves as the 
motivation for looking beyond the scenario of free propagation through the establishment of the time-dependent 
symplectically invariant measure ζ(t), according to the formula

	
ζ(t) :=

∫

R2
dxdp f (W (ψ(t)) (x, p)) .� (7)

Using these two equations we can conclude that the measure in question remains unchanged until a barrier 
potential disrupts the free motion. Owing to this property one can find a specific time interval for which the time 
evolution of the WDF differs from the free-space motion.
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In Fig. 1, we present a qualitative explanation of the idea used.
First, the initial state evolves in free space (F), equivalently undergoing a symplectic shearing transformation. 

Following that, the result of this evolution is subjected to nonsymplectic deformations through the nonzero 
potential region (I). After that, such a deformed state evolves again as a state in free space (F), and its further 
evolution is symplectically invariant. In other words, we use the symplectic invariance of the quantum state 
resulting from the free motion in space to determine the interaction time through the non-zero potential energy 
region defining the interaction zone. One might pose the question of whether this concept, as per Eq. (7), can 
be extended to encompass cases involving harmonic or anharmonic potentials. While the answer is affirmative, 
it’s crucial to keep in mind that arbitrary smooth potentials primarily display anharmonic repelling or harmonic 
bounding behavior in localized regions, such as close neighborhood of local extrema of the potential. Considering 
this, and the fact that the wave function’s support is rarely compact, it leads us to the conclusion that these cases 
cannot serve as a reliable indicator of the interaction between a quantum object and a potential. In other words, 
there is always a portion of the wave function that interacts with the non-harmonic part of the potential, with 
the exception of cases involving pure ax2 potentials, for a ̸= 0.

In this paper, we use the symplectically invariant measures: Wigner–Rényi one-half entropy, Wigner–
Shannon entropy to estimate the interaction time of the highly nonclassical state in the form of Schrödinger 
Cat (SC) state36–40 with the Gaussian potential barrier with time-modulated amplitude. It opens an engaging 
perspective for spectroscopic methods, especially in application to quantum-optical spectroscopy with the goal 
of enhancing the signal and narrow spectral lines, as presented in Ref.41,42. To prove the usefulness, as well as 
to indicate the scope of applicability of the proposed method, we considered two limiting cases of the time-
dependent scattering potential, i.e. we chose the potential amplitude in two ways. The first one corresponds to 
a single change in the value of the potential energy amplitude without changes in its sign, while the second one 
concerns its sign change without changes in the value. Based on both these cases, we directly determine the time-
dependent Wigner–Shannon entropy43–45 and the time-dependent Wigner–Rényi one-half entropy, recently 
examined as an equivalent measure of nonclassicality of the WDF26 as two different examples of symplectically 
invariant measures. The careful analysis of these dynamical quantities allows us to estimate the interaction time 
in one of these cases. On the contrary, the second case is treated as a counterexample, illustrating the limitations 
of the offered method. We support these results by analyzing the dynamical transmission and capture coefficients 
which allow us to reinforce presented results.

Theoretical framework
Phase-space approach
In the following sections, we denote the time-dependent WDF as W (ψ(·, t))(x, p) = ϱ(x, p, t) if there is no 
need to explicitly specify what the wave function of the quantum state is. This shorter notation allows us to 
introduce the explicit time dependence of the WDF in a compact way. According to the general rules describing 
the quantum systems in the phase space, dynamical variables A(x, p) characterizing the considered system are 
expressed by the corresponding Weyl symbols, aW (x, p), which are functions defined on the phase space. The 
construction of the appropriate Weyl symbol is based on the Weyl transform22, according to which the Hermitian 
operator, Â(x̂, p̂), acting on the Hilbert space, is assigned the real function aW (x, p) expressed by the formula46

	
aW (x, p) =

∫

R

dX
〈

x + X

2

∣∣∣ Â(x̂, p̂)
∣∣∣x − X

2

〉
exp

(
− i

ℏ
pX

)
.� (8)

In the case of the time-dependent Hamiltonian of the one-particle system, Ĥ = p̂2/(2m) + W (x̂, t), the 
corresponding Weyl symbol, HW(x, p, t), takes the form of the following real function

Fig. 1.  The deformation of patch defined over pℏase space (x, p) under transformation generated by a free 
potential (a) and arbitrary potential (b) (marked with black line). For transformations generated by free 
particle potential (F), it is known that any patch defined on pℏase space undergoes shearing transformation, 
that is linear, momentum-dependent stretching. By the contrast, for area of interaction (I), transformation is 
no longer of this type, so no symplectic transformation can be assigned to such an operator. Thus, symplectic 
covariance property is violated resulting in changes in the symplectically invariant measure. This allows finding 
certain times ti, tf , for which given invariant measure respectively begins and ends to vary with time. This area 
of interaction is marked with purple color.
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HW(x, p, t) = p2

2m
+ W (x, t),� (9)

where W(x,  t) is the potential term assumed to be separable, i.e. W (x, t) = U(x)Σ(t), wherein U(x) is the 
short-range potential energy, i.e. it belongs to the class of absolutely integrable functions (cf. Supplementary 
Information for more details), and Σ(t) is the time-dependent modulation factor of the potential amplitude. For 
the above-established Weyl symbol of the Hamiltonian, the time evolution of the WDF can be expressed by the 
Moyal equation,

	
∂tϱ(x, p, t) = − p

m
∂xϱ(x, p, t) + 1

iℏ

[
U

(
x + iℏ

2 ∂p

)
− U

(
x − iℏ

2 ∂p

)]
Σ(t) ϱ(x, p, t).� (10)

The dynamics of the WDF generated by solving the initial value problem for the Moyal equation also requires 
establishing an initial condition. This initial condition is taken as the phase-space representation of the SC state 
for which the WDF is given by the formula

	

ϱ(x, p, 0) = A2
1

(1 − β)
πℏ

exp
[

− (x − x1)2

2δ2
x

− 2δ2
x (p − p0)2

ℏ2

]
+ A2

1
β

πℏ
exp

[
− (x − x2)2

2δ2
x

− 2δ2
x (p − p0)2

ℏ2

]

+ 2A2
1

√
β (1 − β)

πℏ
cos

[
ϑ + p − p0

ℏ
(x1 − x2)

]
exp

[
−

(
x − x1+x2

2

)2

2δ2
x

− 2δ2
x (p − p0)2

ℏ2

]
,

� (11)

where the normalization factor A1 has the form

	
A1 =

[
1 + 2

√
β(1 − β) exp

(
− (x1 − x2)2

8δ2
x

)]− 1
2

.� (12)

This state is further denoted as the SC-WDF. The first two terms of the SC-WDF correspond to the two Gaussian 
wave packets localized at the different phase-space points, namely (x1, p0) and (x2, p0). In turn, the last term 
represents the quantum interference pattern with a Gaussian envelope. This term is centered around the phase-
space point ((x1 + x2)/2, p0) and rapidly oscillates along the x-axis. The set of parameters defining this SC-
WDF is taken in the same form as follows: β = 0.5, ϑ = 0, δ2

x = 500 a.u., x1 = −300 a.u., x2 = −500 a.u. and 
p0 = 0.15 a.u. This choice of parameters means that the initial SC-WDF is located to the left of the Gaussian 
barrier at a distance greater than its initial spatial dimension, and it approaches the barrier with the expected 
value of the kinetic energy slightly greater than the top of the barrier. It means that our computational scattering 
experiments are conducted in the above-barrier regime47.

Dynamical characteristics
Due to the time-dependent character of the performed analysis, we propose the following set of dynamical 
quantities that characterize the system described by Eq. (9). The remaining dynamical quantities considered by 
us are based on the fact that the expression

	
ζ(t) =

∫

R2
dxdp f (ϱ(x, p, t)) � (13)

is invariant under the time evolution governed by the Hamiltonian with the potential term in the form of a 
polynomial of the order less than or equal to 2, independent of the form of the function f (more details can be 
found in Supplementary Information). One of the quantities that can be understood in the sense of the above 
expression is the Wigner–Rényi entropic measure of order α which is defined for pure states as follows26

	
Sα(t) = 1

1 − α
ln

[
(2πℏ)2α−1

∫

R2
dxdp |ϱ(x, p, t)|2α

]
,� (14)

where α is the Rényi index (α ≥ 0 and α ̸= 1). However, for further analysis, we focus our attention on the 
special case of this entropy, namely α = 1, which corresponds to the Wigner–Shannon entropy45

	
S1(t) = lim

α→1
Sα(t) = − ln (2πℏ) − 2πℏ

∫

R2
dxdp |ϱ(x, p, t)|2 ln ϱ2(x, p, t) ,� (15)

where the coefficient 2πℏ is a byproduct of normalization condition of the WDF in the L2(R2, dxdp) norm.

Another dynamic quantity consistent with the expression given by Eq. (7) is the time-dependent Wigner–Rényi 
one-half entropy which is equal to
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S1/2(t) = 2 ln

(∫

R2
dxdp |ϱ(x, p, t)|

)
+ ln (2πℏ),� (16)

The Wigner–Rényi one-half entropy can be related to the nonclassicality parameter

	
δ(t) =

∫

R2
dxdp |ϱ(x, p, t)| − 1,� (17)

which encapsulates information about the changes of the phase-space area occupied by the negative values of the 
WDF during the time evolution of this function47–50. According to the discussions concerning the symplectic 
invariance measures and the symplectic covariance of the WDF presented in earlier parts of this paper, these 
two dynamic quantities, i.e. the Wigner–Shannon entropy and the Wigner–Rényi one-half entropy, can be 
applied to determine the interaction time of the state represented by the WDF with the potential given in the 
form of absolutely integrable functions because these both quantities should be stabilized if the WDF leaves the 
interaction zone and its motion is recognized as the free movement. In other words, the end of the interaction 
process should be manifested by the absence of changes in the values of one of these quantities over time. Based 
on this observation, the time of interaction between the potential and the WDF can be calculated according to:

Proposition 1  For a fixed Rényi index α > 0 the interaction time τ , between state represented by the Wigner 
distribution function and potential energy belonging to the class of absolutely integrable functions, based upon 
Wigner–Rényi entropic measure, can be defined as

	

τ =min {t ∈ R+ : |Sα(t) − Sα(∞)| > ε(M − m)}
−max {t ∈ R+ : |Sα(t) − Sα(0)| > ε(M − m)}
=tf − ti,

� (18)

where Sα(t) is a Wigner–Rényi entropy with Rényi index α, Sα(0) is the value of the entropy at the beginning of the 
evolution, Sα(∞) is the value at the end of the evolution, M = maxt∈R+ Sα(t) is the maximum of Wigner–Rényi 
entropic measure, m = mint∈R+ Sα(t) is its minimum, and 0 < ε ≪ 1 is a dimensionless threshold parameter, 
that can be understood as the precision of the measuring device.

During the early evolution of the WDF, any ζ(t) is constant due to the lack of significant interaction between 
the potential and the initial condition; thus, one should expect nearly constant values of ζ(t) which implies a 
facilitated calculation of ti. The problem arises when one tries to evaluate tf  because, as mentioned earlier, if the 
SC-WDF happens to settle in the well, then formally the interaction continues and as a result a symplectically 
invariant measure is nonconstant in long-time behavior. The criterion we propose to find tf  is the numerical 
analysis of the first derivative of the symplectically invariant measure with respect to time. The suitable choice of 
ζ(t) will be explained in detail within the next sections.

Results and discussion
Numerical algorithm
The following Fourier transforms,

	
F1,x→λϱ(x, p, t) = 1√

2πℏ

∫

R

dx e− i
ℏ λxϱ(x, p, t) � (19)

	
F −1

1,λ→xϱ̃(λ, p, t) = 1√
2πℏ

∫

R

dλ e
i
ℏ λxϱ̃(λ, p, t) � (20)

	
F2,p→yϱ(x, p, t) = 1√

2πℏ

∫

R

dp e− i
ℏ pyϱ(x, p, t) � (21)

	
F −1

2,y→pϱ̃(x, y, t) = 1√
2πℏ

∫

R

dy e
i
ℏ py ϱ̃(x, y, t),� (22)

and the unitary equivalence of multiplication and derivative operators, i.e.,

	
F −1

1,λ→xλF1,x→λ = i

ℏ
∂x, F −1

2,y→pyF2,p→y = i

ℏ
∂p,� (23)

allow us to transform Eq. (10) to the following form
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∂tϱ(x, p, t) =

(
− i

ℏm
F −1

1,λ→xpλF1,x→λ + i

ℏ
Σ(t)F −1

2,y→pU∆(x, y)F2,p→y

)
ϱ(x, p, t),� (24)

where the variables λ and y are the canonically conjugate variables to x and p, respectively, as it results from the 
definition of the Fourier transform pairs (19)–(22), and the auxiliary function U∆(x, y) is defined as

	
U∆(x, y) = U

(
x + y

2

)
− U

(
x − y

2

)
.� (25)

In the presented case, Σ(t) is a piecewise constant function. For this class of functions, the time evolution can 
be obtained by solving the dynamical problem in consecutive intervals where Σ(t) is constant. For each of those 
intervals, we impose a new initial condition, taken as the state resulting from the previous stage of calculations.

Let [tk, tk+1) be the interval where Σ(t) = uk , and {tkj }j∈J  be a set of equidistant, by time step ∆t, points 
within that interval for some set of indexes J. Then, the evolution within a given interval can be calculated using 
the Strang approximation for the exponential operator51–54, as

	

ϱ(x, p, tkj+1 ) = ϱ(x, p, tkj + ∆t) = exp
(
− i

ℏm
F −1

1,λ→xpλF1,x→λ + i
ℏukF −1

2,y→pU∆(x, y)F2,p→y

)
ϱ(x, p, tkj )

≈ F −1
1,λ→x exp

[
− i∆t

2m
λp

]
F1,x→λF −1

2,y→p exp [iuk∆tU∆(x, y)] F2,p→yF −1
1,λ→x exp

[
− i∆t

2m
λp

]
F1,x→λϱ(x, p, tkj ). � (26)

The result of Eq. (26) gives the final state in time tk+1, which becomes the initial condition for the next interval 
[tk+1, tk+2) with constant Σ(t) = uk+1. This procedure is repeated to find the entire evolution of the WDF. 
The algorithm can be used for the single change in the amplitude of the potential at time ts if one assumes that 
t0 = 0, t1 = ts, t2 = tend. Then, according to the formula above, the initial condition is iterated first within 
the interval [0, ts) preceded by iteration within [ts, tend). Due to the fact that the Fast Fourier Transform is 
applicable for periodic boundary conditions, we propose a uniform grid of size Nx × Np with right half-open 
intervals, where the box size is chosen so that the WDF vanishes at or near the boundaries during the whole 
simulation.

Simulation parameters
To construct the explicit form of the Weyl symbol of the Hamiltonian given by Eq. (9), we propose the potential 
energy part of W(x, t) in the form of a Gaussian barrier,

	
U(x) = U0 exp

[
− (x − xB)2

2w2

]
,� (27)

with the following parameters: the center of the barrier localization is xB = 0 a.u., the strength of this barrier is 
U0 = 0.008 a.u., and its width is given by w2 = 50 a.u. Let us note that the choice of the potential in the form 
of a Gaussian function guarantees that it is absolutely integrable. Moreover, this potential rapidly decays in the 
interval L = [xB − 3w, xB + 3w], where w can be interpreted as the standard deviation. Hence, we conclude 
that at infinity the scattered state can be regarded as a free state. In turn, the time-dependent modulation factor 
of the potential amplitude W(x,  t), denoted by Σ(t), is chosen in two ways. The first one illustrates a single 
change in the value of the potential energy amplitude without changes in its sign, while the second refers to 
its sign change without changes in the value. We discuss these two cases in consecutive subsections separately, 
because they clearly illustrate the presented idea, power of the method, and its limitations.

Simulations were performed on the grid with the size 

•	 x ∈ [−1500, 1500) a.u. with Nx = 1024,
•	 p ∈ [−1, 1) a.u. with Np = 1024,

and t ∈ [0, 9000)  a.u. with Nt = 900. That choice of parameters ensures that all points where the WDF is 
non-zero are always sufficiently far from the boundaries, so that no significant error propagates throughout the 
simulation.

One-time change in barrier height
As the first case, the single modulation of the amplitude is considered, resulting in lowering the barrier’s height 
in half. To this end, for a fixed potential energy, U(x), the potential term of the Moyal equation is given by the 
function W (x, t) = U(x)Σ(t), where time-dependent modulation factor of the potential amplitude, Σ(t), is 
assumed in the form

	 Σ(t) = 1 − 0.5 θ(t − ts),� (28)
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where θ(·) is the Heaviside function and ts is the switching time corresponding to a sudden change in the 
amplitude of the potential by half of its initial value. This choice of the potential term allows us to find the time 
evolution of the WDF in the proposed model of the time-dependent potential by the numerical solution of the 
Moyal equation based on the previously discussed algorithm. The obtained results show that the initial state 
represented by the SC-WDF freely propagates towards the Gaussian barrier.

Depending on the time instant ts, a greater or smaller part of the WDF might interact with the barrier undergoing 
scattering, before the sudden drop in the amplitude of the barrier. Then, the motion of the WDF continues in 
the region of the lowered barrier. In the long time, it is expected that the WDF will evolve freely, without any 
significant disruption from the scattering center. Figure 2 displays snapshots of the time evolution of the WDF 
in the phase space of the considered system at selected time instants. Let us note that these figures also contain 
several isolines of the classical Hamiltonian identical to its Weyl symbol. Most important concept of the system 
considered is that the potential governing the evolution of the WDF changes at ts which disturbs the ongoing 
evolution of the WDF as seen in Fig. 2.

The interaction time was calculated, according to Proposition 1 with ε = 0.01, for different switching times 
ts, as seen in Fig. 3. Apparently, one may notice some behavioral similarities between the two curves presented, 
especially for time ts < 1.4 × 103 a.u. the interaction time τ(ts) is constant in value but the amplitudes differ 
in value. This is due to the fact that the Wigner–Shannon entropy stabilizes quicker, according to Fig. 4 than the 
Wigner–Renyi one-half entropy resulting in lower interaction time values.

Both figures depict a significant constant value of interaction time for ts ≤ 1.5 × 103 a.u. For these 
times, the WDF interacts with the lower barrier of the 0.004 a.u. amplitude. As the time ts increases, a more 
significant part of the WDF interacts with a high-amplitude barrier, and as a result, the disturbance from the 
constant value of interaction time τ  occurs. The overall character of the subsequent ts-dependence of τ  is out 
of the scope of this work. Lastly, the overall character suggests that the appearance of a lower barrier while the 

Fig. 3.  The interaction time calculated as a function of switching time ts. Results obtained are based on 
Wigner–Rényi one-half entropy S1/2(t), and Wigner–Shannon entropy S1(t).

 

Fig. 2.  The phase-space snapshot of the SC-WDF with a single potential change at ts = 2.1 × 103a.u. shown 
in snapshots taken at (a) t = 0.0 × 103a.u., (b) 1.9 × 103a.u., (c) 3.6 × 103a.u. and (d) 5.0 × 103a.u. The 
red lines stand for the isolines of Hamiltonian for barrier before and after the cut down.
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interaction is already taking place reduces the interaction time. Previously presented interaction time value can 
be supported by the time evolution of the symplectically invariant measures chosen for consideration, as shown 
in Fig. 4. The common characteristic of these two measures is that they are both a time-dependent functions 
that can be segmented into three different stages: before the interaction, during the interaction, and flattening 
after the interaction. The first part is a consequence of the rapid spatial decrease in potential energy, U(x), at 
long distances, where it can be assumed to be nearly constant (U(x) ≈ const). Thus, the WDF undergoes a 
shearing transformation, that is, a momentum-dependent translation that elongates the WDF. This evolution 
continues as long as the WDF is away from the potential barrier. When it reaches the interaction zone, the 
Wigner–Shannon entropy and the Wigner–Rényi one-half entropy start to vary over time. This is the result of 
breaking of the assumptions for symplectic invariance: the potential is no longer in the form of a polynomial 
of at most quadratic order. Last but not least, we have the flattening of these curves. The time at which any of 
the given symplectically invariant measures begins to vary from a constant value is assumed to be the start of 
the interaction ti The time when the interaction stops, tf, can be specified as the time when the symplectically 
invariant measure becomes flat (or nearly flat). This allows us to estimate the interaction time τ = tf − ti of the 
WDF with a potential W(x, t), which in the presented case has the form shown in Fig. 3. The argument of the 
lack of the WDF interaction with the potential can be reinforced by additional analysis based on the measures 
quantifying overall character of the dynamics: dynamical transmission and dynamical capture coefficients. The 
former provides the information about the amount of the SC-WDF that passes through the interaction zone 
according to the formula,

	
P (t, xP ) =

∫

R

∫ ∞

xP

dxdp ϱ(x, p, t).� (29)

For a fixed xP  we denote P (t, xP ) = P (t). The position xP  is chosen in the region where the influence of 
the potential is negligible or, preferably, zero. Complementary to P(t), we introduce the dynamical capture 
coefficient C(t, ε), defined as

	
C(t, ε) =

∫

R

∫

L(ε)
dxdp ϱ(x, p, t),� (30)

which quantitatively describes the trapped part of the WDF. Analogically to P(t) if ε is fixed, then C(t, ε) = C(t)
. The interval L(ε) is the region where the absolute value of the potential U(x) is significantly nonzero, i.e. its 
values are greater than some fixed ε > 0. Complementary to the previously defined dynamical measures is the 
dynamical reflection coefficient, defined as

	
R(t, xR) =

∫

R

∫ xR

−∞
dxdp ϱ(x, p, t),� (31)

where xR is chosen sufficiently far from the initial condition so that it does not contribute to the reflected part 
of the WDF. It is expected that the following condition is held: limt→+∞[R(t, xR) + C(t, ε) + P (t, xP )] = 1
. The P(t) and C(t), as already mentioned, quantify the dynamics of the WDF as the amount of the quasi-
probability distribution function present within given subspace of the pℏase-space of the system.

In Fig. 5a one can see the nondecreasing character of the dynamical transmission coefficient. As the switching 
time ts increases, due to scattering, the lower amount of the WDF is transmitted through the interaction zone. For 
time instants ts greater than the time for which purely scattering occurs, the dynamical transmission coefficient 
P(t) will follow the same course as in the case of scattering on the static Gaussian barrier with amplitude 
0.008 a.u. However, for lower values of the switching time ts, the WDF interacts with the low-energy barrier, thus 
nearly the entire WDF goes above the barrier, resulting in a long-time behavior of the dynamical transmission 

Fig. 4.  The Wigner–Shannon entropy (a) and Wigner–Rényi one-half entropy (b) of the WDF state over time. 
Different colors stand for different potential switching times ts and the black dash-dotted line corresponds to 
the case of time-independent potential barrier.
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coefficient that is nearly equal to one (P (t) ≈ 1.0). The complementary measure is the capture coefficient C(t), 
which indicates the amount of the WDF within the interaction zone with the potential. According to Fig. 5b, for 
long times (about t > 6 × 103 a.u.) there is no interaction of WDF with the potential barrier. The black dash-
dotted line presented in the Fig. 5 is associated with the dynamical transmission and capture coefficients in the 
case of the time-independent potential in the barrier state. This allows for juxtaposition of dynamical measures 
associated with stationary and time-varying barrier systems. Namely, one can visually track the behavior of 
quantum state parameters against the evolutionary properties of the same state governed by a simplified system. 
This curve of reference for the dynamical quantity of the simplified system is present in all figures to shed light 
on the behavior of considered potentials. Apart from strengthening of the arguments presented in previous 
figures, the dynamical capture coefficient opens a different perspective on the concept of the interaction time, 
which greatly differs in the physical interpretation. As C(t) measures the amount of WDF that interacts with a 
strictly significant part of the potential, the time when C(t) diverges from zero could be regarded as the start of 
the interaction. Similarly, the time when the dynamical capture coefficient approaches zero would be the end 
of the interaction between the WDF and the potential. While this insight might be correct for some classes 
of potentials, it tackles the problem of the interaction time from a different perspective. The interaction time 
defined by Proposition 1 is the distance in time space between two free propagating states. Physically means that 
there is no potential disturbing the evolution of the system. On the other hand, C(t) measures the absence of the 
quantum state within the potential considered, regardless of the form of the quantum state before, and after the 
interaction. Let us note that the parameters of the time-dependent Gaussian barrier determine the interaction 
with the quantum state for the scattering process in terms of energy scale and space-time scale.

The preceding discussion demonstrates that the transmission and capture coefficients can also be employed 
as complementary measures to ascertain the SC-WDF’s interaction time with the potential. This approach is 
commonly employed to characterize tunnelling and related phenomena through barriers4,55. It can, in particular, 
be utilized to estimate the interaction time straightforwardly. Let us note that these times can be read directly 
from Fig.  5. For this purpose, the moment when the transmission coefficient reaches one and the capture 
coefficient simultaneously reaches zero must be indicated with the given accuracy. The read-off results from 
Fig. 5 are provided in tabular form in Table 1. As is noticed, the values of these interaction times are similar in 
magnitude to those obtained using entropic methods based on Proposition 1. Although both methods yield 
comparable order of magnitude results, it is noteworthy that the transmission and capture coefficients are not 
symplectic invariant quantities. This is evidenced by the fact that they do not satisfy the property given by Eq. (6).

In addition to the method mentioned above, we decided to compare our results with two other approaches 
that enable estimating the interaction time. The first one is the method proposed by Dragoman56. It is a modified 
version of the Büttiker-Landauer semiclassical time, as presented in reference2. Based on this method, the 
interaction time can be estimated according to the formula

Measure Reference

Interaction time [a.u.]

ts ∈ [0, 1200] [a.u.] ts ∈ (1200, 3000] [a.u.]

S1(t) with ε = 0.01 This work 5368 3054–5460

P(t) Tannor4 4550 4550–4562

⟨τ⟩ Dragoman56 5089 4545

⟨t⟩T @Y = 600 a.u. Pollak57 6632 6604–6833

S1/2(t) with 
ε = 0.01 This work 6642 4556–6688

Table 1.  Comparison of interaction times based on different measures calculated in two ranges of the 
switching time ts. Two ranges of the switching time ts were selected because for ts < 1.2 × 103a.u., all of the 
presented interaction times have constant values.

 

Fig. 5.  (a) Dynamical transmission P, and (b) dynamical capture C coefficients as functions of time t in the 
case of barrier-to-barrier switching. Different colors stand for the different potential switching times ts, and the 
black dash-dotted line corresponds to the case of time-independent potential barrier.
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τ(t) =
d

∫ d

0
dx

∫

R

dp ϱ(x, p, t)
∫ d

0
dx

∫

R

dp (p/m)ϱ(x, p, t)
.� (32)

In our calculations we set d = 6w, where w2 = 50 a.u. is the width of the Gaussian barrier. Direct application of 
Dragomon’s method requires some modifications because it was initially formulated for the time-independent 
problem with the scatterer defined on the compact support of size d. For our purpose, we performed additional 
averaging of Eq. (32) over the simulation time. Hence, the time τ(t) is replaced by the averaging quantity, ⟨τ⟩
, by the formula

	

⟨τ⟩ = 1
tend

∫ tend

0
dt




6w

∫ 3w

−3w

dx

∫

R

dp ϱ(x, p, t)
∫ 3w

−3w

dx

∫

R

dp (p/m)ϱ(x, p, t)


 ,� (33)

where tend is the time of the end of the simulation. The calculations were performed for the several switching 
times, ts, and results are collected in Table  1. The estimated interaction times with this method are also 
comparable to those presented in this paper.

Pollak et al.11,57,58 developed the second method of estimating the interaction time, with which we want to 
compare our results. This approach is referred to as the mean flight time method. According to this method, the 
interaction time can be determined as follows:

	
⟨t⟩T =

∫ ∞

0
dt tP (Y, t),� (34)

where P(Y, t) is the flight-time distribution measured at the detector located at Y. The explicit expression for this 
quantity is given by the formula

	

P (Y, t) = |n(Y, t)|2∫ ∞

0
dt |n(Y, t)|2

,
� (35)

in which n(Y, t) is the marginal distribution of the WDF with respect to the position Y. Its form is following

	
n(x = Y, t) =

∫

R

dp ϱ(x = Y, p, t).� (36)

As recommended by the authors of the research mentioned above, the detector distance from the scattering 
centre should be at least as far as the initial location of the incident wavepacket. In the simulations that were 
carried out, the initial SC-WDF is located at a distance of d = 500 a.u. from the scattering centre. Thus, we 
have decided to evaluate mean flight time given by Eq. (34) for the detector, which is positioned at a distance 
Y = 600 a.u. The estimated interaction times obtained with this assumption for the several switching times, ts, 
are presented in Table 1. As can be seen, these times are also of the same order of magnitude as those estimated 
based on our proposed method.

Finally, the presented comparative studies allow us to conclude that the entropic methods we propose estimate 
the interaction times range in a way consistent with that provided by other methods.

Previously, we examined the influence of changing the barrier height on the interaction time as a function 
of the switching time. However, we also expect that the interaction time depends on the barrier width while 
maintaining the same characteristics of the sampling state of the considered system. The results of these 
calculations are presented in Fig. 6. For a fixed value of the switching time, we determined the interaction time 
as a function of the Gaussian barrier width, w2, based upon the time-dependent Wigner–Shannon entropy 
and the Wigner–Rényi one-half entropy. In both cases, we observe that an increase in the barrier width causes 
an increase in the interaction time, but the interaction times differ in numerical values. The interaction time 
determined with the help of the Wigner–Rényi one-half entropy is greater than its counterpart obtained using 
the Wigner–Shannon entropy. These results are consistent with conclusions resulting from the analysis Fig. 3, 
i.e. the symplectically invariant measure based on the Wigner–Rényi one-half entropy remains more sensitive 
on nonsymplectic WDF deformation due to its interaction with a barrier. Ipso facto forms the best estimation of 
the interaction time using entropic measures.
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Barrier-well switching
In the following case, we consider a second setup in which the amplitude of the Gaussian potential changes sign 
once, which means that the Gaussian barrier becomes the Gaussian well. For this purpose, we assume that the 
time-dependent part of the potential term, Σ(t), has the following form,

	 Σ(t) = 1 − 2θ(t − ts),� (37)

where θ(·) is the Heaviside step and ts is the switching time. As in the previous case, we determine the time 
evolution of the WDF by the numerical solution of the Moyal equation based on the discussed algorithm. 
The example snapshots of the WDF during its time evolution in the phase space are shown in Fig.  7 for 
ts = 2.1 × 103 a.u..

Qualitatively, the initial dynamics of the WDF, before approaching the interaction zone, resembles a free 
evolution, as can be seen in Fig. 7a. Any changes inflicted in the shape of the WDF directly result from shearing 
transformation, leading to the symplectic deformation of this function. Then, the freely evolving WDF enters the 
interaction zone, where it begins interacting with the potential barrier, as seen in Fig. 7b. In this case, all three 
elements of the time evolution can be highlighted: free movement of the highly energetic parts of the WDF, 
scattering and tunnelling of the intermediate and low energetic parts of the WDF. These last two processes are 
responsible for destroying the symplectic deformation of the WDF resulting from the free evolution of this state 
in the phase space.

During interaction, the Gaussian barrier is suddenly switched to the Gaussian well, forming a state that 
on one hand evolves with slight disturbance, and on the other is submitted partially to the bounding within 
potential well, as visible in Fig. 7c. Finally, we observe the trichotomy of the WDF in the form of transmitted, 
reflected and trapped parts. The overall form of the WDF deformation strongly depends on its trapped part, see 
Fig. 7d, sparking our interest due to its role in the interaction with the potential. To gain better understanding 

Fig. 7.  The phase-space snapshot of the SC-WDF with a single potential change at ts = 2.1 × 103a.u. shown 
in snapshots taken at (a) t = 0.0 × 103a.u., (b) 1.9 × 103a.u., (c) 3.6 × 103a.u. and (d) 5.0 × 103a.u. 
The red and green lines stand for the isolines of Hamiltonian for barrier and well forms of potential energy, 
respectively.

 

Fig. 6.  Interaction time τ  as a function of potential width w2 for different switch times ts, based upon 
(a) Wigner–Shannon entropy, (b) Wigner–Rényi one-half entropy.
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in this matter, we support these findings by calculating the dynamical transmission and capture coefficients as a 
time function for different switching time values. The results of these calculations are shown in Fig. 8.

The observed changes in the dynamical transmission coefficient [cf. Fig. 8a] allow us to conclude that the 
switching time influences the passage rate through the interaction zone. In particular, if the switch between 
the barrier and the well occurs when the state is inside the region of the interaction zone, then the dynamical 
transmission coefficient is lower. A natural implication would be that some amounts of the WDF are trapped 
in the created well. This statement can be supported by the dynamical capture coefficient, displayed in Fig. 8b. 
The non-zero values assigned to the dynamics of the WDF for t > 6 × 103 a.u. suggest that there are indeed 
parts of the WDF bounded within potential well. The scenario is more complicated when the potential barrier 
changes to the potential well at the moment when the WDF is in the interaction zone. Namely, the nonsymplectic 
deformation of the WDF due to the interaction of the state with the Gaussian barrier results in the appearance 
of low-momentum tail of the WDF, which is sensitive to the presence of the potential well. Consequently, 
partial trapping of the WDF within potential well reduces the dynamical transmission coefficient through the 
interaction zone. As a result, the further time evolution of the WDF cannot be described as a free motion, and 
thus it is a limitation for determining the interaction time based on the method we proposed.

Namely, WDF can be divided in two parts: one part trapped within potential well that is subjected to 
non-metaplectic transformations, and other freely evolving deformed state. The contribution of the former 
to the general picture of the evolution invalidates method proposed in Proposition 1, as a proper method for 
determining the interaction time in this scenario. To finalize this counter-exemplary analysis, we calculated 
the Wigner–Shannon entropy and the Wigner–Rényi one-half entropy as functions of time. These results are 
presented in Fig. 9a, b, respectively. Let us note that both these dynamical quantities do not stabilize over time 
during the performed simulations. This lack of long-time stability, in terms of constant, non-varying value of the 
symplectically invariant measure, is strictly connected to the reminder of the WDF trapped within potential well, 
deeming our method unsatisfactory in presented case. In this subsection, we presented an example of the time-
dependent potential in which the method of determining the interaction time based on the symplectic covariance 
of the WDF fails. Consequently, this time is not defined correctly, although the Wigner–Shannon entropy and 
the Wigner–Rényi one-half entropy can be calculated. It is clear that despite the apparent stabilization of some 
of these curves, an attempt to determine the interaction time on this basis is challenging. Therefore, the example 
of the time-dependent potential presented here can be regarded rather as a counterexample, thus showing the 
limitations of the method mentioned above.

Fig. 9.  (a) The Wigner–Shannon entropy and (b) the Wigner–Rényi one-half entropy of the WDF state against 
time. Different colors stand for different potential change time ts and the black dash-dotted line corresponds to 
the case of time-independent potential barrier.

 

Fig. 8.  (a) Dynamical transmission P, and (b) dynamical capture C coefficients as functions of time t, in the 
case of barrier-to-well switching. Different colors stand for the different potential switching times ts and the 
black dash-dotted line corresponds to the case of time-independent potential barrier.
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Concluding remarks
We have presented the idea of the symplectic covariance of the Wigner distribution function in an application 
to the problem of determining the interaction time of the quantum state, represented by the Wigner distribution 
function, with the potential in the form of an absolutely integrable function. The interaction time has been 
defined as the traversal time of this state through the interaction zone determined by the range of a sufficient 
decaying potential. To estimate this time, we used time-dependent entropic measures in the form of the Wigner–
Rényi one-half entropy and the Wigner–Shannon entropy. We have examined this issue in the case of scattering 
of the Schrödinger cat state on the time-dependent Gaussian potential. For this purpose, we have determined 
the time evolution of the state initially taken as the Schrödinger cat state, by numerically solving the Moyal 
equation using the Strang splitting algorithm adapted to the time-dependent potentials. We have performed 
simulations considering two models of the switching of the potential amplitude. One corresponds to a one-time 
change in the barrier height value, and the second corresponds to a one-time switch between the barrier and 
the well (in this case, the sign of the Gaussian potential is changed). Although the first case fully complies with 
the proposed method for determining the interaction time, the second clearly shows its limitations, making 
it a great counterexample of the proposed method. We have investigated both cases in detail by performing 
augmented dynamical transmission and capture coefficients calculations. The results obtained have allowed us 
to state that the choice of the instant of switching between the barrier and the well significantly influences the 
Wigner distribution dynamics in the interaction zone. This is because the switching time is responsible for the 
amount of the Wigner distribution function reflected by the potential barrier or trapped in the interaction zone 
by the Gaussian well, depending on the case analyzed. Changing the height of the amplitude of the potential 
before the interaction allows for greater transmission of the Wigner distribution function, whereas delaying this 
change results in an increase in the amount scattered. Regardless of the complexity of the quantum dynamics, we 
have obtained the interaction time as a function of the switching time according to our proposition. We have also 
extended our analysis by changing the potential width, resulting in an insight of how the change of the barrier 
parameters affects the interaction time. On the other hand, changing the potential barrier to potential well at 
the specific moment of the interaction of the considered bimodal state temporarily traps it in the interaction 
zone. This trait of the time evolution, namely the appearance of the low-momentum tails of the Wigner function 
trapped within a potential well, affects the symplectically invariant measures used to determine the interaction 
time. As a result, both measures do not stabilize over time, suggesting an ongoing interaction between the Wigner 
distribution function and the potential. Summarizing this discussion, based on the symplectic covariance of the 
Wigner distribution function and the concept of symplectic invariant quantities, we have shown that for the 
rapidly decaying potential barriers, the time-dependent entropic measures: Wigner–Rényi one-half entropy, and 
Shannon entropy are suitable dynamical quantities for estimating the interaction time with varying sensitivity. 
However, when the state becomes partially localized in the potential wells, the presented method indicates 
that the interaction time becomes infinite, thus not providing a quantitative answer to the problem posed. The 
proposed entropic method of estimating the interaction time can be realized upon the tomographical methods 
of reconstructing the Wigner distribution function59–61 with ultrafast sampling. We believe this approach can 
be improved by deep machine learning, reducing the efforts needed to reconstruct the Wigner distribution 
function accurately62.

One can use the entropic method in the case of states with finite lifetimes, such as resonances, but it requires 
great caution in interpreting the result and certainly longer simulation times. This thread will be developed in 
our forthcoming work.

Data availability
The datasets used and/or analysed in the current study are available from the corresponding author upon rea-
sonable request.
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Interaction time of Schrödinger cat states with a periodically
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The symplectic invariance property of the Wigner-Rényi entropies family is used to estimate the interaction
time for the propagating Schrödinger cat state that interacts with the periodically changing potential. With
the help of this property, the hierarchy of the interaction times is specified for the quantum dynamics of the
periodically driven system. It is also demonstrated that the lower and upper bounds of the interaction time
are determined by the Wigner-Rényi entropies corresponding to increasing Rényi index values, respectively.
The interpretation of the presented results is supported by calculations of the dynamical transmission and capture
coefficients, which give a clear insight into the scattering of the non-Gaussian state on the periodically changing
potential, which switches between the Gaussian potential barrier and the well.

DOI: 10.1103/PhysRevA.110.022416

I. INTRODUCTION

Physical systems interacting with an explicitly time-
dependent periodic external force are referred to as period-
ically driven systems [1]. In recent times, a notable surge
in research efforts dedicated to unraveling the intricate dy-
namics exhibited by such systems has been witnessed. The
widespread applications of the periodic driving include the
ratchet effect, both quantum [2,3] and classical [4,5], laser
interactions [6], Bose condensation [7], and, even further,
such systems are employed in the studies of topological insu-
lators [8,9], time crystals [10], or periodically driven optical
lattices [11]. Various formulations of quantum theory can
be utilized to describe the dynamics of periodically driven
quantum systems, helping to highlight different features of
their behavior [1,12]. Here, we explore the dynamics of pe-
riodically driven quantum systems within the phase-space
framework in which the state of the system is represented by
the Wigner distribution function (WDF). Using this approach,
it is possible not only to gain deeper insights into the behavior
of the system in the domain of conjugated variables (e.g.,
momentum and position), but also to acquire correspondence
with the classical dynamics [13]. The approach based on the
concept of the WDF has found a wide range of applica-
tions, from quantum optics [14,15] and quantum information
[16–18], through quantum chemistry [19–21] and biology
[22,23], to Bose-Einstein condensates [24–27] or quantum
Brownian motion [28–30]. It has recently also been applied
in the study of periodically driven systems [31]. Notably, the
WDF can take negative values in some regions of the phase

*Contact author: bjs@agh.edu.pl

space. This property prevents the interpretation of the WDF as
a proper probability distribution function on the phase space.
Due to this distinctive property, the WDF is also used to
detect and study the nonclassicality of quantum states [32].
Another characteristic that distinguishes the WDF and pro-
vides additional insight into the considered quantum system
is the symplectic covariance [33–37]. Not only does the area
occupied by the WDF in the phase space remain unchanged
under symplectic transformations (shear, rotation, or scaling),
but there are also WDF-dependent functions whose integrals
over the phase space remain constant when the time evolution
of the WDF is given by symplectic transformations (e.g.,
motion in the free space). Such integrals can be used to define
the so-called symplectically invariant measures, which can be
used to detect the state interaction with the potential barrier in
the scattering experiments. From many symplectically invari-
ant measures, it is worth distinguishing phase-space entropic
measures. They are particularly relevant if one looks at the
phase-space formulation of quantum theory as a statistical
theory in which entropic quantities play a key role in de-
scribing the physical system. Among many formulations of
phase-space entropies based on the WDF [38,39] and other
phase-space distributions [40], we would like to focus on the
Wigner-Rényi entropy [39,41]. This measure, depending on
the Rényi parameter, allows the determination of phase-space
analogues of well-established entropic measures in statistical
theory (e.g., Shannon entropy, collisional entropy, maximum
entropy) and, furthermore, for a one-half Rényi index, it can
be interpreted as a measure of nonclassicality of the state
[41]. As we previously showed, the symplectic covariance
of a dynamical measure can be successfully employed to
determine the interaction time of a quantum state, with the
potential barrier given by the absolutely integrable function.
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This approach provides a new perspective on the decades-old
and often confusing problem of establishing the barrier cross-
ing time [42]. Over the years, many different theories have
been developed, which have given plenty of opportunities
to determine how long it takes to pass through the barrier.
Therefore, in this work, we would like not only to determine
another interaction time, but also to prove that the interaction
time obtained from symplectically invariant measures allows
us to indicate an upper and lower limit on such interaction
time.

In this paper, by employing entropic measures, we show
how to apply a symplectic covariance approach to estimating
interaction time within a periodically driven system. Includ-
ing entropic measures when calculating interaction time in a
periodically driven system is beneficial as they offer insights
into the intricate relationship dynamics, facilitating a deeper
comprehension of system behavior and temporal interactions.
Owing to that, we were able to bound the interaction time and
show that the lowest barrier crossing times can be achieved by
using the Wigner-Rényi entropy with one-half Rényi index.

The paper is organized as follows. Section II consists of
the theoretical background in a nutshell and a description
of the used numerical algorithm. In Sec. III, we present the
results and their discussion. Section IV contains a summary
and conclusions. Finally, the paper ends with appendices that
contain a detailed derivation of the presented algorithm and
a proof of the monotonicity property of the Wigner-Rényi
entropies for continuous probability distribution functions.

II. THEORETICAL FRAMEWORK

A. Phase-space dynamics and symplectic invariance

In the phase-space representation of quanta, any isolated
quantum-mechanical system is characterized by the Weyl
symbol of the Hamiltonian [43,44]. In particular, this sym-
bol for the one-particle system in one dimension has a form
consistent with its classical counterpart, i.e., this is a real
function of the position and the momentum defined on the
two-dimensional phase space generated by these two canon-
ically conjugated variables and can be written in the form
H (x, p) = p2/(2m) + U (x), where m is the mass, p is the mo-
mentum, x is the position, and U (x) is the potential energy. It
is important to remember that the momentum and the position
occurring in this formula are the Weyl symbols corresponding
to these quantities. However, this form of the Hamiltonian
is insufficient for the description of time-dependent systems
presented in Sec. I. Motivated by this deficiency, we general-
ize the Hamiltonian mentioned above to the time-dependent
form. For this purpose, we assume that the new one-particle
Hamiltonian explicitly depends on the time through the po-
tential part, denoted by W (x, t ). Furthermore, we assume its
separable form, namely, W (x, t ) = U (x)�(t ), where U (x) is
the spatial part, and the function �(t ) is the temporal part
of this term. Taking into account these assumptions, we can
characterize the time-dependent system under consideration
by the Weyl symbol of the effective Hamiltonian in the form

H (x, p, t ) = p2

2m
+ U (x)�(t ). (1)

The specification of the functions U (x) and �(t ) is given later
in this work.

Within the phase-space representation, the WDF can ex-
press the state of this time-dependent system. This real and
normalized function can take negative values in some regions
of the phase space for some states. In fact, this property
disqualifies the intuitive interpretation of the WDF as a proper
probability distribution function on the phase space despite
having well-defined marginals. On the other hand, this prop-
erty is often used to indicate the quantumness of the system
state represented by the WDF [32]. In the case when the
system is in a pure state, the corresponding WDF is given by
the formula [45]

�(x, p, t ) = 1

2π h̄

∫
R

dX ψ∗
(

x + X

2
, t

)
ψ

(
x − X

2
, t

)
e− i

h̄ pX ,

(2)
where, for each time instant, t ∈ R : ψ (·, t ) ∈ L2(R, dx) is
the time-dependent Schrödinger wave function and the aster-
isk symbol denotes the complex conjugate. The time evolution
of the WDF is determined by the solution of the Cauchy
problem for the Moyal equation,

∂t�(x, p, t ) = −iL̂M (t )�(x, p, t ), t > 0

�(x, p, 0) = �0(x, p), (3)

where �0(x, p) represents the initial condition and L̂M (t ) is
the Moyal operator defined by the formula

−iL̂M (t ) : = − p

m
∂x + 1

ih̄
�(t )

[
U

(
x + ih̄

2
∂p

)
−U

(
x − ih̄

2
∂p

)]
. (4)

Alternatively, the expression in the square bracket of the sec-
ond term in the right-hand side of the Moyal operator (4) can
be written in a differential form, namely,

L̂M (t ) = i
{
− p

m
∂x + �(t )[∂xU (x)]∂p

}
+ i

∞∑
r=1

(−1)r�(t )

(2r + 1)!

(
h̄

2

)2r

∂2r+1
x U (x)∂2r+1

p . (5)

Owing to this, the physical interpretation of the operator (5)
seems to be more transparent. Namely, the first term in the
right-hand side of this expression corresponds to the Liouville
operator [46]. This operator generates the classical dynamics
of the WDF in the phase space, i.e., its center of mass moves
along the classical trajectory resulting from the solution of
the Hamilton equations. In turn, the second term, i.e., a series
called a Moyal expansion, represents the operator related to
quantum effects. This term describes the perturbations of the
classical dynamics of the WDF by systematically considering
increasingly high-order terms in the Moyal expansion. This is
why the full quantum dynamics of the WDF emerges from the
Moyal equation. Let us note that this approach allows one to
look at quantum dynamics as the deformation of the classical
one, and the Planck constant measures this deformation. One
more thing that results from this approach is worth noting.
Namely, the Moyal equation reduces to the mere Liouville
equation for polynomial potentials of the order less than or
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equal to 2. This result leads to the important conclusion that
the classical and quantum dynamics of the WDF are precisely
the same for this class of potentials. In this case, the time
dependence of the wave function, appearing in Eq. (2) by
definition, is determined by the metaplectic time-evolution
operator [47], and the corresponding time evolution of the
WDF is given by point transformation, represented by the
appropriate symplectic matrix St . This property is known as a
symplectic covariance of WDF [34]. Using this property, one
might notice that all integrals of the form

I (t ) =
∫
R2

dxd p f [�(x, p, t )], (6)

defined for any function f : [−1/(π h̄), 1/(π h̄)] → R such
that the composition (x, p) �→ ( f ◦ �)(x, p, t ) is integrable on
R2 for every t � 0, are invariant with respect to such transfor-
mations, namely,

I (t ) =
∫
R2

dxd p f {�0[S(t )(x p)T ]}

=
∫
R2

dxd p f [�0(x, p)] = I (0), (7)

where for point transformations given by symplectic matrices,
the Jacobian determinant is equal to 1. For any f defined by
the conditions above, we say that I (t ) is an invariant measure.
It is worth mentioning that in the context of the time evolution
of the quantum systems, the maximal covariance group of
the WDF consists solely of symplectic transformations [36].
From the point of view of this work, two particularly interest-
ing cases of symplectic covariance arise from the evolution
of the WDF in potentials of the zeroth and second order.
Physically, they correspond to the cases of free-particle and
harmonic-oscillator potentials. The Moyal equation for the
harmonic oscillator, U (x) = mω2x2/2, where ω is the angular
frequency, has the form

∂t�(x, p, t ) + p

m
∂x�(x, p, t ) − mωx∂p�(x, p, t ) = 0. (8)

For the given initial condition �0(x, p), the solution of Eq. (8)
is

�(x, p, t ) = �0

[
x cos(ωt ) − p

mω
sin(ωt ), p cos(ωt )

+ xmω sin(ωt )

]
. (9)

This motion is the elliptical rotation in the phase space and,
consequently, we conclude that the values of the WDF are pre-
served along the classical trajectory. Based on this result, we
can also find the solution of the free-space Moyal equation by
calculating the limit of Eq. (9) for ω → 0. The obtained result
is the following:

�(x, p, t ) = �0

(
x − p

m
t, p

)
. (10)

In this case, the motion of the WDF is given by the shearing
transformation. The meaning of the solutions given by Eq. (9)
and Eq. (10) is crucial for our studies, as they both fulfill the
previously mentioned invariance condition given by Eq. (6).
This expresses the fact that the value of the integral of any
function f composed with rotated or sheared WDF does not

change with respect to the integral of f composed with the ini-
tial condition. This property is crucial for our further studies
of the interaction time based on the symplectically invariant
measures. Let us now focus on the previously defined Cauchy
problem for the Moyal equation given by Eq. (3). Its formal
solution can be written in the form

�(x, p, t ) = Û (t, 0)�0(x, p), (11)

where Û (t, 0) ≡ Û (t ) is the time-evolution operator whose
form is given by the time-ordered exponential operator,

Û (t, 0) = T̂ exp

[
−i

∫ t

0
dt ′ L̂M (t ′)

]
, (12)

wherein T̂ stands for the time ordering [48,49]. Therefore, the
WDF at time t + �t , where �t is a finite time increment, can
be expressed by the formula

�(x, p, t + �t ) = T̂ exp

[
−i

∫ t+�t

t
dt ′ L̂M (t ′)

]
�0(x, p, t ).

(13)
On the other hand, using the results of Suzuki [50], any time-
ordered exponential operator can be expressed by the ordinary
exponential operator in the form

T̂ exp

[
−i

∫ t

0
dt ′ L̂M (t ′)

]
= exp {[L̂M (t ) + D̂]�t}, (14)

where the operator exp (D̂�t ), defined by the formula

F̂ (t ) exp (D̂�t )Ĝ(t ) = F̂ (t + �t )Ĝ(t ), (15)

is called the left-time shift operator and formally is expressed
by the differential operator, i.e., D̂ = ←−

∂t , where the arrow
indicates in which direction the derivative acts. Owing to this,
combining Eqs. (13) and (14), we obtain the expression for
the WDF at the instant time t + �t in the following form:

�(x, p, t + �t ) = exp {[L̂M (t ) + D̂]�t}�(x, p, t ). (16)

The expression obtained in this way has a convenient form for
applying the symmetric Strang splitting formula for the expo-
nential operator [51–53]. Taking into account the separable
form of the time-dependent potential, W (x, t ) = U (x)�(t ),
and taking advantage of the fact that each operator is unitarily
equivalent to some multiplication operator owing to the ade-
quate Fourier transform allows us to convert Eq. (16) into the
following formula:

�(x, p, t + �t ) ≈ F−1
1,λ→x exp

(
− i�t

2m
λp

)
F1,x→λ

× F−1
2,y→p exp

{
i�t�

(
t+�t

2

)[
U

(
x+ y

2

)
−U

(
x − y

2

)]}
F2,p→y

×F−1
1,λ→x exp

(
− i�t

2m
λp

)
F1,x→λ�(x, p, t ),

(17)

where the symbol Fa→α denotes the ordinary Fourier trans-
form and F−1

α→a corresponds to the inverse Fourier transform,
while a and α are a pair of the canonically conjugate variables.
The physical meanings of such pairs (a, α) are directly related
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to the phase-space variables. The appropriate definitions and
the derivation of the formula given by Eq. (17) can be found in
Appendix A. The presented scheme can be further simplified
if one considers the temporal part �(t ) of the potential W (x, t )
to be piecewise constant at some intervals [tk, tk+1) with an
amplitude Ak , namely, dividing the whole simulation time into

the intervals given by

[0, tmax) =
N⋃

k=0

[tk, tk+1). (18)

In this way, one obtains the numerical algorithm for a single
step of the time evolution of the WDF, expressed by the
formula

�(x, p, tk j+1 ) ≈ F−1
1,λ→x exp

(
− i�t

2m
λp

)
F1,x→λF−1

2,y→p exp
{

iAk�t
[
U

(
x + y

2

)
− U

(
x − y

2

)]}
×F2,p→yF−1

1,λ→x exp

(
− i�t

2m
λp

)
F1,x→λ�(x, p, tk j ), (19)

where the subindex k j stands for iteration within the interval
[tk, tk+1) in which �(t ) = Ak .

B. Entropic measures

A handy concept to describe quantum states in the
phase space constitutes the Wigner-Rényi entropy because
it provides information on the complexity of these states
[39,41,54,55]. In particular, it enables one to describe the
extension or shape of the state, which the WDF represents in
the phase space. The sign problem of the WDF is not so severe
in the case of pure states because the WDF corresponding to
these states is interpreted as the probability density amplitude
in the phase space according to the arguments presented in
Ref. [56]. Hence, the squared modulus of the normalized
WDF in the sense of the norm L2(R2), i.e., �̃(x, p, t ) =
�(x, p, t )/||�(·, ·, t )||L2(R2 ), is the proper probability density
in the phase space [56], where ||�(·, ·, t )||L2(R2 ) = (2π h̄)−1/2.
The Wigner-Rényi entropy corresponding to the probability
density, |̃�(x, p, t )|2, in the phase space for the Rényi index α,
where 0 < α < ∞ and α �= 1, is defined as follows:

Sα (t ) = 1

1 − α
ln

{
(2π h̄)α−1

∫
R2

dxd p [|̃�(x, p, t )|2]α
}
,

(20)
whereby, between the Wigner-Rényi entropies corresponding
to different Rényi indexes α and α′, there is the inequality
Sα (t ) > Sα′ (t ) for α < α′ and a fixed time t , as demonstrated
in Appendix B. The attractive property of the Wigner-Rényi
entropy is their relation to the Hartley entropy [57], the
Wigner-Rényi’s one-half [41], the Shannon entropy [39], the
collision entropy [38], and the min-entropy [58] for the Rényi
index, which equal α = 0, 1/2, 1, 2,∞, respectively. Let us
note that the Wigner-Rényi entropies for different Rényi in-
dexes can be regarded as examples of the symplectically
invariant measures, by Eqs. (6) and (7). This observation plays
a crucial role in the presented research. Here we focus our
attention on only four of the previously mentioned entropies,
defined up to a constant ln (1/2π h̄), namely, the Wigner-
Rényi’s one-half entropy, which is given by the formula

S1/2(t ) = 2 ln

[∫
R2

dxd p |̃�(x, p, t )|
]
, (21)

the Shannon entropy which is given by the formula

S1(t ) = lim
α→1

Sα (t ) = −2
∫
R2

dxd p

× |̃�(x, p, t )|2 ln [|̃�(x, p, t )|2], (22)

the collision entropy which is given by the formula

S2(t ) = − ln
∫
R2

dxd p |̃�(x, p, t )|4, (23)

and last but not least, the min-max entropy,

S∞(t ) = lim
α→+∞

1

1 − α
ln

{∫
R2

dxd p [|̃�(x, p, t )|2]α
}

= − ln

[
max

(x,p)∈R2
|̃�(x, p, t )|2

]
. (24)

All of them have precise physical meanings. The Wigner-
Rényi’s one-half entropy is related to the area occupied by
the negative part of the WDF in the phase space [41], and the
Shannon entropy is associated with a deformation of the area
occupied by the WDF in phase space caused by the quantum
correlations of momentum position, which simultaneously in-
fluence the shape of this function. In turn, collision entropy
is related to the inverse participation ratio in the phase space
[59]. Last but not least, the min-max entropy is related to
the maximum of the probability density over the phase space.
The symplectic invariance of Rényi entropic measures is the
essential property in defining the interaction time τ between
the quantum state represented by the function �(x, p, t ) and
the potential W (x, t ). First of all, notice that at any given
time t during the interaction with the absolutely integrable
barrier-well potential, it cannot be approximated with good
precision by a single polynomial of the order of, at most, 2 in
the whole subset of R, where the marginal distribution of the
considered quantum state in the position space,

n(x, t ) =
∫
R

d p�(x, p, t ), (25)

is noticeably nonzero. Hence, during the interaction with the
potential, the time evolution of the WDF is nonsymplectic.
Consequently, we expect that the Rényi entropy will be non-
constant during that time. However, away from the potential
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center, the motion of the WDF can be regarded as a free prop-
agation. As we have previously shown, this kind of evolution
acts as a shearing transformation of the WDF [see Eq. (10)],
leaving symplectically invariant measures constant, as implied
by Eq. (7). Hence, during free propagation of the WDF, the
Renyi entropy is constant. The beginning of the interaction ti
can be understood as an instance when WDF starts to interact
with the potential and, consequently, a first visible change in
the symplectically invariant measure occurs. Complementary
to that, t f is the time associated with the end of the interaction,
when the WDF evolves freely, which results in stabilization
of the symplectically invariant measure. Both instances are
measured indirectly. They require a measuring device with
given precision ε to detect the first and last changes in the
evolution of the symplectically invariant measure. We have
encapsulated our physical reasoning within the following
definition:

Definition 1. For a fixed Rényi index α > 0, the interaction
time τ between the state represented by the Wigner distri-
bution function and potential energy belonging to the class
of absolutely integrable functions, based upon Wigner-Rényi
entropic measure, can be defined as

τ = min{t ∈ R+ : |Sα (t ) − Sα (∞)| > ε(M − m)}
−max{t ∈ R+ : |Sα (t ) − Sα (0)| > ε(M − m)}

= t f − ti, (26)

where Sα (t ) is a Wigner-Rényi entropy with Rényi index α,
Sα (0) is the value of the entropy at the beginning of the
evolution, Sα (∞) is the value at the end of the evolution, M =
maxt∈R+Sα (t ) is the maximum of the Wigner-Rényi entropic
measure, m = mint∈R+Sα (t ) is its minimum, and 0 < ε 
 1
is a dimensionless threshold parameter that can be understood
as the precision of the measuring device.

The infinity that is present in the definition is treated as a
time that is long enough so that the evolution after the inter-
action is that of a free particle, as usually taken in scattering
theory. In the case of the numerical experiment, this is the time
of the simulation. Ideally, Sα (0), Sα (∞) should be known a
priori so that a threshold comparison could be made on the go
rather than after the experiment.

III. RESULTS AND DISCUSSION

The quantitative description of the quantum state scatter-
ing requires specification of the potential term of the system
Hamiltonian, which represents the scatterer. We model this
scatterer using a time-dependent finite-range potential with a
periodically changing amplitude. For this purpose, we use a
locally integrable function which allows us to determine the
effective interaction region and the interaction time according
to Definition 1. The results of all numerical calculations are
presented in atomic units (a.u.), i.e., e = h̄ = m = 1.

In the presented study, we assume that the potential term
W (x, t ) = U (x)�(t ) of the Weyl symbol of the effective
Hamiltonian (1) consists of the spatial term

U (x) = U0 exp

[
− (x − xB)2

2w2

]
, (27)

representing a scattering center of strength U0 = 0.008 a.u.
localized at xB = 0 a.u. and with width given by w2 = 50 a.u.,
and the time-dependent term

�(t ) = θ (tb − t ) + sgn

[
sin

2π (t − tb)

T

]
θ (t − tb) (28)

responsible for oscillations between the barrier regime and
the well regime. These oscillations start after the delay time
tb = 140 a.u., and their rate is given by the period T which
is a parameter of the model. Therefore, the choice of this
parameter remains critical for studying the dynamics of the
quantum state during its interaction with the time-varying
obstacle represented by the periodic potential in the form
given by Eqs. (27) and (28). Our proposition of determining
the reasonable value of T is partially based on a measure of
the similarity of two states resulting from the Hilbert-Schmidt
distance definition [60], which can be expressed in terms of
the WDF as follows:

d�,�0 (t ) =
{

2π h̄
∫
R2

dxd p
[
�(x, p, t ) − �0

(
x − p

m
t, p

)]2
}1/2

=
√

2[1 − c�,�0 (t )]1/2, (29)

where the dynamic overlap measure c�,�0 (t ) is expressed by
the formula

c�,�0 (t ) = 2π h̄
∫
R2

dxd p �(x, p, t )�0

(
x − p

m
t, p

)
, (30)

in which �0(x − pt/m, p) corresponds to the free-space dy-
namics of the WDF. In turn, the time dependence of the
function �(x, p, t ) results from the numerical solution of the
Cauchy problem (3) for the Moyal equation with a fixed
period T and with the initial condition given by the coherent
superposition of two well-separated Gaussians,

�0(x, p) = A2
1

(1 − β )

π h̄
exp

[
− (x − x1)2

2δ2
x

− 2δ2
x (p − p0)2

h̄2

]

+A2
1

β

π h̄
exp

[
− (x − x2)2

2δ2
x

− 2δ2
x (p − p0)2

h̄2

]

+2A2
1

√
β(1 − β )

π h̄
cos

[
ϑ + p − p0

h̄
(x1 − x2)

]

× exp

[
−

(
x − x1+x2

2

)2

2δ2
x

− 2δ2
x (p − p0)2

h̄2

]
, (31)

where the normalization factor A1 has the form

A1 =
[

1 + 2
√

β(1 − β ) exp

(
− (x1 − x2)2

8δ2
x

)]− 1
2

. (32)

The set of parameters defining this bimodal WDF is taken
in the same form as in our previous work [61] for the qual-
ity parameter � = 1, namely, β = 0.5, ϑ = 0, δ2

x = 500 a.u.,
x1 = −300 a.u., x2 = −500 a.u., and p0 = 0.15 a.u. In fact,
the WDF given by Eq. (31) is the phase-space representation
of the Schrödinger cat state [62]. Based on the solution of the
Cauchy problem mentioned above with the initial condition
in the form given by Eq. (31), we can determine the dynamic
overlap measure, c�,�0 (t ) because we also know the free-space
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FIG. 1. Long-time dynamic overlap measure as a function of pe-
riod T . The continuous gray line is the bisector of the angle between
two gray dashed lines, which approximate the behavior at a short
period interval and intermediate period interval. Red crosses stand
for representatives which abscissas were taken for further analysis.

propagation form of the WDF, �0(x − pt/m, p), with the
same initial condition. However, let us note that this specified

quantity parametrically depends on T , i.e., c�,�0 (t ) =
c�,�0 (t ; T ). To determine the values of the potential period,
we calculate the dynamic overlap measure, c�,�0 (t ; T ), as a
function of the period T , for a fixed value of t = tmax. Specif-
ically, at a fixed time tmax = 8.5 × 103 a.u., corresponding to
the maximum of the simulation time, this measure assesses
the degree to which the propagating WDF deviates from
the free-space propagation after interaction with the potential
W (x, t ) within the prescribed potential period T , as presented
in Fig. 1.

The disparities in the evolution of the quantum state in
different configurations of the system are clearly visible:
as T tends to zero, a substantial overlap (exceeding 80%)
emerges between the free-propagating WDF and that con-
fined within the rapidly oscillating potential T . The trend was
followed by a predominant decrease in the measure, approach-
ing nearly zero for T exceeding 1.7 × 103 a.u., indicating
that the states are fundamentally distinct. The red line in the
figure demarcates the characteristic period timescales TS , TL

and the transitional timescale TI . We refer to these scales as
short (S), intermediate (I), and long (L). As a first step, we

FIG. 2. The phase-space snapshots of the WDF taken at t = 2.5 × 103 a.u., 3.5 × 103 a.u., 4.5 × 103 a.u., and 5.5 × 103 a.u. (columns) for
different potential periods T ∈ {TS, TI , TL} (rows). The dashed lines stand for the phase-space portrait of the Weyl symbol of the Hamiltonian,
whereas the solid purple line is the quantum trajectory of the WDF.
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investigate the influence of the potential periods {TS, TI , TL}
on the dynamics of the WDF. The results of the calculation
are presented in Fig. 2 where the phase-space snapshots and
quantum trajectories are displayed.

Undoubtedly, the dynamics of WDF depends on the pe-
riod T of the modulator �(t ; T ). With an increasing period,
the time of interaction with the fixed state of the poten-
tial U (x) increases. The rapid oscillating barrier (T = TS),
presented in Figs. 2(a)–2(d), almost does not disturb the evo-
lution. The general influence of the potential can be noticed
in the quantum trajectory, namely, a cusp associated with a
diminished value of the average momentum. This effect is
more visible in the next cases where periodic changes of
the character are not as frequent. In addition to reducing
the momentum of the WDF, its shape is also mutilated. By
leveraging our understanding of the dynamics of the WDF,
we determine the time-dependent Wigner-Rényi’s entropies,
S1/2(t ), S1(t ), S2(t ), S∞(t ), which are examples of the sym-
plectically invariant quantities. Furthermore, through these
functions, we can estimate the interaction time, drawing on
the insights highlighted in Definition 1. The results of the
calculations are presented in Fig. 3 for different potential
periods T . According to Fig. 3, all Wigner-Rényi α entropies,
for α ∈ {1/2, 1, 2,∞}, exhibit three distinct regions of evo-
lution. Namely, they are constant for the initial evolution of
the WDF, then they start rapidly evolving in a nonmonotone
manner, suggesting the ongoing interaction, finalized by yet
again constant value. It is worth mentioning that for fixed
α, the Sα (t ) attains higher values in a long-time evolution
for increasing values of the potential period T : Sα (tmax; TS ) <

Sα (tmax; TI ) < Sα (tmax; TL ). For a fixed T , the evolution of the
Wigner-Rényi entropies of various orders, namely, S1/2(t ),
S1(t ), S2(t ), and S∞(t ), exhibit a consistent ordering such that
S∞(t ) serves as the lower bound, while S1/2(t ) is the upper
bound, with S1(t ) and S2(t ) positioned in between, namely,
S1/2(t ) > S1(t ) > S2(t ) > S∞(t ). Regardless of the value of
the modulator period T , the long-time behavior of all these
measures is approximately constant, rendering Definition 1 a
valid method to determine the interaction time between the
WDF and the potential W (x, t ). The estimated interaction
times for ε = 0.01 are shown in Fig. 4. Generally, the in-
teraction time as a function of T exhibits a decreasing trend
as T increases. For T 
 1 × 103 a.u., the character of the
evolution is similar to that of free motion due to rapid oscil-
lations of the barrier, resulting in mutual cancellation of the
effects characteristic to the interaction with potential barrier
and well. Moreover, for T > 0.5 × 103 a.u., the interaction
time τ (T ) resembles a reverse ordering in comparison to the
Wigner-Rényi entropies in Fig. 3. Namely, the interaction
time τ based on the Wigner-Rényi one-half entropy S1/2(t )
yields a lower bound for the family of interaction times.
We leverage two physical measures, i.e., dynamical capture
and transmission coefficients, to validate the reliability of our
proposition. These measures are not symplectically invariant,
but their straightforward physical interpretation helps to as-
sess whether our results align with the expected patterns, as
shown in Figs. 3 and 4. The simplicity in their interpreta-
tion makes them valuable tools; in particular, they can serve
as complementary measures to estimate the interaction time
of the considered model. The dynamical capture coefficient,

FIG. 3. The comparison between different entropic measures for
α ∈ {1/2, 1, 2, ∞} for different potential periods (a) short, (b) inter-
mediate, and (c) long.

defined as

C(t ) =
∫
R

∫
L

dxd p �(x, p, t ), (33)

where L is an interval containing the maximum of considered
potential, quantifies the amount of the WDF within the poten-
tial U (x). Complementary dynamical transmission coefficient

P(t ) =
∫
R

∫ ∞

xP

dxd p �(x, p, t ) (34)

measures the amount of transmitted WDF. These coefficients
satisfy the limit condition limt→+∞[R(t ) + C(t ) + P(t )] = 1,
where R(t ) is the dynamical reflection coefficient. The traits
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FIG. 4. The interaction time τ based upon different entropic
measures Sα (t ) for α ∈ {1/2, 1, 2, ∞}. The results for S∞(t ) when
T < 0.5 × 103 a.u. were dropped as our method could not provide
results smaller than the simulation time.

of the evolution of the WDF are captured in Figs. 5(a) and
5(b). The dynamical capture coefficient C(t ) quantifies the
localization of WDF around the peak value of the Gaussian
potential, while the dynamical transmission coefficient P(t )
provides the amount of the WDF that traversed a specific
region of the space, distant from the potential. In the presented
case, C(t ) starts to vary after the period of stagnation (where
none of the WDF is currently interacting with the potential for

FIG. 5. (a) Dynamical capture C and (b) dynamical transmission
P coefficients as functions of time t . The colored curves represent
different periods T of potential U (x; T ): short TS , intermediate TI ,
and long TL .

t < t1). This interaction is followed by another time interval
where C(t ) = 0 for t > t2. Generally, one could approach the
problem of estimating the interaction time between the WDF
and the potential purely on the basis of the distance between
consecutive intervals where C(t ) = 0, namely, t2 − t1. How-
ever, this approach does not align with the interaction time
proposed in Definition 1, as it relies on the WDF’s presence
within a specific spatial interval, rather than the character of
the evolution. In this context, the free evolution of the state
serves as a natural indicator of the end of the interaction be-
tween the WDF and the potential. Crucially, the WDF exits the
interaction zone in all presented cases of T [Fig. 5(a)]. This
implies that irrespective of the interaction’s nature, no WDF
accumulates near the potential maximum. However, it does
not necessarily imply that the WDF is no longer interacting.
In particular, the hypothetical interaction time based on the
dynamical capture coefficient results in a single value for all
possible variations of the parameter T [as seen in Fig. 5(b)],
which is in contradiction to the result presented in Fig. 4.

IV. CONCLUSIONS AND DISCUSSION

We have used the symplectic invariance property of the
time-dependent family of the Wigner-Rényi entropies of the
order of one-half, 1, 2, and ∞ to estimate the interaction
time between a periodically driven system and a quantum
state. The presented results have been achieved from the
numerical solution of the Moyal equation with the initial
condition in the form of the Schrödinger cat state for the
driven system with the model of the time-dependent potential
term in the separable form. Based on analyzing a dynamic
overlap measure in the long-time regime, we selected three
distinct potential periods, i.e., short, intermediate, and long,
to represent different evolution traits of the considered state.
Numerical analysis has revealed a descending order of the en-
tropies, with the one-half Wigner-Rényi entropy as the upper
limit and the Wigner-Rényi min-max entropy as the lower
limit, which analytical calculations have supported. Further-
more, adequate entropy exhibited a higher long-term value
with an increasing potential period for a fixed value of the
Rényi index. The considered entropies demonstrate a nearly
constant behavior, both at the initiation and finalization of the
simulation, facilitating the estimation of the interaction time,
as outlined by our Definition. By calculating the difference
between two distinct time instances that mark the beginning
and end of the interaction, we estimated the duration of the in-
teraction between the state and the potential. Interestingly, the
interaction time exhibited reverse ordering compared to the
entropies, with one-half Wigner-Rényi entropy now serving
as a lower bound. In addition, we have observed that as the in-
tensity of the oscillations equivalently increased, the potential
period was lowered and the strength of the interaction between
the state and the potential increased, resulting in a longer ex-
posure of the state to the deformations provided by the barrier.
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APPENDIX A: ALGORITHM FOR SOLVING MOYAL
EQUATION WITH TIME-DEPENDENT POTENTIALS

Here, we will derive the formula used for calculating the
Wigner distribution function (WDF) for the time-dependent
potential. According to Eq. (4), the Moyal operator can be
written symbolically as −iLM (t ). The formal solution, for an
initial condition in the form �0(x, p), is given by

�(x, p, t ) = T e−i
∫ t

0 ds L̂M (s)�0(x, p), (A1)

where T is Dysons’ time-ordering operator. The exponential
present in the above equation is crucial for describing the time
evolution at any time instance t + �t , for some time interval
�t > 0. In this case, it can be substituted by the following
relation [50]:

T e−i
∫ t+�

t ds L̂M (s) = exp{�t[−iL̂M (t ) + D̂]}, (A2)

where the operator D̂ was defined in Eq. (15). This gives the
equivalent expression for calculating the WDF at an instance
t + �t ,

�(x, p, t + �t ) = T e−i
∫ t+�

t L̂M (s)ds�(x, p, t )

= e�t (−iL̂M (t )+D̂)�(x, p, t ). (A3)

Substituting the form of the operator −iL̂M (t ) into the expres-
sion above yields

�(x, p, t + �t ) = e�t (T̂ +Û (t )+D̂)�(x, p, t ), (A4)

where T̂ is a kinetic energy operator,

T̂ = − p

m
∂x, (A5)

and, complementary to that, Û (t ) is the time-dependent po-
tential energy operator,

Û (t ) = 1

ih̄
�(t )

[
U

(
x + ih̄

2
∂p

)
− U

(
x − ih̄

2
∂p

)]
. (A6)

For further manipulations, one must agree upon an approx-
imation of the exponential expression or, in other words,
splitting of the exponential. One of such methods is the Strang
approximation [51] of the second order, for the operators
T̂ + D̂, and Û (t ), according to which

�(x, p, t + �t ) ≈ e
�t
2 (T̂ +D̂)e�tÛ (t )e

�t
2 (T̂ +D̂)�(x, p, t ). (A7)

Furthermore, per [50], the operators T̂ and D̂ commute,
resulting in

�(x, p, t + �t ) ≈ e
�t
2 T̂ e�tÛ (t+�t/2)e

�t
2 T̂ �(x, p, t ). (A8)

To omit the difficulties related to the evaluation of the
exponential differential operator and to perform numerical
calculations, we introduce the following Fourier transforms:

F1,x→λ�(x, p, t ) = 1√
2π h̄

∫
R

dx e− i
h̄ λx�(x, p, t ), (A9)

F−1
1,λ→x�(λ, p, t ) = 1√

2π h̄

∫
R

dλ e
i
h̄ λx�(λ, p, t ), (A10)

F2,p→y�(x, p, t ) = 1√
2π h̄

∫
R

d p e− i
h̄ py�(x, p, t ), (A11)

F−1
2,y→p�(x, y, t ) = 1√

2π h̄

∫
R

dy e
i
h̄ py�(x, y, t )dy, (A12)

and we use the unitary equivalence between the derivative and
multiplicative operators. As a result, the following algorithm
for numerical calculation of the time evolution of the WDF in
time-dependent potentials arises:

�(x, p, t0 + �t ) ≈ F−1
1,λ→x exp

(
− i�t

2m
λp

)
F1,x→λF−1

2,y→p exp

{
i�t�

(
t0 + �t

2

)[
U

(
x + y

2

)
− U

(
x − y

2

)]}
F2,p→yF−1

1,λ→x

× exp

(
− i�t

2m
λp

)
F1,x→λ�(x, p, t0). (A13)

APPENDIX B: MONOTONE DECREASE OF WIGNER-RÉNYI ENTROPIES

Let f (x, p, t ) = �̃2(x, p, t ) be a probability distribution function over a phase space generated by (x, p) variables for all t . We
will show that the Wigner-Rényi entropy of the order α � 0 satisfies the following inequality:

Sα (t ) � Sβ (t ), α � β. (B1)

To see this, first, we calculate the derivative of Sα (t ) with respect to the parameter α. This gives

∂αSα (t ) = 1

(1 − α)2
ln

[∫
R2

dxd p f α (x, p, t )

]
+ 1

1 − α

[∫
R2

dxd p f α (x, p, t )

]−1 ∫
R2

dxd p f α (x, p, t ) ln f (x, p, t ). (B2)

Now, introducing new quantities: the αth power of the phase-space α-norm of f (x, p, t ),

Nα (t ) :=
∫
R2

dxd p f α (x, p, t ), (B3)

and the normalized probability distribution,

qα (x, p, t ) := 1

Nα (t )
f α (x, p, t ), (B4)
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where ∫
R2

dxd p qα (x, p, t ) = 1, (B5)

one may rewrite

∂αSα (t ) = 1

(1 − α)2
ln Nα (t ) − 1

(1 − α)2

∫
R2

dxd p qα (x, p, t ) ln f α−1(x, p, t ). (B6)

Performing some manipulation regarding the logarithmic expression, we get

ln f α−1(x, p, t ) = ln

[
f α (x, p, t )

N (t )

Nα (t )

f (x, p, t )

]
= ln

[
qα (x, p, t )

Nα (t )

f (x, p, t )

]
= ln

[
qα (x, p, t )

f (x, p, t )

]
+ ln N (t ). (B7)

This yields the following expression:

∂αSα (t ) = 1

(1 − α)2
ln Nα (t ) − 1

(1 − α)2

∫
R2

dxd p qα (x, p, t ) ln
qα (x, p, t )

f (x, p, t )
− ln Nα (t )

(1 − α)2
, (B8)

equal to

∂αSα (t ) = − 1

(1 − α)2

∫
R2

dxd p qα (x, p, t ) ln
qα (x, p, t )

f (x, p, t )
= − 1

(1 − α)2

∫
R2

dxd p qα (x, p, t ) ln
qα (x, p, t )

�̃2(x, p, t )
, (B9)

which is a relative entropy [Kullback-Leiber divergence DKL(qα, �̃2)] of the probability distribution functions qα (x, p, t ) and
�̃2(x, p, t ) that is non-negative [63],

DKL(qα, �̃2) � 0 ⇒ ∂αSα (t ) � 0, (B10)

and thus Sα (t ) � Sβ (t ), α � β. This property holds for any positive function f ∈ L1(R2, dxd p) ∩ Lα (R2, dxd p).
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D. Woźniak Dynamics of Quantum State: Phase-Space Approach

https://arxiv.org/abs/math-ph/0209008


BIBLIOGRAPHY 130

[47] M. A. de Gosson. Symplectic Geometry and Quantum Mechanics. Advances in Partial Differential

Equations. Birkhauser Verlag AG, Basel, Switzerland, 2006 edition, December 2006.

[48] M. A. de Gosson. Symplectic methods in harmonic analysis and in mathematical physics. Pseudo-

Differential Operators. Birkhauser Verlag AG, Basel, Switzerland, July 2011.

[49] M. A. de Gosson. Quantum blobs. Found. Phys., 43(4):440–457, 2013.

[50] M. A. De Gosson. The Wigner transform. Advanced Textbooks In Mathematics. World Scientific

Europe, London, England, May 2017.

[51] M. A. de Gosson and C. de Gosson. On the Wigner distribution of the reduced density matrix, 2022.

[52] S. Descombes and M. Thalhammer. An exact local error representation of exponential operator

splitting methods for evolutionary problems and applications to linear Schrödinger equations in the

semi-classical regime. BIT, 50(4):729–749, December 2010.

[53] N. C. Dias, M. A. de Gosson, and J. N. Prata. A refinement of the Robertson-Schrödinger uncer-

tainty principle and a Hirschman-Shannon inequality for wigner distributions. J. Fourier Anal. Appl.,

25(1):210, 2019.

[54] P. Dirac. The principles of quantum mechanics. International Series of Monographs on Physics.

Clarendon Press, Oxford, England, 4 edition, January 1981.

[55] R. S. Dumont and T. L. Marchioro II. Tunneling-time probability distribution. Phys. Rev. A, 47(1):85–

97, January 1993.

[56] L. Dupays and J.-C. Pain. Closed forms of the Zassenhaus formula. J. Phys. A Math. Theor.,

56:255202, March 2023.

[57] F. J. Dyson. The S matrix in quantum electrodynamics. Phys. Rev., 75(11):1736, June 1949.

[58] F. J. Dyson. The dynamics of a disordered linear chain. Phys. Rev., 92(6):1331–1338, December

1953.

[59] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Graduate Texts

in Mathematics. Springer, New York, NY, 2000 edition, October 1999.

[60] L. C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathemati-

cal Society, Providence, RI, 2 edition, March 2010.

[61] D. B. Fairlie. Moyal brackets, star products and the generalised Wigner function. Chaos Soliton

Fract, 10(2):365–371, 1999.

[62] M. Fano. Description of states in quantum mechanics by density matrix and opertaor techniques. Rev.

Mod. Phys., 29:74, 1957.
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