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Abstract

Collisions of two heavy nuclei at relativistic speeds at the Relativistic Heavy Ion collider
(RHIC) at BNL and the Large Hadron Collider (LHC) at CERN, create a state of matter
which has a temperature 103 times that of Sun’s core, a size of the order of nuclear radius
(femtometer) and which behaves like a perfect fluid with minimal viscosity. This matter under
extreme condition, is a medium where the quarks and gluons, normally existing as bound
states in hadrons, travel freely with color degrees of freedom, with their interactions governed
by Quantum Chromodynamics (QCD). This hot, dense, fluid-like droplet of deconfined
state of quarks and gluons is known as the Quark Gluon Plasma (QGP). The QGP medium,
surviving for a very short time ( 10722 s) with its evolution dynamics described by the
relativistic viscous hydrodynamics, creates thousands of particles hitting the detectors at the
end. One of the most remarkable features is the collective flow of these particles, serving
as a key phenomenon for probing the QGP medium in high energy nuclear collisions. The
most peculiar and intriguing characteristics of the collective anisotropic flow, quantified
in terms of flow harmonics, is the importance of event-by-event fluctuations, stemming
mostly from event-by-event fluctuations in the initial state. In this thesis, we focus on
fluctuations and correlations between the collective observables such as mean transverse
momentum per particle ([ pr]) and harmonic flow coefficients (v,) etc. Specifically, we show
that the fluctuations of harmonic flow can be probed by the factorization-breaking coefficients
between flow vectors in different pr-bins. Experimental difficulty can be reduced by taking
one of the flow vectors momentum averaged. Fluctuations cause a decorrelation between
the flow vectors, which can be attributed to equal contributions from the flow magnitude
and flow angle decorrelation. We study fluctuations of mean transverse momentum per
particle ([pr]) in ultra-central collisions and show that our model can explain the steep fall
of its variance observed by the ATLAS collaboration. We also present robust predictions
for the skewness and kurtosis, and highlight the role of impact parameter fluctuations in
ultracentral collisions. We study the Pearson correlation coefficients between [ pr] and v2,
which can map the initial state correlations between the shape and size of the fireball. We
show that higher order normalized and symmteric cumulants between these observables
can be constructed, which put useful additional constraints on the initial state properties.
Furthermore, we study the momentum dependent Pearson correlation between [pr] and
the transverse momentum dependent flow. It shows sensitivity to the Gaussian width of
the nucleon at the initial state. Finally, we show that such correlations and fluctuations of
collective observables can be used to study nuclear deformation and put robust constraints on
their deformation parameters through high energy nuclear collisions. The research presented
in this thesis has significantly contributed to the advancement of the field leaving ample

opportunities for further developments in future, which remain beyond its current scope.






Streszczenie

Zderzenia dwoch cigzkich jader atomowych przy predkosSciach relatywistycznych w Relatywisty-
cznym Zderzaczu Cigzkich Jonéw (RHIC) w BNL oraz Wielkim Zderzaczu Hadronéw (LHC)
w CERN, tworza stan materii o temperaturze 10° razy wyzszej niz temperatura jadra Slonca,
rozmiarach rz¢du promienia jadra atomowego (femtometr) 1 zachowujacy si¢ jak doskonata
ciecz o minimalnej lepkoSci. Ta materia w ekstremalnych warunkach jest uktadem, w ktérym
kwarki i gluony, normalnie wystepujace jako stany zwiazane w hadronach, stajq si¢ swobodne z
barwnymi stopniami swobody, a ich interakcje sa regulowane przez Chromodynamike Kwan-
towa. Ta goraca, gesta, przypominajaca ciecz kropla stanu kwarkéw i gluonéz uwolnionym
fadunkiem kolorowym w jest znana jako Plazma Kwarkowo-Gluonowa (QGP). Materia QGP,
istniejaca przez bardzo krétki czas ( 1022 s) z dynamika ewolucji opisang przez relatywistyczna
hydrodynamike lepka, tworzy tysiace czastek mierzonych w koricu w detektorach. Jedna z
najbardziej niezwyktych charaterystyk tego uktadu jest zbiorowy przeptyw tych czastek, stuzacy
jako kluczowe zjawisko do badania QGP w wysokoenergetycznych zderzeniach jadrowych. Na-
jbardziej specyficzna i intrygujaca cecha zbiorowego anizotropowego przeptywu, okreslanego w
kategoriach wspétczynnikéw harmonicznych przeptywu, jest znaczenie fluktuacji od zderzenia
do zderzenia, gléwnie wynikajacych z fluktuacji stanu poczatkowego. W tej pracy koncentru-
jemy si¢ na fluktuacjach i korelacjach migdzy kolektywnymi obserwablami takimi jak Sredni
poprzeczny ped na czastke ([ pr]) i wspbtczynniki harmoniczne przeptywu (v,,) itd. W szczeg6l-
nosci pokazujemy, ze fluktuacje wspoétczynnikéw harmonicznych mozna bada¢ za pomoca
wspodtczynnikéw tamania faktoryzacji migedzy wektorami przeptywu w réznych przedziatach pr.
Trudnosci eksperymentalne mozna zmniejszy¢, biorac jeden z wektorow przeptywu jako Srednio
pedowy. Fluktuacje powoduja dekorelacj¢ migdzy wektorami przepltywu, co mozna przypisaé
rownym wkladom od dekorelacji wielkosci przeptywu i kata przeptywu. Badamy fluktuacje
sredniego poprzecznego pedu na czastke ([ pr]) w ultra-centralnych zderzeniach i pokazujemy,
ze nasz model moze wyjasni¢ strome zmniejszenie wariancji zw danych ATLAS. Przedstaw-
iamy réwniez prognozy dla skosnosci i kurtozy oraz podkres§lamy rolg fluktuacji parametru
zderzenia w ultra-centralnych zderzeniach. Badamy wspoéiczynniki korelacji Pearsona migdzy
[pr] av2, ktére moga odwzorowywac korelacje stanu poczatkowego migdzy ksztaltem a rozmi-
arem goracej kropli. Pokazujemy, ze mozna skonstruowa¢ wyzsze rzgdy normalizowanych i
symetrycznych kumulantéw migdzy tymi obserwablami, ktére wnosza dodatkowe uzyteczne
ograniczenia dotyczace wtasciwosci stanu poczatkowego. Ponadto badamy zalezng od pgdu
korelacje Pearsona migdzy [ pr| a poprzecznie zaleznym od pedu przeptywem. Wykazuje ona
wrazliwo$¢ na szeroko$¢ fluktuacji w stanie poczatkowym. Na koniec pokazujemy, ze takie
korelacje i fluktuacje kolektywnych obserwabli moga by¢ uzywane do badania deformacji
jadrowych i otrzymania ograniczen na parametry deformacji poprzez wysokoenergetyczne
zderzenia jadrowe. Badania przedstawione w tej pracy w znaczacy sposob przyczynily si¢ do
rozwoju tej dziedziny, pozostawiajac wiele mozliwosci na dalsze prace w przysztosci, ktére

wykraczaja poza jej obecny zakres.
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ATLAS analysis. Instead of plotting N, and [ pr ] themselves, we plot the differ-
ences N, — N, and 8 pr = [pr] - Pro, where N, = 6662 and pr = 1074 MeV/c
are the event averaged values. The straight lines indicate the average value
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Notations

e Weuse natural units : A=c=kg=1.

e Metric : g*V =diag(1,-1,-1,-1) .

Position four vector : x* = (z,x,y,z) .

Fluid velocity : ut = (1,V) .

The projector : AHY = ghtV —yHyV .

Rank 4 tensor : Ag; = %(AgAE +A§A§ —2AHVACBY

The angular brackets and the parenthesis used :

xW=aixy, YW =AY and Z(“"):%(Z“"+Z"“).

Transverse Momentum

* General notation for transverse momentum : pr .

¢ Mean transverse momentum per particle in an event : [pr] .

Average transverse momentum ( averaged over events) : (pr) or pr = ([pr]) .

* We use dpr =pr—{(pr)or pr-pr .

Other notations used for transverse momentum to avoid confusions whenever necessary :
p (Factorization-breaking coefficients) or ¢ (momentum dependent Pearson correlation
coefficients) .

Harmonic flow

 Harmonic flow vector in an event : V,, = v,e"¥» . where, flow magnitude : v, = V,V,© and

flow angle : W,.

* v, denotes the integrated flow in an event .
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Notations

* Two-particle cumulant for flow harmonic, which is an event averaged quantity : v,{2} =
(V,,V,), the integrated flow averaged over events .

¢ Transverse momentum dependent or differential harmonic flow in an event : V,,(pr), other
notations : V,,(p) or V,,(q), with V,,(p) = v,(p)e™¥»(P) .

» Event averaged pr-differential flow :

W (2)(p) = % and  va[2(p) =/ V()i () = /T (2)7) -
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Chapter 1
Introduction

The field of high-energy physics which can be broadly classified into nuclear and particle
physics, deals with understanding the fundamental forces of nature governing the interactions
between its microscopic constituents. The physics of the interaction between fundamental
particles that are found in nature is largely governed by the Standard Model (SM) of particle
physics! [1, 2] and accessed by colliding particles using high energy accelerators [3].

Initial years of nuclear physics focused on the properties and interactions of atomic nuclei at
low energies. However, with the advancement of accelerator and collider technology, it became
possible to explore nuclear collisions at much higher energies. In these colliders, by colliding
two heavy nuclei such as gold (Au) or lead (Pb) at a speed very close to the speed of light c, it
is possible to create a state of matter which existed just microseconds after the Big Bang [4].
This is known as ultrarelativistic heavy-ion collision which lies at the frontier of high-energy
physics facilitating the study of fundamental properties of matter under extreme conditions [5—8].
The study of high-energy nuclear collisions is important for advancing our understandings of
Quantum Chromodynamics (QCD), the theory governing the strong interaction [9, 10], one of
the four fundamental forces in nature.

The state of matter created in ultrarelativistic heavy-ion collision is an extremely hot, dense,
tiny medium of quarks and gluons, the fundamental constituents of hadrons, known as the
Quark-Gluon-Plasma (QGP), which behaves like an almost perfect fluid. This QGP medium
survives for a very short time (few fm/c) and what is ultimately seen in the detectors of such
heavy-ion experiments, is a large number of hadrons produced in the collisions. A single head-on
collision of Pb+Pb at 5.02 TeV centre of mass energy, creates around ~ 35000 hadrons which
are mostly pions2. The study of the properties and the dynamics of the QGP medium accessed

through those detected particles can unravel many interesting aspects of the matter under exotic

!The Standard Model does not describe the gravitational force which is one of the four fundamental forces in
nature.

2If we consider only the identified charged hadrons, a large fraction of them are pions (~ 80%) while the rest
are kaons (~ 17%) and protons (~ 3%) contributing to significantly smaller fractions.
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conditions. The field of high-energy heavy-ion physics has evolved considerably over the past
three decades answering some of the most fundamental questions of physics.

1.1 The Quark-Gluon-Plasma : hottest fluid ever known

The Quark-Gluon-Plasma created at the collision of two heavy nuclei moving at relativistic
speed has an effective temperature of 212 MeV (= 1012K) [11], a size in the scale of femtometer
(nuclear radius) and it is a nearly perfect fluid with a small viscosity [12]. The core of the Sun
has a temperature 107 K, the QGP medium’s temperature is another five orders of magnitude
larger than that. Therefore, the QGP medium turns out to be the hottest, most dense and tiniest
droplet of fluid that is ever known to the mankind and which can be crated at the laboratory [13].

Normally the quarks and gluons are never seen as free particles, rather they are always found as

LW
/ 208 Pb

Fig. 1.1 Pictorial representation of Pb+Pb collision at the LHC and formation of the deconfined state of
the Quark Gluon Plasma (QGP) medium, the hottest fluid (T~ 10'? K) that can be created in a laboratory.
Figure taken from [11].

bound states such as proton, neutron or hadrons in general. The interaction between the quarks
and gluons is governed by QCD involving their color charges . The quarks and gluons, called
partons in general, individually carry color charges (or color quantum number) but the observed
hadrons which are bound states of them are color neutral. This is known as color confinement.

However, in QCD theory the interaction strength between the quarks and gluons is stronger
at larger distance and become weaker or asymptotically zero at very short distance, a phenomena
known as the asymptotic freedom [14, 15]. In ultrarelativistic heavy-ion collision, which occur
at very high energy, these quarks and gluons become deconfined creating a quasi-free state :

the Quark-Gluon-Plasma, making the color degrees of freedom deconfined. Thus the study of



1.2 Experiments in heavy-ion collision

this little droplet of fluid would be very interesting, and could deepen our understanding of the
strong nuclear force, QCD and basic building blocks of nature.

1.2 Experiments in heavy-ion collision

Almost fifty years ago, the first relativistic heavy-ion collision experiments were performed at
the Bevatron in Berkeley at energies ~ 1-2 GeV. Since then heavier ions were collided at higher
energies at facilities such as the Alternating Gradient Synchrotron (AGS) at the Brookhaven
National Laboratory (BNL) and the Super Proton Synchrotron (SPS) at CERN providing early
evidence of QGP formation.

sPHENIX

NSRL
EBIS

BOOSTER

Fig. 1.2 The aerial view of the Relativistic Heavy Ion Collider (RHIC), located at the Brookhaven National
Laboratory (BNL) in the United States, with its key experimental collaborations (e.g. STAR). Source :
BNL.

However, with the rapid progress in accelerator and collider technology, soon there were
dedicated heavy-ion colliders such as the Relativistic Heavy Ion Collider (RHIC) (Fig. 1.2)
at BNL which started colliding heavy-ions since 2000 and the Large Hadron Collider (LHC)
at CERN colliding heavy-ions and hadrons since 2010. At RHIC, located at BNL in the
United States, gold (Au) ions are collided at up to 200 GeV center of mass energy per nucleon
pair creating the QGP medium [13]. On the other hand heavy-ion collision entered its first
TeV collision energy scale at the LHC (Fig. 1.3), located at CERN near France-Switzerland
border, where two lead (Pb) ions are collided at a center of mass energy 2.76 TeV or 5.02 TeV,
reinforcing the extreme conditions necessary for the QGP formation [16].

These collider facilities utilize sophisticated detectors to capture and analyze the plethora
of particles produced in each collision. In particular, the key detectors or experimental collab-
orations at RHIC are STAR, PHENIX and very recently sSPHENIX. At the LHC, dedicated
measurements on heavy-ion collision are performed by the ALICE collaboration in addition

to the ATLAS and CMS collaborations. These detectors use modern technology and intricate
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Fig. 1.3 The aerial view of the Large Hadron Collider (LHC), located at CERN near the France-
Switzerland border, along with its key experimental collaborations: ALICE, ATLAS CMS and LHCb.
Source : CERN .

methods to track thousands of particles created in a collision providing detailed information

about their momenta, energies and interaction patterns.

1.3 Evolution of the QGP : different stages of HI collision

The QGP medium created in a heavy-ion collision lasts for a very short time ~ 10 fm/c. However,
within such a short time the QGP fireball evolves and leaves some of its most exclusive signatures
on the dynamics of the final state particles. The QGP medium has a very small3 viscosity, making
it the most perfect fluid and its evolution can be effectively described by relativistic viscous
hydrodynamics, where the macroscopic physics can be applied at the femtoscale [17-26].

Specifically, an event of a heavy-ion collision, from the time of collision until the detection of
particles, passes through a number of successive stages [25, 27, 28]. At the time of the collision,
the colliding nuclei deposit energy or entropy at the overlap region, which serves as the initial
state or 1nitial condition of the collision. Then there exist a very short pre-equilibrium phase
before the created fireball achieves local thermal equilibrium . After that, the thermalized QGP
medium undergoes a relativistic viscous hydrodynamic evolution, where it collectively expands
until it cools down to a certain temperature (7;), where phase-transition occurs and the quarks
and gluons again confine into hadroinc bound states. This is called the QCD phase transition [29—
34] where a smooth cross-over transition from the QGP phase to Hadron Resonance Gas (HRG)
phase occurs. Then the hadrons undergo elastic and in elastic collisions until a certain state is
reached when such processes cease to occur, called the freezeout. After freezeout the hadrons
stream towards the detectors.

3The shear viscosity to entropy ratio n/s ~ 0.1



1.4 Collective flow and fluctuations

It should be noted that relativistic hydrodynamics is one of the theoretical approaches to
study the QGP medium. The properties and dynamics of the fireball created in heavy-ion
collision can be studied in the light of other theoretical frameworks [35] such as relativistic
kinetic theory approach or a transport model with string melting [36, 37]. All these theories can
reasonably describe the properties of the final state particles across different momentum range.
However, in this thesis we will be limited to the soft processes at low transverse momentum,
where relativistic hydrodynamical picture is more applicable. High transverse momentum

particles are useful for studying the jet physics[38, 39].

1.4 Collective flow and fluctuations

One of the most interesting and unique features of ultrarelativistic heavy-ion collisions is the
collective flow of the final state particles [40-56]. This collective dynamics originate as an
effect of the initial state of the collision and of the collective expansion of the fireball. The
most notable is the anisotropic flow [40, 57-60] which originates due to the spatial anisotropy
of the density distribution at the initial state of the collision. This spatial azimuthal anistoropy
of the entropy or energy density distribution, through the evolution and collective expansion,
translates into the azimuthal anisotropy of the momentum distribution of final state particles.
This azimuthal anisotropy can be understood through different order of flow harmonics (v;)
such as the elliptic flow, triangular flow etc [61-64, 54].

The anisotropic flow depends on the centrality of the collision, defined by the transverse dis-
tance between the centers of colliding nuclei or the impact parameter () of the collision [66, 67]
and determined in experiments through charged particle multiplicity N, or other centrality esti-
mators [68—73]. As b become smaller, the collision is more central. The experimental evidence
of the anispotropic flow, which caries an evidence of the formation of the tiny droplet of fluid,
can be understood from the ridge like structure of the particle-pair distribution d2NP4" [dnd ¢
on the (1,¢) plane, as measured by the CMS collaboration and shown in Fig. 1.4, where ¢ is the
azimuthal angle on the transverse plane and 7 is the pseudorapidity of the particles. Moreover,
the collective nature of the particle spectra can be realized through the mean transverse momen-
tum per particle, which can be calculated from the transverse momentum (p7) distribution of
the particles in each event. These mean transverse momentum and harmonic flow coefficients
constitute the basic collective observables in a heavy-ion collision event. Collective flow can
be used to constrain the medium properties of the QGP such as the effective temperature, the
viscosity and to gain broad insights of the dynamics of its evolution.

Another most peculiar characteristics of heavy-ion collisions are event-by-event fluctuations
of collective flow [74—87], which originate due to event-by-event fluctuations of the initial
state [88, 48, 89-94] as well as from dynamical fluctuations during evolution. These fluctuations

lead to many interesting effects which could be studied by constructing suitable observables
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Fig. 1.4 Collective flow in ultrarelativistic heavy-ion collision seen from the ridge-like structures of the
pair distribution of particles on the (7], ¢) plane for different collision centrality as measured by the CMS
collaboration. Figure taken from [65].

and can carry observable signature of fundamental properties of the QGP medium such as
thermalization at the initial stage.

Additionally, one can construct correlation coefficients between the collective observables
which contain important information and can be used to probe the initial state of collision
providing useful constraints on the parameters [95-102]. Moreover, such correlation coefficients
can be used to study nuclear structure and deformation in high energy nuclear collisions by
colliding nuclei with different shapes and sizes (e.g. U+U, Xe+Xe, Ru+Ru and Zr+Zr etc.) [103-
123, 101, 102, 124]. Such studies impose robust constraints on nuclear deformation parameters.

The main goal of this thesis is to look into different aspects of these event-by-event fluctua-
tions of harmonic flow and mean transverse momentum, to study the correlations between the
collective observables, proposing new constructions that can be measured in experiments and
can potentially impose new robust constraints on the initial state, and to study nuclear structure
(deformation) through similar observables by colliding deformed nuclei. Such studies will be
helpful to broaden our knowledge about the initial state, dynamics and properties of the QGP

medium and unravel nuclear structure at the ultrarelativistic energy scale.
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1.5 Outline of the thesis

This thesis represents the culmination of the research conducted during my PhD study. In
particular, the thesis is based on the following publications :

* Piotr Bozek, Rupam Samanta, ‘Higher order cumulants of transverse momentum and
harmonic flow in relativistic heavy ion collisions’, PRC 104 (2021) 1, 014905. arXiv:
2103.15338 [nucl-th].

* Piotr Bozek, Rupam Samanta, ‘Factorization breaking for higher moments of harmonic
Sflow’, PRC 105 (2022) 3, 034904. arXiv: 2109.07781 [nucl-th].

* Rupam Samanta, Piotr Bozek, ‘Momentum-dependent flow correlations in deformed
nuclei at collision energies available at the BNL Relativistic Heavy lon Collider’, PRC
107 (2023) 3, 054916. arXiv: 2301.10659 [nucl-th].

* Rupam Samanta, Joao Paulo Picchetti, Matthew Luzum, Jean-Yves Ollitrault, ‘Ther-
malization at the femtoscale seen in high-energy Pb+Pb collisions’, PRC 108 (2023) 2,
024908. arXiv: 2306.09294 [nucl-th].

* Rupam Samanta, Somadutta Bhatta, Jiangyong Jia, Matthew Luzum, Jean-Yves Ollitrault,
‘Thermalization at the femtoscale seen in high-energy Pb+Pb collisions’, PRC 109 (2024)
5, L051902. arXiv: 2303.15323 [nucl-th].

* Rupam Samanta, Pitor Bozek, ‘Momentum dependent measures of correlations between

mean transverse momentum and harmonic flow in heavy ion collisions ’, Phys.Rev.C 109
(2024) 6, 064910. arXiv: 2308.11565 [nucl-th].

The thesis aims to provide an overview of the ultrarelativistic heavy-ion collision and the
physics of the Quark-Gluon-Plasma with a special focus on the collective dynamics of the final
state particles realized through correlations and fluctuations of the collective observables. The
thesis is structured as follows :

* In Chapter-2, we provide an introductory overview of ultrarelativistic heavy-ion collision
including its basic elements such as kinematics, collision geometry, collision centrality
etc. We discuss Glauber modelling of nucleus-nucleus collision and its Monte-Carlo
implementation. Next we briefly discuss the theory of relativistic ideal and viscous hydro-
dynamics which form the fundamental basis for the evolution of the QGP medium. We
also briefly discuss Quantum Chromodynamics (QCD), the theory of strong interactions
and how deconfinement occurs at the QGP state. Finally, we provide thorough discussions
on the different stages of hydrodynamic framework of heavy-ion collisions, providing the
details of the simulation set-up used in our analyses. Chapter-2 presents a short review on

ultrarelativistic heavy-ion collision, based on published literature.
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* In Chapter-3, we discuss the most distinctive feature of the heavy-ion collision, the
collective flow and its basic phenomenological properties. We provide an overview of
the anisotropic flow, its origin, the theoretical and experimental methods of flow analysis.
Next we discuss the most peculiar characteristics of the collective flow: its event-by-event
fluctuations. We show how event-by-event fluctuations of harmonic flow can be probed
by constructing factorization-breaking coefficients in different transverse momentum bins.
We discuss how the experimental limitation due to low statistics can be removed while
measuring such observables. We extend the study to momentum dependent mixed-flow
correlations as a probe of non-linearity present in the system. Chapter-3 is partly a brief
review on collective flow based on published literature and partly presents original results
published in [125].

* In Chapter-4, we discuss the transverse momentum fluctuations in ultracentral Pb+Pb
collisions. In the first part, we show how the sudden fall of the variance in ATLAS data can
be explained by a simple model of correlated Gaussian distribution between multiplicity
and mean transverse momentum per particle. We show separately different contributions
to the variance in our model and highlight the remarkable effect of impact parameter
fluctuations. We perform a model fit to the ATLAS data and based on our fit results
we provide crucial physical argument that could be responsible behind such phenomena.
We point out important features of the ATLAS measurements in terms of the effect of
pr-cut and different centrality estimator. In the second part, we study the non-Gaussian
characteristics of [ pr]-fluctuation, namely the skewness and kurtosis. Based on a similar
model, we present predictions for ultracentral behavior of those cumulants and compare
with the existing experimental data. Unless otherwise stated, Chapter-4 presents results
published in [126] and [127].

* In Chapter-5, we discuss the correlation between mean transverse momentum [ pr | and
harmonic flow square v2. We study the Pearson correlation coefficient p ([ pr],v2) which
can be used to probe correlation present in the initial state. We also present linear
predictor to map the final state to the initial state of the collision. We propose new higher
order normalized and scaled symmetric cumulants which could potentially put useful
additional constraints and measure genuine higher order correlations. In the second part
of the chapter, we study correlation coefficient between [ pr ]| and momentum dependent
harmonic flow which is independent of the specific pr-cut and could be sensitive to
particular properties of the initial state such as nucleon width w. We also propose
experimentally feasible alternate definitions and direct measure of such correlations
through normalized covariance. Unless otherwise specified, Chapter-5 presents results
published in [128] and [129].
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* In Chapter-6, we discuss how nuclear deformation can be accessed through high energy
nuclear collision experiments. In particular we show how the deformation parameter 8 of
238U nucleus can be constrained by studying similar correlations (e.g. p([pr],v2) and
symmetric cumulants) and the factorization-breaking coefficients probing fluctuations
in central U+U collisions. Unless otherwise stated, Chapter-6 presents results published
in [128] and [130].

* In Chapter-7, we summarize our main findings and draw conclusions based on our study.
We briefly discuss scopes for further developments on the topics that we studied. We also
present our plans with prospective research projects that we would be interested to pursue

in future.






Chapter 2
Ultrarelativistic heavy-ion collision

In ultrarelativistic heavy-ion collision experiments performed at the LHC and RHIC, two heavy
nuclei collide at a speed close to the speed of light, producing the hot dense QGP matter
at the point of collision. This QGP fireball expands and cools down in a very short time
before producing thousands of particles, a fraction of which are detected at the detector [6-8].
Therefore, in order to understand the properties and the evolution dynamics of the QGP medium,
it is indispensable to discuss the kinematics of the collision, its different stages starting from
the time of first hard collisions to the detection of the particles and the underlying theoretical
frameworks that can be used to model the collision dynamics. In this chapter, we discuss these
components of ultrarelativistic heavy-ion collisions with appropriate details wherever necessary.
For the theoretical framework, we restrict ourselves to relativistic hydrodynamics [17-26] with
brief discussions on QCD and the deconfinement. Towards the end of this chapter, we briefly
describe the simulation set-up used in our analysis for producing the results presented in the

subsequent chapters.

2.1 Kinematics and invariants

The properties and dynamics of heavy-ion collisions are studied through experimental measure-
ments of physical observables, which broadly depend on the kinematics of the measurements.
Fig. 2.1 shows the geometry of the heavy-ion collision experiments. Two heavy nuclei (Pb in
this case) move at a relativistic speed along the z-axis and collide at z=0. After each collision a
large number of particles are produced, denoted by the black arrows, and hit the detector’s wall.
The plane (X, y), transverse to the direction of the two nuclei (beam axis), is called the transverse
plane. In the laboratory frame, each particle carries momentum, and in the experiments particles
are detected and identified by their momentum coordinates.

In a Cartesian frame, the momentum space coordinates of a particle are denoted by the four
vector, pt = {pY, p'} = {E, px, py, p;}. The four-momentum p* is often represented in the context

of collider experiments as, p# = {E, py, p.}, where p7 is called the transverse momentum of the
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particle and is defined as

pr={px,py} where pr=+/P2+p}. (2.1)

The vector py lies in the plane (x,y). In a collision event, particles are emitted in random
directions on the transverse plane. The momentum conservation requires that the total transverse

momentum ). pr = 0 in each event. More completely, one can write the four momentum p*

Fig. 2.1 Schematic representation of the geometry of ultrarelativistic heavy-ion collision (Pb+Pb) experi-
ments. The collision axis is along the z-axis, and the detectors with a cylindrical form around this axis
cover the full solid angle. The azimuthal angle ¢ is the angle on the transverse plane (x,y) perpendicular to
the beam axis. The polar angle 0 is associated with the pseudorapidity 17, accounting for the longitudinal
boost along the z-axis. The figure is motivated from [131].

in terms of spherical coordinates as, p* = {E, psinfcos ¢, psin0sin¢, pcos 0} where ¢ is the
azimuthal angle on the transverse plane with respect to the x axis and the angle 0 is the polar
angle on the (y,z) plane with respect to the z axis (Fig. 2.1).

As the two nuclei move with an ultrarelativistic speed, in laboratory frame they appear like
flat pancakes [58], when viewed vertically from x-axis. This occurs because the nuclei are
Lorentz-contracted due to the boost along z-axis. In general, the Lorentz transformation between

the laboratory frame and the rest frame of the nuclei is given by,
XM =AL X, | (2.2)

where X" = {¢t,x,y,z} = {t,XT,z} is the position four vector, where x7 =/x% +y? is the transverse
distance on (X,y) plane. For Lorentz boost along the z-axis,
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where y = \/m is the Lorentz factor and f = v is the velocity of the nuclei. [ Note: We use
natural units, 4 = ¢ = kg = 1 and metric gtV = diag(1,-1,-1,-1) ]. Fig. 2.2 shows the space-time
picture of a collision event in (t,z) plane. The vertical and horizontal lines denote time and beam
axis respectively. The lower part and the upper part of z-axis represent the scenarios before
and after the collision respectively. The two nuclei collide at # =z =0. As this is a relativistic

collision, it is more appropriate to use proper time coordinates (Milne coordinates) defined as ,

proper time, T = \/t2 - 72

. - 1. t+z (2.4)
and space-time rapidity, 1, = 3 In L
-z

The two diagonal lines defined as 7 = +z define the light-cone; along these lines 2 —z2 =0(7 =0).

z/t=const.
t=-z A t=z
t2-z2 >0
T=const.
t2-z2 <0

Y
N

Pb Pb

Fig. 2.2 Space-time representation of the collision in (t,z) plane. The vertical axis represents time and the
horizontal axis denotes the beam direction. The lower and upper part of the plot represent before and
after the collision respectively. The collision occurs at t=z=0. The diagonal lines t= + z form the light
cone. The region on the plot with 2 —z> > 0 is called time-like region and > -z < 0 is called space-like
region. Particle production occurs within the time-like region only. The figure is adapted from [20]

The region within the light-cone with 12 —2z2 >0 (7 > 0) is called time-like region and region
outside with 2 -z2 <0 (7 <0) is called space-like region. The space-time rapidity 17, which
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spans from —oo to +oo is properly defined only in the time-like region and the particle production
occurs on the upper-half part within this region.
Next we introduce two important variables in heavy-ion collision, namely rapidity and

pseudorapidity. The rapidity of a particle is defined as,

1. E+p,
=—1 , 2.5
y=5 Iz ey (2.5)
which is expressed in terms of longitudinal velocity of the particle, 3, = p./E as,
1. 1+p/E _1(P _
3 In —pi/E = tanh I(EZ) = tanh™ ! (B.) . (2.6)

An advantage of using rapidity over longitudinal velocity is that rapidity is additive under
longitudinal boosts, therefore it provides a measure of Lorentz boost along z-axis. Rapidity can
be understood as the relativistic analog of non-relativistic (3, << 1) velocity. From Eq. (2.6),
In 1+B; 1

v In g = 50n(1+ B ~In(1-B)] = B = v @)

Similar to transverse momentum, one can also define the transverse mass of a particle,
2

m} =m?*+pj =E*-p? | (2.8)

which is invariant under the Lorentz boost along the z direction. E and p, can be expressed in
terms of rapidity and transverse mass,

E =mgcoshy and p,=mgsinhy. (2.9)

Therefore, the four momentum of a particle can be written as, p# = {mz coshy, py, py,mr sinhy}.
On the other hand pseudorapidity accounts for the polar angle 6 of the particle and is defined as,

N =-Intan(6/2) , (2.10)
which is also expressed as ,
1 PI*ps _ 1 (P2 2.11)
Ipl-p: |p|

At ultrarelativistic energy, p > m and the rapidity,

11 Vpr+m?+p, . llnp+pcosﬂ

2 p2+m2—p2_2 p—pcosB

=-Intan6/2=1 . (2.12)

Therefore, for very high energy ultrarelativistic particles, rapidity is equal to pseudorapidity.

Pseudorapidity is more conveniently used by experimentalists as it can be used for the unidenti-
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fied particles (charged particles) because 1) does not depend on the mass of the particles whereas
y does.

The momentum distribution of particles is expressed in terms of particle spectrum,

LN &N &N
d3p  dpd?pr  dydipr’

(2.13)

which is Lorentz invariant because the element d3>p/E (or dp,/E) is Lorentz invariant. The

transformation between rapidity and pseudorapidity distribution is given by,

(2.14)

BN m> &N
dnd?pr m2.cosh®y dyd*pr

2.2 Collision geometry

In a heavy-ion collision, the geometry of the overlap region is important to determine the volume
of the QGP medium and its evolution time. In particular, the initial state of the collision depends
on the collision geometry, which in turn affect the final state observables. The main features of

the collision geometry are described by the following quantities :

2.2.1 Nuclear density distribution

First, we need to know the density distribution of each of the colliding nuclei. One considers
two kinds of density distribution: nuclear charge density distribution and nuclear matter (mass)
density distribution. The charge density distribution is related to the distribution of protons,
which is obtained from the electron scattering experiments. The matter density distribution
considers both neutrons and protons. It is usually a good assumption that the nuclear matter
distribution is proportional to the charge distribution [132] . The nuclear density distribution
p(r) at a distance r from the center, is often represented by a three parameter Fermi-distribution
function [133, 134]:

1+w(g)?

_— 2.15
01+exp(%) ( )

p(r)=p

which is known as Woods-Saxon parametrization of the nuclear density distribution. py is the
nucleon density, R is the nuclear radius, a is the skin-depth or nuclear diffusivity and the term

with w is a correction for small nuclei. The overall normalization factor pg can be obtained from

[d3rp(r) -A, (2.16)

where A is the total number of nucleons. The values of the other parameters for few nuclei are
listed in Table 2.1. Fig. 2.3 shows the Woods-Saxon nuclear density distribution for different

nuclei.
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Fig. 2.3 Woods-Saxon density distribution for lead (red) , copper (blue) and oxygen (green) nucleus.

Nucleus R (fm) a (fm) W

197 Au 6.38  0.535 0

208pp  6.624  0.549 0
160 2.608 0.513 -0.051
63Cu 42  0.596 0

Table 2.1 Values of Woods-Saxon parameters for nuclear density distribution for different nuclei [133,
134]

2.2.2 Impact parameter

In an untrarelativistic nucleus-nucleus collision, impact parameter, b is a crucial quantity
and it is defined as the spatial distance between the centers of the two nuclei at the time of
collision (¢ = 0). The transverse shape and the size of the QGP medium is largely determined
by the collision impact parameter. Impact paremeter is a semi-classical quantity and cannot be
measured experimentally. In a collision experiment, the direction of the impact parameter is
random. However, for theoretical calculation b (which is a two dimensional vector) is commonly
represented along the x axis. The plane formed by the impact parameter and z-axis is called the
reaction plane, so that the (x,z) plane is the reaction plane [135, 5]. In theoretical simulations,
impact parameter is generated with a probability distribution do /db which is proportional to
b for b < 2R, where R is the radius of the nuclei, in a symmetric collision. Fig. 2.4 shows the
projection of Pb+Pb collision on the transverse (X,y) plane , where the centre of mass energy of
the collision is, /syy = 5.02 TeV and impact parameter, b = 6 fm. In the overlap region of the
two nuclei, the nucleons from each nuclei interact. The nucleons which encounter at least one
interaction with the nucleon from other nucleus, are called the participant nucleons or wounded

nucleons [136] and each of such nucleon-nucleon interactions are labeled as binary collision.
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Fig. 2.4 Schematic representation of Pb+Pb collision on the transverse plane at |/syy = 5.02 TeV
corresponding to the nucleon-nucleon inelastic cross section, oyy = 7.2 fm?. The impact parameter of the
collision is b = 6 fm, shown by the black horizontal line on the top. The nucleons from each parent nuclei
are shown by corresponding colored (red and blue) circles. The clear solid circles denote the participant
nucleons and the blurry circles represent the spectator nucleons. The figure is motivated from [133] and
prepared using a MC-Glauber calculation.

The rest of the nucleons which are not involved in any interactions and just pass by are called

spectator nucleons.

2.2.3 Centrality of the collision

The medium produced in a nucleus-nucleus collision is expected to be a QGP medium and this
is more likely if the interaction region during the collision is large. Thus if the collision is closer
to head-on or in other word more central, the overlap area is larger and there is a higher chance
of creating a QGP medium. On the other hand, if the collision is more glancing or peripheral, it
is less likely that the system will achieve the condition for the QGP formation.

Theoretically, the centrality of a collision is defined according to the impact parameter b.
However, as a direct measurement of b is not possible, in experiments the centrality of a collision
can be estimated according to the total number of charged particles produced in the collision,
which is known as charged particle multiplicity N, [68—71] or the transverse energy deposition
E7 in the forward calorimeter [72, 73]. The relation between theory and experiment can be
understood as the following: if the impact parameter is small (central collision), the volume
of the QGP medium is large and the number of participant nucleons is large. On the other
hand, N, and E7 both are increasing with the number of participant nucleons Npm(b) [136]
(and also the number of binary collisions N.,;(b) [137]), which depends on the collision
impact parameter [66]. The opposite occurs if the impact parameter is large (peripheral). The
dependence of N, (or Ngy) on b can be calculated with great precision based on some
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theoretical models such as the two component Glauber model [138]. Thus, although b cannot
be directly measured, it can be estimated from the experiments based on the mapping described

above. The centrality classified according to the impact parameter is denoted by c; (sometimes
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g - 50 100 150 200 250 300 350  <Npar>
!
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Fig. 2.5 Final state multiplicity distribution (N.;,) and centrality classification in experiments. The cartoons
of the nucleus-nucleus collision represent corresponding impact parameter in a given centrality class.
Figure is taken from [138]

called b-centrality) and given by [66, 67],

1 b
=5 fo Pu(b')210'dD’ 2.17)

in
where Gf}qB is the inelastic nucleus-nucleus cross section and P;,(b) represents the probability
that the two nuclei A and B collide at impact parameter b. The probability distribution of ¢, is
uniform, P(c,) =1 for 0 < ¢; < 1. On the other hand, in heavy-ion experiments, the centrality is

defined as a cumulative distribution of N, or ET,
c= / P(n")dn' (n=Ng, orEr) . (2.18)
n

Again, the probability distribution of ¢ is uniform, P(c¢) =1 in 0 < ¢ < 1. Fig. 2.5 shows the
experimental classification of centrality based on the charged particle multiplicity (N,;) and its

corresponding mapping to collision impact parameter.
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2.3 Glauber modeling in nucleus-nucleus collision

The Glauber model [138—140] serves as a fine theoretical tool to study high-energy nucleus-
nucleus collision and it can provide an indirect mapping between the theoretical and experimental
classification of collision centrality. In particular, with the help of Glauber model, one can
calculate the number of participants (Npq- (b)) and binary collisions (N, (b)) as a function of
b in a nucleus-nucleus collision. The model calculation can be based on a classical view of the
quantum mechanical framework involving full multiple scattering integrals [136, 141, 142],
known as the optical limit of Glauber model. However, it can be also calculated based on
numerical Monte Carlo simulation [143, 144], which is known as Monte Carlo Glauber or

MC-Glauber approach.

2.3.1 Optical Glauber model

The Galuber Model treats the nucleus-nucleus collision in terms of independent interactions
of the constituent nucleons [138] and assumes that at sufficiently high energies, the nucleons
have momentum large enough that their trajectories are essentially undeflected, while travelling
on a straight line independent of other nucleons. The individual nucleon-nucleon cross section
is obtained from the phase shift using the optical theorem [145, 146] and the overall phase
shift of the incoming wave associated to each nuclei is assumed to be the sum over all possible
two-nucleon phase shifts. The model also assumes that the size of the nucleus is larger than the
range of nucleon-nucleon interaction. Such assumptions make possible a simple calculation of
the nucleus-nucleus cross section, or of the number of participant nucleons and binary collisions

in terms of the nucleon-nucleon cross section.

Projectile B Target A
—_— -
Py N
.................................................. [—)
_________ po S SO  \ W—
Vi R
(a) Side view (b) Beam-line view

Fig. 2.6 Schematic representation of the geometry of optical Glauber model with longitudinal (b) and
transverse (a) views. Two nuclei denoted by red curves collide along z axis at an impact parameter b and
the green colored region represents the overlap area during the collision. The figure is a modification
from [138].
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Ultrarelativistic heavy-ion collision

Fig. 2.6 shows the collision of two heavy nuclei A (say projectile) and B (target) along the z
axis, colliding with a relativistic speed at an impact parameter b. Let us consider a flux-tube
located at a displacement s from the centre of the target nucleus and at a distance s — b from the
centre of projectile. The vector § represents the transverse position vector S(x,y). At the time of
collision, these two tubes overlap on each other. The probability of a given nucleon of being
located within the target flux tube per transverse area is given by the thickness function,

Ta(S) = f Pa(8,24) dza (2.19)

where p4(S,z) is the nuclear density distribution at ¥ = (x,y,z) given by Eq. (2.15). Similarly,

the probability of finding a nucleon in the projectile flux tube per transverse area,
To(5-b) = fp3(§—f),z3) dzg . (2.20)

The product of the two, Ty (5)T3(S—b) represents the joint probability density per unit area of
finding a nucleon from A and a nucleon from B at the overlap region with the collision impact

parameter b. One can then define the overlap function T(f)) by integrating over all s,
T(b) = fTA(§) Ts(5-b) ds . 2.21)

Please note, T(f)) has the unit of inverse area. The thickness function represents the effective
overlap area between a particular nucleon from A and a given nucleon from B at the interaction
region. The probability of such an interaction is given by T'(b)o¥V, where 6}V is the nucleon-
nucleon inelastic cross section!. The probability of 7 such interactions between the nucleus
A (let us say has A nucleons) and the nucleus B (having B nucleons) is given by the binomial

distribution,

P(n,b) = (AB) [Tap(b)o N1 [1 - Typ(b)o ¥V ]AB™ (2.22)
n

where in the above expression, the first term denotes the number of combinations in which n
nucleon-nucleon collisions out of AB collisions occur, the second term represents the probability
of exactly n collisions, and the last term gives the probability that AB —rn collisions do not occur.
The total probability of an interaction between nuclei A and B is,

. d2 AB AB - ~
PA8(b) = —db’; =Y P(n,b) =1-[1-Typ(b)oi V|45 . (2.23)
n=1

"Note that the elastic nucleon-nucleon collisions encounter very little energy loss and hence do not contribute to
the Glauber model calculation
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2.3 Glauber modeling in nucleus-nucleus collision

The total inelastic cross section of A-B collision can be found by integrating the above equation
over impact parameter2,

GAB = fo [1-[1-Typ(b) NN AB] 27bdb . (2.24)

m

The mean number of binary nucleon-nucleon collision is,

Ny (b) = ZnP(n b) = ABTpp(b)oN (2.25)

n=1

and the number of participants at impact parameter b is given by,
Npare(b) = A f Ty(S)PVE(5-b) d2s+ B / Ts(5-b)PNA(8) s
_AfTA(s){ [1-T3(5-b)c'M] }dzs (2.26)
+BfTB(§-B){1-[1-TA(g)ang]A} &s

where PI.Z;JA(B) represents the probability of a nucleon-nucleus collision. Note that the total cross

section of a nucleon-nucleus collision can be written as,
oM AB) - f {1 [1-Ty s ()oY ]A<B>} (2.27)

As the Glauber model calculation of ¢

Fid Npart and N,,;; depends on the nucleon-nucleon

cross section, it is important to mention the measurement of G{XN in different experiments and
collision energies. From the energy dependence of G{XN on \/syn [147], it can be estimated that
at the SPS energy (\/svy =20 GeV), 6V ~ 3 fm?, at the top RHIC energy (/syy = 200 GeV),

0NN ~ 4.2 fm? [148] and at the LHC energies, 6\ ~ 6.4 fm? [149] (\/snn = 2.76 TeV) and 7.0
fm2 [150] (\/snnv = 5.02 TeV).

2.3.2 Monte Carlo Glauber model

The optical Glauber model deals with the continuous distribution of nucleon density and does
not really locate the nucleons at locations with specific spatial coordinates inside the nuclei.
This is exactly the case in Monte Carlo approach of the Glauber model. The main feature of
this method is that the quantities like Npqr, N0 are calculated by colliding two nuclei event-
by-event through computer simulation. Both models give very close results for the averaged
quantities, (Npar (b)) and (N0 (b)), where (...) denotes average over events. However, for the

quantities where event-by-event fluctuations (as we will discuss later) are important, the two

’The scalar distance can be used instead of vector impact parameter if the colliding nuclei are not polarized.
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Ultrarelativistic heavy-ion collision

models give different results. Moreover, in the Monte Carlo Glauber approach, one can simulate
the observables event-by-event (in a minimum bias way), which are measured in the experiment,
such as multiplicity N, and its distribution can be compared with the experimental distribution
to classify similar centrality cuts as in the data. In the Glauber Monte Carlo approach [138],
first the nucleons are distributed in the two colliding nuclei A and B, in 3D coordinate space,
according to the nucleon density distribution in Eq. (2.15). Next, a random impact parameter is
generated according to the impact parameter distribution: do/db = 2nb (where, 0 < b < R, ax,
with Ry, > R4 + Rp). Then, the collision between the two nuclei is assumed as a sequence
of independent nucleon-nucleon collisions. It is assumed that the nucleons traverse through a
straight line and in each collision, nucleon-nucleon cross section is independent of the collision
history of the colliding nucleons. Next, in the simplest scenario, two nucleons are treated to

have collided if they satisty the following condition:
dyy < Gi]r\l/N/ﬂ , (2.28)

where dyy 1s the transverse distance (on the plane perpendicular to beam-axis) between the two
nucleons at the time of collision. This criterion is known as hard-sphere wounding and could be
described for symmetric collisions, by the collision probability:

p(dyy) =O(R-dyy)  with o =7R>. (2.29)

2

A Gaussian-wounding probability is also possible [151](i.e. the nucleons are wounded with
respect to a Gaussian probability distribution ):
- Cdyy

pldyy)=Ce " | (2.30)

where C is a constant fitted to data. In Fig. 2.4, the solid colored circles denote the wounded

nucleons selected according to the hard-sphere condition in Eq. (2.28), for one Pb+Pb collision.

2.4 Relativistic hydrodynamics

The relativistic hydrodynamic description of the evolution and the dynamics of the QGP
medium produced in ultrarelativistic heavy-ion collision is a useful way to model the collision
dynamics [17-24, 26]. The hot dense droplet of fluid-like QGP medium consists of strongly
interacting quarks and gluons (partons). A formal physical description of such a system should
be based on some rigorous microscopic theory. However, a microscopic description of a system
consisting of many interacting particles (many degrees of freedom) is not a trivial task. In such
situations, one looks for an effective description of the dynamics of the system, based on some

macroscopic theory which considers only those degrees of freedom which are relevant at the
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larger length and time scales. This works because most of the microscopic variables encounter
rapid fluctuations on a small length and time scale, which does not have a significant effect on
the macroscopic observables measured in the experiments, only the average quantities on the
macroscopic scale matter. On the contrary, the conserved quantities which vary slowly during
the dynamical evolution of the system play a crucial role in the effective theory. Hydrodynamics
(or fluid dynamics ) is a perfect example of such a macroscopic theory which can provide an
effective description of the dynamics of the QGP medium.

Physically, a fluid can be described as a continuous system of infinitesimal volume elements,
called fluid elements. In hydrodynamics, it is assumed that each of these fluid elements is in
local thermodynamic equilibrium during its space-time evolution i.e. they are homogeneous
without any spatial gradients and can be characterized by thermodynamic relations. This means
that the fluid cells are large enough in comparison to the microscopic scale so that a local
thermodynamic equilibrium can be defined and at the same time they are small enough in
comparison to the macroscopic scale that the continuum (infinitesimal volume) limit is satisfied.
We will assume the above criteria for the description of the QGP medium as a nearly fluid-like
medium are fulfilled. The following discussions presented in this section is a general short
review of some published literature on the theory of relativistic hydrodynamics in heavy-ion
collision [25, 152-164].

2.4.1 Thermodynamics

Thermodynamics is a macroscopic theory describing the bulk properties and state of matter. It
only deals with the average properties of the microscopic constituents (which are quite large
in number) of a system and its fundamental basis lies in statistical mechanics which could be
used to derive its basic laws. Here, we will briefly go through the thermodynamic identities and
relations which are important and often used in a hydrodynamic model.

A thermodynamic system is usually characterized by a set of few extensive variables such as
volume (V), pressure (P), total energy (E), entropy (S) and the number of particles (N) in the
system. The differential change in the total internal energy is given by,

dE =dQ-PdV +udN , (2.31)

which is basically the first law of thermodynamics. On the right hand side, dQ is the heat
exchange, the second term is the work done and the third term is rather difficult to interpret. In a
situation where particle is exchanged between two systems at same pressure and temperature but
different number density, it represents the thermodynamic potential. However, it is important to
note that N is usually the number of particles if the system is non-relativistic. In a relativistic
system, N is no longer the number of particles as it is not conserved anymore. In a relativistic

system, particles can be produced at the expense of energy or can be destroyed to produce
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Ultrarelativistic heavy-ion collision

energy. In such systems, N represents some conserved quantities e.g. baryon number. If there
are more than one conserved quantity, the term udN is replaced by Y°; W;dN;, where U; is the
chemical potential corresponding to the conserved quantity N;. However, here we will use N to
denote baryon number only.

For a reversible thermodynamic process, Eq. (2.31) takes the form,
dE =TdS—-PdV + udN , (2.32)

where the heat transfer is related to the change in entropy of the system. Using the above
equation one can find the extensive variables,

JE
-P and —— =u, (2.33)
IN|gy

IE
Y

JE

a_S _T

V.N

SN

which lead to the relation between the thermodynamic variables,
E=-PV+TS+uN , (2.34)

known as the Euler’s equation. Differentiating the above equation one gets the Gibbs-Duhem
relation,
VdP =SdT + Ndu . (2.35)

In the context of hydrodynamics, these thermodynamic quantities are expressed in terms of
densities i.e. the energy density € = E/V, the entropy density s =S/V and the baryon number
density n = N/V, which are intensive quantities. In terms of densities, Egs. (2.34) and (2.35) can
be written as,

e=-P+Ts+un (2.36)

and
dP=sdT +ndu . (2.37)

The thermodynamic equilibrium : 1t is the thermodynamic state of a system where the
system is in a stationary state and where the extensive and intensive variables defining the
stationary state do not change with time. For example, the entropy of a system is known to
either increase or remain constant from the second law of thermodynamics. If a system is in
equilibrium, its entropy remains constant in time. But, if the system is in an out of equilibrium

state, its entropy increases.

2.4.2 Relativistic ideal hydrodynamics

We start with the dynamics of an ideal relativistic fluid [157, 153, 25]. For an ideal fluid, the

system is assumed to be in local thermal equilibrium i.e all of its fluid elements maintain a
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2.4 Relativistic hydrodynamics

thermodynamic equilibrium state with each other. This implies that at each of the space-time
coordinates x = x* of the fluid, one can characterize the local temperature 7 (x), chemical
potential i (x) and the collective four-velocity ut(x) defined as,

dxt
Hix)= —=9(1,v 2.38
where 7 is the proper time, Y= 1/V'1 -2 and v = ‘Zi—f is the spatial velocity of the fluid.
The state of a relativistic fluid is described with the local energy-momentum tensor 7#Y and
particle number current N*. In the local rest frame (LRF) of the fluid, v = 0, making uﬁRF =(1,0)

and the energy-momentum tensor takes the form,

LRF = (2.39)

o o o m
oS o v o
o v o o
N o © o

where € is the energy density and P is the pressure of the fluid. In the laboratory frame, the
energy momentum tensor is given by,

T(‘(‘))V = (e+P)utu’ -ghvpP, (2.40)
for an ideal ( denoted by “(0)”) relativistic fluid. Similarly, the net particle number current and
the entropy current are given by,

N.u

©0) = nu*  and S?o) = sut . (2.41)

Hydrodynamic equations of motion

The equations governing the motion of an ideal fluid, encoding its dynamical description are
the hydrodynamic equations of motion, which arise from the conservation laws during the time
evolution. The energy-momentum conservation and the net baryon number conservation are
given by,

duTH"=0 and JyN*=0, (2.42)

where dy, = % and N = (n, j), with j as the particle current vector.

In the laboratory frame, the hydrodynamic equations of motion are obtained by projecting
the conservation equations in Eq. (2.42) along and orthogonal to the fluid velocity u*. Pro-
jecting the energy-momentum conservation equation along u# gives the first equation of ideal

hydrodynamics :

z—f_:—(s+P)9 or De+(e+P)0=0, (2.43)
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where J
D=u"9, = e and 0 =dut. (2.44)

D is known as hydro-derivative or convective derivative which represents the projection of dy,
along u#, and 0 is called the expansion scalar. Similarly, taking the projection orthogonal to u,
one obtains another three hydro-equations :

1
a,1=€+PVAP or (€+P)Duy-v,P=0, (2.45)
where J
u
ay =Duy = d—;l, Vu=Andy and ARV = gHV_ytyV (2.46)

ay is called the four-acceleration, V, is the transverse gradient and A"V is known as the
projector. YV, denotes the projection of dy, orthogonal to uH.

Finally, from the conservation equation of particle number current oy, N, K

0) = 0, we have the

fifth equation for ideal hydrodynamics,
dn

—=-n8 or Dn+nb=0. (2.47)
drt

It is important to note that Eqs. (2.43),(2.45) and (2.47) provide five equations of motion for an
ideal fluid but there are six degrees of freedom: €, P, n and uy,. The sixth equation comes from
the thermodynamic equation of state P = P(&,n) which relates the pressure to energy or number
density.

In the present context, it is necessary to mention that ideal fluid hydrodynamics is also
isentropic, which means that the entropy also remain conserved during the hydrodynamic
evolution of the fluid. Similar to the particle number conservation, the entropy conservation

equation is given by 8uS‘(lO) =0 which leads to,

Ds+s0=0, (2.48)

representing the equation of motion for the entropy current.

2.4.3 Relativistic dissipative hydrodynamics

The formulation of ideal hydrodynamics relies on Lorentz covariance, conservation equations
and the crucial assumption that the fluid is in local thermodynamic equilibrium. While the first
two principles are quite robust, the assumption of a perfect thermal equilibrium is significantly
crude and far for reality. In practice, the fluid elements are never in exact thermodynamic equi-

librium due to the dissipative effects originating due to irreversible thermodynamic processes,
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frictions between the fluid elements during their motion etc. To properly describe the dynamics
of a real fluid, these dissipative effects must be taken into account.

The covariant formulation of relativistic dissipative hydrodynamics, known as the first order
theory, was first given by Eckart [158] and later Landau and Lifshitz [157]. These theories
are covariant generalization of the Navier-Stokes theory. However, the first order theory has
a serious problem in its formulation. The relativistic Navier-Stokes theory is intrinsically
unstable [165, 166] because it violates the fundamental causality condition of the relativistic
theory [161, 159]. In this theory, signals can travel at an infinite speed or instantaneously, which
is not allowed by the principle of causality. Therefore, one needs to resort to the second order
theory which takes into account the causality principle in its formulation. Among many second
order dissipative hydrodynamic theories which addresses the acausal behavior [153, 152, 154,
167, 168], the Israel-Stewart theory [153, 152] is the most popular and widely used to describe
the hydrodynamic formulation of the QGP.

In relativistic dissipative hydrodynamics, the basic conservation laws for the energy-momentum
and the particle number current remains unchanged ( Eq. (2.42)). However, for a dissipative
fluid, the energy-momentum tensor 7#V and the particle current N# assume additional terms

THY and dissipative current n# respectively,

THY = T(*(‘))V +7HV = (e + P)utu’ - gtV P+ T*Y = eutu’ — PAMY + THV |
(2.49)

NH :N#O)+n“ =nuM +nt |

where THY is a symmetric tensor.

Matching conditions

The additional terms in the energy-momentum tensor and number current in Eq. (2.49), disrupt
the local thermal equilibrium of the fluid, making the definitions of the thermodynamic variables
ambiguous. In order to address this situation, we need to define an equivalent thermodynamic
equilibrium so that the definitions of the thermodynamic variables and their relations remain
consistent. The total energy density € and the number density 7 in the local rest frame of the

fluid is defined with respect to the matching conditions [157],
e=uyuyT" and n=uyN" . (2.50)

Irreducible decomposition of dissipative components

In general, any tensor can be decomposed into its irreducible components that can be a scalar
or a four-vector or any other tensor of ranking lesser or equal to the original tensor rank. The
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particle number current N* which is a rank-1 tensor can be decomposed in two components,
NH =Nyg"V = Ny (A*Y +utu") = nut +n* | (2.51)

where we have used the relation Nyu* = n (matching condition in Eq. (2.50)) and n* = A*VN,,
which satisfies n#uy, = 0. Similarly, the energy momentum tensor 7#Y which is a second rank

tensor can be decomposed as [25],
THY = gutu¥ — PAMY —TIAMY + 20 yY) 4 otV (2.52)

where,
1

3
Please note that € has same form as in Eq. (2.50). I is a scalar, known as the bulk viscous

€ =Topu®uP, M=-P--T,pA%, hH = AP Ty . (2.53)

pressure , the field h* is the energy diffusion four-current. The last two terms in Eq. (2.52) are
given by,

h(“u"):%(h“uv+hvu“) and nﬂvaaﬁAg;, (2.54)

where 1V is the shear-stress tensor which is is traceless and AZE is a rank-4 projection operator

which is doubly symmetric, traceless and orthogonal to u*. Aﬁl‘; is expressed in terms of the

projectors as,

§+AGAY - %AF“’A“ﬁ) . (2.55)

Comparing with the energy-momentum tensor for the dissipative fluid in Eq. (2.49), we have the

AV !

_ u
= 5 (AaA

dissipative term THV in terms of irreducible dissipative components,
THY = TIARY 1+ 2h(HyY) 4 gV (2.56)

The symmetric tensor THV has ten independent components and N# has four, which make a
total fourteen independent components. The fields n* and #* have three independent components
each ( both are orthogonal to u*). The stress-tensor T*Y being symmetric, traceless and
orthogonal to u*, has only five independent components. Remaining &, I, n and u* constitutes
another six ( € and P are related by equation of state ) independent components. Therefore, in
total the irreducible components of T#Y and N* have seventeen independent components. There
are extra three components, coming from the velocity field u#* which is not well-defined. The

fluid velocity needs to be defined properly by choosing appropriate frame.
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Definition of velocity field

For dissipative fluid, there is energy and particle diffusion in the LRF of the fluid, which need to
be taken into account while defining the velocity. In most of the cases, two possible choices are
used:

I. Eckart frame : In this frame [158], it is assumed that there is no net flow of particles or
no particle diffusion and that defines the fluid velocity. Using Eq. (2.51),

nt =0 = NH =nut . (2.57)

I1. Landau frame : In this frame [157], the velocity is defined in a way such that there is no
energy diffusion or no net flow of total energy. Using Eq. (2.53),

=0 = uyTHY = eut . (2.58)

It should be noted that either of the choices reduces three independent components. In the
following discussions, we will use the Landau frame to define the fluid velocity, under which
the conserved currents become,

T =eutu’ — (P+IDA*Y + Y and N =nu* +nt . (2.59)

Hydrodynamic equations for dissipative fluid

Similar to ideal fluids, we need to project the conservation equations (Eq. (2.42) ) along and
orthogonal to the velocity field u*, in order to find the equations of motion. We use the

expressions in Eq. (2.59) and using similar contractions we get [25]:

uydy THY =0 = E+(e+P+I1)0-n"V0y,y =0,
A%, THY =0 = (e+P+Iu*-v*(P+II)+Vyount¥ =0, (2.60)
a'uNu:O = I’l+l’l9+8unu=0,

where d = Da = u“&ua and otV is called shear tensor, defined as, oHV = v{kyY) = Aﬁ;vo‘uﬁ.
Eq. (2.60) gives us five equations for the relativistic viscous hydrodynamics, whereas T#V and
NH have fourteen independent components. Therefore, we need nine more equations for a
complete set, which are obtained from the dissipative terms i.e. the diffusion current n*, the
shear term 7wV and the bulk term II. The evolution equations for the dissipative terms are
obtained from the second order Israel-Stewart theory which we discuss below.
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Israel-Stewart theory for viscous hydrodynamics

The Israel-Stewart theory [153, 152, 154] of relativistic dissipative fluid is a second order theory
which does not violate causality. In this theory, the entropy four-current for the fluid at non-
equilibrium, is assumed to be a function of the dissipative currents in addition to the primary
fluid-dynamic variables [25],

SH = PBH 4+ B, THY — aN* — Q1 (SN* 8TV (2.61)

where ¥ =ut /T, B =1/T, a = /T with u as the chemical potential and Q* is a function of
the deviation of dissipative currents from equilibrium: SNH = N —N(‘B) and OTHY =THY — T(%;’.
Expanding Q" in Taylor’s series up to the second order in dissipative flux (second order in §),

we have [160, 25],

S“:su“—an“—ﬁ 12— Binyn’ + By P )t
2(130 ﬁl \ BZ po ) (2.62)

- B(opIIA*Y + oy T*Y¥)ny + O(8%))

where the coefficients B; and o are the thermodynamics coefficients of Taylor’s series expansion,
which depend on temperature and chemical potential. The next step would be to generate entropy
by taking divergence dy,S* and then one applies the second law of thermodynamics for each
fluid element i.e the entropy production always remains positive: dyS* > 0. This results in
dynamical equations for the dissipative currents, which are of relaxation-type [25]:

IT

. 1
I+ == —B—[B + BrinI16 + yoy,rny it + 0oV unt + youm,n, VHal |
T 0

T | .
Al 4 Z__ = _E[Tvua—ﬁnnnﬂe + 0V [T+ oy Vy 70y + W oIl +
n

WO IIV O+ Z O T,V y O+ F Oun Tty ] (2.63)

. Y 1
7'L',UV 4+ — = ——[Guv _ﬁﬁnenuv - 061V(“nv> _%annn(”vv) o—

Tn B>

X(Xnnn(“ll\,)] 5

where A = k/T and the coefficients {, k and 1 are called bulk viscosity, particle diffusion and
shear viscosity of the fluid, respectively. The parameters

1 = Cﬁo, Th = ABI = Kﬁl/T and Tn = 21’[ﬁ2 (264)

are positive and can be interpreted as relaxation times. Therefore, the coefficients By, B;, and 3,
must also be positive.
The presence of the relaxation time indicates that the hydrodynamic response to the dis-

sipative currents occur within a time scale given by 7, instead of an instantaneous effect i.e.
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the theory satisfies the causality requirement of the relativistic theory. However, the theory
introduces five new parameters: Py, Bi, B2, & and ¢, which can be obtained from more funda-
mental microscopic theory such as relativistic kinetic theory using the framework of Boltzman

transport.

2.4.4 Relativistic kinetic theory

In relativistic kinetic theory, the macroscopic properties of a system can be expressed in the
framework of statistical mechanics using a single particle phase-space distribution function
f(x,p). At each space-time point x, the quantity f(x, p)A3xA3p denotes the average number
of particles within the volume A3x and having momenta between p and p+Ap. In terms of the

distribution function f(x, p), the particle number four-current or the four-flow is given by,

3
Ve = [ E p pn). 269

and the energy-momentum tensor as,

3
THY (x) = f C;—f Pt pY f(x,p), (2.66)

which is symmetric and involves the second moment of the distribution function. Furthermore,
using Boltzmann’s H-theorem, the general form of the entropy four current (or entropy four-flow)

can be written as,
d3 - -
$(x) == [ ©F " [Fe.p)n e p)+rf(xp)n ()] 2.67)

where f(x,p)=1-rf(x,p) and r =0 (Maxwell-Boltzmann statistics), +1 (Fermi-Dirac statistics)
or —1 (Bose-Einstein statistics).

If the system is in equilibrium, the distribution function is given by,

1
exp(Bpluy—a)+r

f(x7p) EfO(x7p) =

(2.68)

But if the system is in a non-equilibrium state, the distribution function can be written as
a small deviation from the equilibrium distribution function: f = fy+ 8 f, where §f is the
non-equilibrium correction. Furthermore, using the non-equilibrium distribution function in

Eq. (2.59), one can find the expressions for the dissipative quantities i.e. the bulk pressure, the
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particle diffusion current and the shear-stress tensor, in terms of the correction d f as [25],

1 d3p
H:_gA.uV[ p() pﬂ pv 6f7
d3
nﬂzA“pr—(f’pv 5f (2.69)

Dissipative hydrodynamics from relativistic kinetic theory

Israel-Stewart theory for the relativistic viscous hydrodynamics introduced five new parameters:
Bo, B1, B2, o and a, in the evolution equation for the dissipative currents (Eq. (2.63)). These
parameters can now be derived from the evolution equations obtained by solving the relativistic
Boltzmann equation for the distribution function,

phouf=C[f] (2.70)
under the relaxation time approximation (RTA),

0
Clf]= —uup“—f , (2.71)
TR
where C[ f] is called collision functional and T is the relaxation time. However, for this one
needs to assume some approximated form for  f. One of the most popular method is the Grad’s

14-moment approximation method.

Grad’s 14-moment approximation method : In this method, originally proposed by
Grad [154], the correction Jf is obtained by expanding the distribution in Taylor’s series
around its local equilibrium in the power of momenta (truncating in second moment of mo-
menta) [153, 155, 169, 160, 162, 164, 163],

8f = fofole(x) + € (x)p* + €45 (x)p*PP1+O(p?) (2.72)

which involves 14-unknowns to be determined in order to obtain the distribution, hence called 14-
moment approximation. While Israel-Stewart used second moment of Boltzmann equation [153],
a more consistent approach was proposed by Denicol-Koide-Rischke (DKR) in [155] to obtain
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the evolution equation for the dissipative quantities [155, 169],

. IT
II= _T_ —ﬁn@ —gnna “n— TN U— ornl10 —lnnn-va()+lnﬂ7€“v6#v ,
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u
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where wtV = (VHuY — vVut)/2 is the vorticity tensor. The above derived equations contain 25
transport coefficients in general, among which three coefficients are shown below [155],

o, 2 m? 5
= (3~ e+P)- 2(e-3P) - "0 {(uwp) 2o

n? 2(1)0 m?

Bu=- 35 (@) o, (2.74)
" B(e+P) 3B 3P
4P e-3P m*
Br = 35 + 5 _<( p)” )
where (... )o= [ dp(...)foand c; = (dP/dg),/, is the speed of sound squared within the medium,

which we dlscuss later.

Besides, there exist another commonly used method to obtain the equations for the dissipative
quantities, namely the Chapman-Enskog expansion, where the particle distribution function is
expanded in powers of the space-time gradient around its equilibrium value in order to find an

approximate expression for 9 f. For details see [156].

2.5 Quantum Chromodynamics (QCD) : theory of strong

interaction

The QGP medium created in the heavy-ion collision is a strongly interacting medium of quarks
and gluons which are expected to be weekly coupled in the QGP state at asymptotically large
temperature (only). The fundamental theory governing this strong interaction is Quantum
Chromodynamics or QCD which deals with the quarks and gluons field and their interactions.
The theory explains two fundamental phenomena : 1) quarks and gluons cannot exist as free
particles in nature. They are always found as bound states (hadrons), this phenomena is known
as the color confinement ii) the interaction between quarks and gluons becomes weaker at short

distance and stronger at longer distance, a phenomenon known as asymptotic freedom. We
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first discuss one of the most interesting feature of this theory; the existence of color degrees of
freedom or color charges of quarks.

Color degrees of freedom : The first hint of color charges came when people encountered
problem to explain the wave function of strange baryons e.g. A**, Q~ etc. For example, Q-
hyperon consists of three s-quarks and has spin 3/2. As a result, the spin and flavour wave
function of Q is symmetric with respect to the change of identical valance s-quarks. According
to the Pauli’s exclusion principle, the full wave function of a particle containing three identical
quarks must be antisymmetric. Therefore, it demands that the spatial wave-function of Q™ has
to be antisymetric. However, ™ is a stable particle and the ground state of a three s—quark
system; its total wave function has to be symmetric. To solve this puzzle, people came up with a
new quantum number associated with the Q~ hyperon, which should have at least three different
values corresponding to the three quarks within Q~. This new quantum number is known as
color, which is an additional degree of freedom of the quarks and gluons, the fundamental basis
of QCD theory.

2.5.1 The QCD Lagrangian

Quantum chromodynamics is a SU(3) gauge theory, known as Yang-Mills gauge theory [170].
The QCD Langrangian density is given by [9, 14, 15, 10],

i : i 1 a ra
Locp = Vi) [P Du=mqJiyvi (x) = g Fiy 4 | 275)

where, ! (x) and l,l;jz (x) are the spin-1/2 Dirac fields for quark and antiquark respectively, having
color i, flavor ¢, and mass mg, with ¥ = y790. The gluons are represented by a field A%, which
has spin equal to 1, zero mass and color index a corresponding to the adjoint representation
in SU(3) gauge group. In Eq. (2.75), it is assumed that there is a summation over repeated
color and Lorentz indices. The indices i, j = 1,2, 3 correspond to three possible colors for quarks
whereas a = 1,...,8 represent the colors for eight gluon fields corresponding to the 8 generators

of SU(3) group. The covariant derivative D, is defined as,
D’u = a‘u - lgA‘u = a'u - lgtaAa 5 (276)

where t¢ are the 8 generators of SU(3), given by 14 = 14/2, where A¢ are the Gell-Mann
matrices [9]. F, are the non-abelian gluon field strength tensor, defined by,

F&, = 9uA% - OyA% + g fP°ALAS  or  Fyy =1°Fg, = é[Dﬂ,Dv] : 2.77)
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where f4¢ are the structure constants of color SU(3) gauge group. The underlying gauge

symmetry means that the Lagrangian is invariant under the local gauge transformation,
_ i _
VE) @Y, A > 2 (A0 (@) =[x (0] () (2.78)

where x(x) = ¢l ()" The Lagrangian in Eq. (2.75) is based on two fundamental assumptions
which are confirmed by experimental observations : all hadrons consist of quarks and quarks
are not observed as free particles. These two assumptions demand that there exists a particle
which mediates the interaction between the quarks to form the bound state. This interaction has
to be attractive i.e. it should depend on the quark colors which requires the mediating particle
to be a vector boson of spin 1. In addition to that, the fact that quarks cannot exist as free
particles, requires the force of attraction to be stronger at larger distance, which essentially needs
the mediating particle to be massless. Thus the particle responsible for strong interaction is a
non-Abelian massless vector boson, a gluon.

2.5.2 Asymptotic freedom and confinement

Another very interesting and remarkable feature of QCD is the asymptotic freedom which tells
us that the QCD coupling strength gets weaker at shorter distances i.e corresponding to larger
values of four-momentum squared g2 = —Q?2, where Q is a real number. The running coupling

constant of QCD governing the interactions is given by [14, 171],

o (1?)

2y _
%(07) = 1+o(u?) By In(Q%/u?) (2.79)
where, N o
> = # and  Bocp(a) =—Bra” +O(a’) . (2.80)

Bocp is known as QCD beta function, N, is the number of colors and N, is the number of quark
flavors. While N, = 6 in the Standard Model, the effective numbers of flavor depend on the
momentum scale Q and in principle could be smaller than six. Eq. (2.79) clearly suggests that
as Q — oo, the coupling constant o, (Q?) — 0. This means that the strong interaction between
the quarks and gluons become smaller at larger momentum or asymptotically short distance,
called the asymptotic freedom. Such a behavior is in striking contrast to other categories of
interactions e.g. Quantum Electrodynamics or QED. In QED, f3; is negative and as a result the
QED coupling constant becomes stronger at the shorter distance or larger Q2. The quantity y in
Eq. (2.79) represents an arbitrary scale, known as the renormalization point. Eq. (2.79) can be

rewritten as, .
2 =
os(07) B (0[N0 ) (2.81)
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Fig. 2.7 The running coupling of QCD, as a function of energy (momentum) scale Q, illustrating the
asymptotic freedom. The figure shows a summary of different measurements of ¢ at the respective
energy scale. Figure is taken from [172]

where Agcp is the fundamental scale of QCD, having value ~ 200 -300 MeV. The exact value of
Agcp depends on the method of renormalization. The strong coupling constant o (Q?) become
large when Q ~ Agcp, which makes the interaction between quarks and gluons stronger leading
to the confinement of the quarks and gluons inside hadrons. Fig. 2.7 shows the dependence
of the running coupling constant o(Q?) on the energy scale (Q), depicting the asymptotic
freedom.

Deconfinement and formation of QGP

The asymptotic freedom discussed above suggests that when the momentum-transfer squared
is very large ((Q? > 1)) i.e. when the collision energy is very high, the coupling strength of
the strong interaction between the constituent partons become very week (OCS(Qz) —0). At
asymptotically large temperature, the interaction strength between the partons become so week
that within the hot dense matter, the quarks and gluons become asymptotically free and a new
degrees of freedom (color) enters into the picture. This phenomena is called color deconfinement
which is responsible for the formation of the Quark-Gluon-Plasma (QGP). The experimental
program of heavy-ion collision aims at creating this hot and dense droplet of matter where this
particular phenomenon of deconfinement transition takes place.

In the present context, it is important to mention another useful description of QCD theory,
known as Lattice QCD (LQCD) which is used to calculate the QCD Equation of State (EoS) for
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the QGP medium at high temperature as well as to obtain the QCD phase diagram. Below we
briefly discuss this.

2.5.3 QCD Equation of State and Lattice QCD

The Equation of State (EoS) of a system is defined as the relationship between the thermody-
namic variables (state variables) of the system, i.e. pressure (P) or number density (n) to the
energy density (€). EoS is extremely important because it describes the equilibrium properties of
the QCD matter. To close the hydrodynamic set of equations, one needs an additional equation
which is provided by the equation of state of the system, hence it is an important input for
hydrodynamics.

If we treat the QGP medium as an ideal gas of massless quarks and gluons having zero net
chemical potential (tp = 0), then thermodynamic quantities of the system can be calculated from
the partition function Z(7,V') of the system,

7[2

energy density, €0GP = \/QGP%T4 ,
7[2
pressure, Pogp = VQGP9_OT4 7 (2.82)
1
number density, noGp ~ VQGPET4 ,

where Vogp is the total number of degrees of freedom of the system, given by,

21
Vogp = 16+ ENf , (2.83)

where N is the number of quark flavours. Then in the massless ideal gas limit, one has the EoS
of the system: P = %8, the EoS for the ideal gas.

Speed of sound in QGP : In this context, it is important to discuss the speed of sound within
the QGP medium. Sound is defined as a small disturbance that propagates through a uniform
fluid at rest. For a QGP medium with pressure P and energy density €, the speed of sound
squared is defined as,

JdP
2_7° . 2.84
$=3g (2.84)

Therefore, for a massless gas of quarks and gluons, c% = % In the case of a baryon less QGP

C

medium (g = 0), using Eqgs. (2.37) and the relation between the densities, the speed of sound
within the medium can be also written in terms of temperature and entropy density as [20, 173],

2 dlnT
C, = .
S dlns

(2.85)
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However, in reality the quarks have mass and interact strongly. Matter created after the
heavy-ion collision exhibit two phases (as we will describe later) during the hydrodynamic
evolution : the QGP phase at high temperature and as the temperature drops, it gradually enters
into the hadron resonance gas (HRG) phase. As a result, in the heavy-ion community it is a
common practice to use Lattice QCD (LQCD) calculation at high temperature and HRG model
at low temperature for the EoS with vanishing baryon chemical potential (up = 0) [174].

At zero baryon chemical potential (up = 0), there exist many methods, a combination of
which could give us a good understanding of EoS at all temperatures. At extremely high
temperature (0, << 1) i.e. in the pure QGP phase, EoS can be obtained by the perturbative QCD
calculations [175—-177]. On the other hand, at the low temperature (¢ large), i.e. in the hadron
gas phase EoS is calculated from HRG model [174]. Lattice QCD (LQCD) bridges the gap
between the two calculations and captures the transition between the QGP and the hadron gas
phase [178]. In the non-perturbative region, where ¢ is not so small, LQCD calculation serves
as the major tool to investigate equilibrium properties of QCD. In lattice QCD calculations,
a discretized 3+1D lattice space is created and through Monte Carlo approach, the partition
function (Z) is evaluated on the lattice through path integral method. Once the partition function
is defined, all the thermodynamic quantities can be calculated at tip = 0 and for any temperature
T, eventually providing the QCD EoS [179, 178, 180] at up = 0. In the case of finite baryon
chemical potential (up # 0), the EoS is usually obtained through some approximation using
Taylor series expansion around up =0 [181-184]. LQCD calculation is used to obtain the
equation of state at high temperatures and HRG model is used at low temperatures, with an

interpolation procedure in between [174, 25].

2.6 Different stages of HI collision : hydrodynamic frame-

work

An ultrarelativistic nucleus-nucleus collision at the LHC or RHIC produces hundreds or thou-
sands of particles. From the time of the collision to the time of the detection of the produced
particles, the time span is very short (few fm/c). However, within that little span of time,
there exist different stages that the system undergoes before ending up as particles at the de-
tectors [185, 25, 27, 28]. Fig 2.8 shows the schematic representation and timeline of different

stages of a heavy-ion collision event, which we briefly describe below :

* Att =0 fm/c, two incoming nuclei collide and at the overlap area of collision they deposit

energy (or entropy), which serves as the initial state of the collision.

* The fireball created at the collision does not achieve thermal equilibrium immediately after

the collision, rather it takes some time for its constituents to interact between each other so
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Fig. 2.8 Schematic representation of different stages in heavy-ion collision along with the timeline for the
stages. Figure is taken from [25].

that the system gradually approach the equilibrium. This is known as the pre-equilibrium
state which survives for ¢ ~ 0.1 -1 fm/c.

* Ataround 7 $ 1 fm/c, the system is usually considered to have partially achieved thermo-
dynamic equilibrium. Next the system of deconfined quarks and gluons starts to expand
collectively staying close to the local thermal equilibrium and simultaneously cools down.
At this stage, the QGP medium can be treated as a fluid medium so that it can be evolved
through hydrodynamics. This phase lasts approximately until # ~ 10 fm/c.
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Fig. 2.9 Space-time diagram of different stages of heavy-ion collision. There exist a preequilibrium phase
denoted by the white space. Next, there is a QGP phase, where hydrodynamic evolution occurs, denoted
by the orange color. The hadron gas phase is denoted by the combination of yellow and blue colors,
where at the end of the yellow region chemical freezeout occurs.
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* After the hydrodynamic evolution of the QGP medium (¢ ~ 10 fm/c), when the system
temperature drops below the phase-transition temperature (7;) which is around 150 MeV,
the system encounters a phase transition, where the medium constituents or the partons
combine with each other to produce hadrons. This is called hadronization® in which
many hadrons and resonance particles are produced forming a system of hadrons, the
hadron-resonance gas (HRG). At this stage, the produced hadrons undergo resonance
decay and elastic or inelastic interactions with each other until they reach a certain point
where the system ceases to produce new particles, known as the chemical freezeout. After
chemical freezeout, the produced stable hadrons still undergo elastic interactions with
each other until the system reach a certain state where the elastic interactions between the
hadrons also stop, called the kinetic freezeout*. It is expected that the kinetic freezeout
occurs later than chemical freezeout so that the temperature for chemical freezeout is
always larger (T, > Ty;,,). After kinetic freezeout, hadrons are free to stream towards the
detector.

* When the system reaches the state of kinetic freezeout, the space-time hypersurface of
the system is called the freezeout hypersurface. The momentum space distribution of the
final identified hadrons is then obtained by converting the fluid dynamical information
from each hypersurface cell into the local phase-space distributions of hadrons, through

particlization method.

Fig 2.9 shows the space-time evolution and different stages of heavy-ion collision. It is clearly
visible that in the hadron gas phase there exists checmical and kinetic freezeout separately.

It should be noted that after the hydrodynamic evolution, when the system reaches the
freezeout state, the hadrons particlized from the freezeout hypersurface, can again undergo
secondary elastic or inelastic interactions and cascade decays before finally hitting the detectors.
Such interactions and cascade decays can redistribute the momentum distribution of the identified
particles. Therefore, modern hydrodynamic simulations take these into account by carrying out
hydrodynamic evolution followed by a hadron-cascade stage, where the latter is implemented
through a after-burner. We will revisit this fact at the end of this chapter.

2.6.1 Initial conditions

At the time of the collision, two nuclei deposit energy (or entropy) at the overlap region which
serves as the initial state for the collision event. The initial state condition is of practical
importance in heavy-ion collision, in the sense that many final state observables depend largely
on the initial state properties [186, 128, 187, 92, 97]. A full 3D initial condition would involve a

3not to be confused with particlization which occur at later time

“4Please note until this stage the system is still evolving through hydrodynamics as the fluid picture was still
valid. In reality, the precise time for the hydrodynamic evolution to stop is not accurately defined, one only knows
that it has to stop at some point.
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2D density profile on the transverse plane along with the space-time rapidity (7)) distribution
of those transverse profiles [188, 49, 189, 190]. However, as long as we restrict ourselves
to the central rapidity region, the space-time evolution of the system can be assumed to be a
boost-invariant, homogeneous (or uniform) longitudinal expansion, known as the Bjorken flow
which is a very simplistic yet effective assumption of hydrodynamic expansion first proposed
by J.D. Bjorken [191], which will be again discussed later. In the Bjorken picture, the boost-
invariance ensures that most of the knowledges about the transverse collective properties of
the system can be obtained using a 2+1 D hydrodynamic expansion of the system, which will
be our primary topic of discussion in this document. For the initial conditions of such boost-
invariant hydrodynamic evolution, the two dimensional density profiles are sufficient. This
initial density could be obtained from some state of the art initial state models e.g. 2D Glauber
model (discussed in Sec. 2.3), saturation based color glass condensate model (Kharzeev-Levin-
Nardi(KLN) model [137, 192], IP-Glasma model [94, 193]), parametric Glauber-like model
(TRENTo model [194]) etc. In this document we will mostly use the Glauber model which we
have already discussed in Sec. 2.3 and the parametric TRENTo model to generate 2D initial

conditions for hydro-evolution, which we briefly discuss below.

Two-component Glauber model

Although in Sec. 2.3, we discussed the basic features of the optical and MC Glauber model,
we did not discuss the particle production i.e. how the final state multiplicity scales according
to the number of participants or binary collisions. In the simplest picture, the multiplicity of
hadrons per unit rapidity in an event scales according to the soft processes i.e. the total number

of participants or the number of wounded nucleons : dflvﬁ” =Npp N”z“” , known as the wounded-
nucleon model [136], where N, is the average multiplicity in p+p collision. However, later
the experimental data have suggested that the total multiplicity in a nucleus-nucleus collision
gets contribution from both hard and soft processes. In particular, the multiplicity per unit
pseudo-rapidity has two components: the ‘soft’ part is proportional to the number of participants
Npare and the ‘hard’ part is proportional to the number of binary collisions N, [137],

dNch N,
el (1-a) Ny, %ﬁ-I—Othp Neott (2.86)

where 0 < & < 1. The above two models are implemented within GLISSANDO [144].

TRENTo model

TRENTo which reads as Reduced Thickness Event-by-event Nuclear Topology, is a parametric
non-dynamical effective model for generating initial conditions directly at the thermalization
time (7p) in high-energy nucleus-nucleus, proton-nucleus and proton-proton collisions [194].
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Let us first consider, two protons A and B, separated by an impact parameter b along x-axis,

collide with each other having nuclear densities,

PaB= pproton(Xib/z,y,Z) . (2.87)

Then the participant thickness associated with each projectile is given by,

Ths(e.y) = [ dzpan(xy.2) . (2.88)

The incoming two protons collide with a probability [195],

Pcollzl—exp[—GNN f dx dy f dzpa f dzpB], (2.89)

where the above integral represents the overlap integral of proton thickness function and oyy is
the proton-proton inelastic cross-section. To introduce additional event-by-event fluctuations,
each proton is assigned a fluctuating thickness,

Trp(63)=0un [ dzpas(2)], (2.90)

where wy p represent independent random weights which are sampled from a gamma distribution

with unit mean,

k
P(@) = %a)k_le_kw . (2.91)

The additional multiplicity fluctuations are introduced by the above gamma weights.

Next come two primary postulates for the entropy production in this model:
* In the collision, the entropy production occurs through the eikonal overlap of 7 and Tp.

* There exist a scalar field f(74,7p) which converts the projectile thicknesses into entropy
deposition i.e f o< dS/dy|;-q,, Where dS/dy|;-4, is the entropy deposited per unit rapidity
at the hydrodynamic thermalization time 7.

In the TRENTo model, f represents the reduced thickness having the functional form,

1
p P\
T, +Ty )p | (2.92)

f=Tr(p:T4,Tp) E( 5

named accordingly because the above function takes two thicknesses Ty, T and ‘reduces’ them

to a third thickness, similar to the reduced mass. The above functional form represents the
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Fig. 2.10 Reduced thickness in the collision of two nucleons at some non-zero impact parameter along
x-axis for different values of p. The plot shows the cross-sectional view of the overlap of thicknesses.
Figure taken from [194].

generalized mean which depending on the value of the parameter p, reduces to

max(Ty,Tp), p — +00
(Ty+Tp)/2, p = +1 (arithmetic mean)
Tr = /T Tp, p =0 (geometric mean) (2.93)
2TuTp/(Ty +Tp), p =—1 (harmonic mean)
min(7y,7p) - p—>—00

Please note that with p = 1, the reduced thickness become equivalent to the wounded nucleon
model. Fig. 2.10 shows the reduced thickness as a function of the impact parameter for two
colliding nucleons for different values of p.

Similarly, proton-nucleus and nucleus-nucleus collisions can be treated as a superposition of
proton-proton collisions. Let us consider now two colliding nuclei A and B. The position of the
nucleons in each projectile is obtained by sampling a nuclear distribution e.g. Woods-Saxon
distribution (Sec. 2.2.1) and then collision probability is sampled for each pair of nucleons from
the two projectiles. The nucleons which collide at least once with another nucleon from the
other projectile, are called the ‘participants’ and the rest of the nucleons are spectators hence not

relevant. Then the fluctuating thickness function of two nuclei reads,

NAB
part

Typ(x,y)= ) o fdz pX’rgm"(x—x,-,y—yi,z—zi). (2.94)
-1
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where ; is the weight corresponding to i/ participant. Once we have the participant thickness
Ty and Tp, we can calculate Tg(p; Ty, Tp) using Eq. (2.92) and the initial transverse entropy

deposition per unit rapidity is given by up to an overall normalization factor,
ds
d_ylr:ro o< Tr(p; T, Tp) - (2.95)

The average charged particle multiplicity (N,;,) produced in the final state after the hy-
drodynamic evolution, is to a good approximation, proportional to the average total initial
entropy [196] and so to the integrated reduced thickness?,

dNgy,

ds
0y o< fdx dy d_y’|T:T° = fdx dy Ty . (2.96)

The default value of the parameter p is 0, the parameter k in Eq. (2.91) is called the shape
parameter having a default value k = 1. Small values of k (0 <k < 1) correspond to larger
multiplicity fluctuations and if k >> 1 then it suppresses the fluctuations. The proton thickness
function in Eq. (2.94) is given by a Gaussian density,

2 2
Ty ) , (2.97)

1
e poroen= e -5

where w? is the effective area, having a default value w = 0.6 fm. The latest version of TRENTo
also includes the option to work with the constituents (partons) and hence the Gaussian con-
stituent width v [197].

2.6.2 Pre-equilibrium

Once we have the initial condition in a heavy-ion collision event, the next step is the hydrody-
namic evolution of the system once it achieves thermal equilibrium. However, the thermalization
is not achieved immediately after the collision, rather there exist a finite time interval between
the time of collision (7 = 0) and the thermalization time (7 = 7y), called the pre-equilibrium phase.
In this time interval, the constituents (partons) of the created system just after collision, involve
in rapid interaction with each other in order to achieve the equilibrium state. In principle, there
could be two limiting cases for the coupling strength inside the QGP medium [27]: infinitely
week coupling where the secondary partons created in the collision free-stream without any
interaction and infinitely strong coupling where the inter-particle mean free path becomes
extremely small, eventually resulting in a fluid-like system.

In reality, the initial parton interactions in the preequilibrium phase is governed by a cou-
pling strength lying between the above two extremes, while the system continues to evolve.

The simplest choice for the dynamical evolution of the system in pre-equilibrium phase is

3denoting here rapidity as y’.
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the free-streaming of partons, governed by the collision-free Boltzmann equation [27, 28]
: pHduf(x,p) =0. Usually the free-streaming time is taken to be 0 < 75, S 1 fm/c. IP-
Glasma [94, 193] is the one of the most popular state-of-the-art models which takes into
account the pre-equilibrium dynamics until hydrodynamics begin. The IP-Glasma model is a
CGC based [198-203], impact parameter dependent saturation model (IP-Sat) which provides
the initial condition for heavy-ion collision by taking into account not only the fluctuations in
nucleons’ positions but also the quantum fluctuations of color charges. Besides, there are other
transport models e.g. URQMD [204-206], AMPT [36, 37, 207, 208], KoMPoST [209] and
relativistic ADS/CFT models [210] which also incorporate the pre-equilibrium dynamics.

2.6.3 Hydrodynamic evolution

Once the QGP system reaches thermalized state, the hydrodynamic evolution can be started from
the thermalization time (7y) assuming the system as a fluid-like medium. The hydrodynamic
evolution of the system is governed by the hydrodynamic equations of motion described in
Sec. 2.4, as well as the equation of state of the system. In reality, this evolution is a fully three
dimensional evolution in space-time, but a boost-invariant two dimensional transverse evolution
also works as a good approximation, which stems from the Bjorken picture of the hydrodynamic
evolution. In this thesis, all the results in the following chapters are based on a boost-invariant
two dimensional evolution, where the underlying assumption is the Bjorken flow that we discuss

below.

Bjorken flow

Bjorken flow describes the longitudinal expansion (along the beam-axis ) of the fluid medium
created in heavy-ion collision, first proposed by J.D. Bjorken [191]. Bjorken proposed that
in a central collision of two large nuclei, the fluild medium near the collision axis expand
homogeneously (or uniformly) in the longitudinal direction (along z-axis). It means that at a
given longitudinal distance z, all points on the fluid move with a longitudinal velocity 8, = v, = z/t
at a given time ¢ in the lab frame, while the pancake-like nuclei recede in opposite directions and
the fluid in the midway stays at rest. The velocity is uniform and the expansion is boost-invariant
under Lorentz transformation in a sense that if someone boosts the system (say with velocity v )
along the z-direction, all three quantities v,,z,# change in the new frame but v, = z/ still hold in
the new frame or in other words, in the new frame the fluid expands with a uniform velocity
vl = 7'/t in the longitudinal direction. Bjorken’s prescription for hydrodynamic expansion is
supported by the experimentally observed plateau in the distribution of produced particles in

rapidity® [73, 149, 211]. In the Bjorken picture, one works with the proper time coordinates

®In experiment one often measures the charged particle multiplicity distribution in pseudo-rapidity rather than
rapidity
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(Eq. 2.4) or the so called Milne coordinates given by,

1. t+
t=V2-22 and mMy=-In—2, (2.98)
2 t-z
where 7 is the proper time and 1 is the space-time rapidity. Conversely, ¢ and z are given in

terms of Milne coordinates as,
t=7tcoshny and z=7 sinhn;. (2.99)

Under the Bjorken scaling v, = z/t, the fluid rapidity y in Eq. (2.5) becomes equal to space-time

rapidity s,
1. ¢ 1. 1+z/t 1 1 1.1 E
ns:—lni:—ln +2 =—In +VZ:—anrLZ/=y.
2 t-z 2 1-zft 2 1-v; 2 1-p,/E

Under the Lorentz boost along z-axis, T remains constant, y and 7y shift by a constant. With

(2.100)

the Bjorken’s prescription, initial conditions are usually specified at a given proper time 7 = T,
rather than a given time ¢ = #y and the solution of the hydrodynamic equations becomes much

simpler.

Solution of hydrodynamic equations in the Bjorken picture

Bjorken picture of hydrodynamic expansion describes only one-dimensional flow in the lon-
gitudinal direction and no transverse flow’. However, it is important for the assumption of

boost-invariant expansion of the fluid. The fluid four-velocity in Bjorken picture becomes,

. Z 1 t
M”:’}/(LVZ), with VZZZ’ Y= 1_\}%:2‘ (2101)
In terms of Milne coordinates,
(t,z) = T (coshny,sinhny) = u* = (coshng,sinhny). (2.102)

For an ideal relativistic fluid, we recall the hydro-equations in Eq. (2.43) and Eq. (2.47),
De+(e+P)6=0 and Dn+n6=0, (2.103)

where D = ud,, and 6 = dyut. In terms of Milne coordinates they become,

9
ot

"1t should be noted that the Bjorken flow is an oversimplification of the hydrodynamic expansion. In reality, the
fluid expands in all possible directions. However, the transverse expansion sets in at a later time leading to the
transverse anisotropic flow and most distinctive collective behaviour of the fluid observed in the final state.

D= and 0= % . (2.104)
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2.6 Different stages of HI collision : hydrodynamic framework

With this, the hydro equations become,

58__8+P and P__" (2.105)

it 1 ot 7

on _ n

Assuming that the hydrodynamic evolution starts at time T = 7y, when the initial energy density
is € = &) and using the EoS, P = c2¢, the first equation in Eq. (2.105) gives,

l+c
de € T ’
$+(1+C§);=0 — 8Bj0rken:80(?0) . (2.106)

Similar to the second part of Eq. (2.105), Eq. (2.48) gives the equation for entropy density,

ds s 50T

o2 — s=—220 (2.107)
at 1 T

and so the pressure of the system would evolve as, P o< 11 - . For the evolution of the temperature,

we use Eq. (2.36) with zero baryon chemical potentiaf, '

g=-P+Ts — T o 162 : (2.108)
T s

If we consider the medium as a gas of massless quarks and gluons, then ¢Z = 1/3 leads to the

relation :
1+

PoxT & =T* exT* and sxT?, (2.109)

which we find for an ideal gas.

2.6.4 Hadronization and freezeout : QCD phase transition

Towards the end of hydrodynamic evolution, when the QGP medium has cooled down sufficiently
(T ~ 150 MeV), the interaction strength between the constituent partons become large enough
that they couple with each other to form bound states or hadrons. At this stage, the system
undergoes a smooth phase-transition from the decoupled QGP phase to a strongly coupled
hadronic phase, producing a gas of stable hadrons and their unstable resonance particle, called
hadron resonance gas (HRG). This is known as the so-called QCD phase transition [29, 212, 30—
33, 213, 34] and the corresponding phase diagram is shown in Fig. 2.11. Please note that the
type of phase transition depends on the collision energy which translates into the temperature
and baryon chemical potential. It is expected that a smooth transition occurs at a vanishing
baryon chemical potential (up ~ 0) in the crossover region, which is the case for collisions at the
LHC and highest RHIC energies.
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The Phases of QCD
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Fig. 2.11 Schematic representation of the QCD phase diagram. It is shown that the phase transition and
its type depend on the collision energy, probing different (7', ug) regions. The solid curve separating
the QGP phase and HRG phase, denotes the first order transition, and the point where it ends is called
critical point or critical end point. After the critical point there exist a smooth transition region, called
the crossover region. At the LHC or highest RHIC energies, the phase transition from QGP to hadron gas
occurs towards the end of the crossover region where T ~ 150 MeV and up ~ 0. Figure taken from [214].

Freezeout

In the HRG phase, many stable and unstable hadrons are produced, which are further involved
in elastic or inelastic collisions and resonance decays. These produce further particles until the
system reach a certain state where the production of new particles stops. This is called chemical
Jfreezeout. After chemical freezeout, the system of stable hadrons still interact with each other
via elastic collisions until the system reach another state where the elastic collisions also cease
and that is known as kinetic freezeout. When the system reach kinetic freezeout, the space-time
hypersurface at that point is called freezeout hypersurface and the hydrodynamic evolution stops
at this stage. The most popular choices for the freeze-out criterion are the constant temperature

or constant energy density hypersurface.

Particlization: Cooper-Frye prescription

Once the system reaches the kinetic freezeout condition (temperature 7' = T¥, or energy density
€f,), stable hadrons stream towards the detector. Therefore, at freezeout one needs to change the
description of the system from the ‘fluid picture’ to ‘particle picture’, because at the end those
particles are detected by the detectors. We need a method to obtain the momentum distribution

of the particles from the freezeout hypersurface at constant temperature or energy density. This
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2.6 Different stages of HI collision : hydrodynamic framework

is called particlization and it is commonly given by Cooper-Frye formula [215], where the basic
assumption is that towards the end of the hydrodynamic expansion, the momentum distribution
of the outgoing particles is essentially the momentum distribution of the particles within the
fluid, which are treated as independent particles [20]. In the Cooper-Frye prescription, the

momentum distribution of hadron species i with degeneracy g; is given by 8,

EdN_ dN 8
d3p dyprdprde, (2m

E Lreeppdz, (2.110)

where f(x,p) = fo(x,p) +0f(x, p) is the distribution function consisting of the equilibrium part
and the dissipative correction. X is the four dimensional freeze-out hypersurface at Ty, (or €¢,)
given by,

L, = (trcoshny,x,y, Tpsinhn;) | (2.111)

where 7y is the freeze-out time (also called switching time) determined by the fall of temperature
(or energy density) below Ty, (or &,). d32ﬂ is the differential freezeout hypersurface element.
The equilibrium distribution function is given by Eq. (2.68),

1
exp((pHuy — i) [Tyo) =1

f(x,p) = (2.112)
where the + sign depends on whether the distribution is Bose-Einstein or Fermi-Dirac distri-
bution, depending on the spin of the hadronic species. The fluid velocity at the hypersurface,
resulting from longitudinal and transverse flow is taken into account through the invariant
expression E = E(x) = p*uy, denoting the local energy of the hypersurface. The dissipative
correction could be obtained from different prescriptions [218, 219, 189, 28]. Among them the
most extensively used methods are Grad’s 14-moment approximation and Chapman-Enskog ex-
pansion discussed in Sec.2.4.4. If the dissipative effect is considered only due to shear viscosity,
then Grad’s approximation gives,

fofo
6 f(X,P)shear = mp“p"nuv (2.113)
and the Chapman-Enskog expansion gives,
5ffo 1
0 =—————pHpY¥ : 2.114
f(x,P)shear 26+ P)T M'Pp P Tuv ( )

81t should be noted that the Cooper-Frye formula presented here, which involves an integral over the hypersurface,
is used only on a smooth surface producing directly the spectra of a particle according to Eq. (2.110). We particularly
use this formalism in our simulation, as implemented in MUSIC[216] hydrodynamics code. This is not exactly
particlization in a literal sense but equivalent to that. Instead of a continuous integral (Eq. ((2.110)) particles can be
sampled from from the hypersurface in a discretized way according to particle’s momentum through a sampler
such as iSS [217], where the true sense of particlization is realized.
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Ultrarelativistic heavy-ion collision

In our analysis and the results presented in the subsequent chapters, we limit ourselves to the
study of the effect of shear viscosity on the observables under consideration. Therefore, we only
need to include the dissipative corrections due to the shear viscosity (8 fhear) at freezeout. We
use relativistic viscous hydrodynamics code MUSIC for our simulation, where the correction due
to shear viscosity, at the freezeout, is implemented using the Grad’s 14-moment approximation
method in Eq. (2.113) [216, 220].

After the freezeout process, the resulting hadrons could be considered to stream freely
to the detector. However, in the modern practice of simulating heavy-ion collision through
hydrodynamic framework, instead of particlization from the freezeout hypersurface, people
particlize the hypersurface at some temperature, called the particlization temperature [221]
or the switching temperature (Ty,) °. Then to take into account further inelastic collisions,
resonance decays and elastic interactions, known as hadron re-scattering or hadron cascade,
the produced particles are fed into some hadronic transport models called after burner. The
mean free path between the produced particles is quite large at this stage and the system is
evolved through the Boltzman transport equation with collision terms. There exist several state-
of-the-art models to take into account hadron rescattering effect or hadronic transport separately,
e.g UrQMD [204, 205], AMPT [36, 37], SMASH [222] etc. for the particlized hadrons, to
incorporate the hadron cascade until the kinetic freezeout before experimental detection of the
particles.

In this chapter, we have shortly presented a complete picture of ultrarelativistic heavy-ion
collision experiments covering the physics behind it, theoretical tools to study it and a description
of the hydrodynamic framework which will be the main underlying theory for the results that
will be presented in the following chapters. We conclude this chapter by briefly describing the

simulation set-up for the results presented in this manuscript.

Simulation set-up

An ultrarelativistic heavy-ion collision comprises many stages and each of these stages can
be well described by a certain model. As a result, nowadays it is a common practice in the
heavy-ion community to use a hybrid-model-approach to simulate the hydrodynamic framework
in heavy-ion collisions. In those approaches, different models corresponding to the differ-
ent stages are clubbed together [223-225, 28] to properly simulate the collision e.g. initial
condition + pre-equilibrium + hydrodynamic evolution + Cooper-Frye freezeout + hadronic
transport = IP-Glasma [94] / Glauber [143, 144] / TRENTo [197] + free streaming [28] / KOM-
POST [209] + MUSIC [216] / VISH2+1 [226] / v-USPhydro [227] +iSS [217] + UrQMD [204]
/ SMASH [222]. However, the inclusion of all these intermediate stages is not always essential

9For many such calculations, people take the chemical freezeout tempearture as the particlization temperature
Tsw
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2.6 Different stages of HI collision : hydrodynamic framework

for describing the collective behavior of the final state particles i.e. collective flow, fluctuations
and correlation between them.

In our hydrodynamic simulation of ultrarelativistic heavy-ion collision, we do not take into
account the pre-equilibrium phase and the rescattering or hadronic transport through a hadronic
cascade after-burner. While the effect of a pre-equillibirum phase could be negligible, there could
be some effect in the final state from hadronic transport. However, in all our analysis presented
in the subsequent chapters we will be mostly dealing with the charged hadrons, rather than any
particular species of identified particles. Moreover, we will be always dealing with the event
averaged quantity or sometimes the ratio of the observables. In such cases, the effect of hadronic
transport is small. One can just follow hydrodynamic freezeout and Cooper-Frye prescription
at the final freezeout. We take the initial condition at some thermalization time 7 ~ 0.6 fm/c
as the input for hydrodynamic evolution and free streaming after the computation of thermal
spectra or momentum distribution, following Cooper-Frye formula at the freezeout temperature
(Tr,). However, we take into account the resonance decays. Our simulations are centered at the
LHC and RHIC energies and all the results presented in the subsequent chapters are based on
the boost-invariant 2+1D hydrodynamic simulation. The initial conditions for our simulation
are generated from the Glauber model [144] or TRENTo [197] model and for the hydrodynamic
simulation we use MUSIC [216, 220] hydro code. MUSIC is a simulation package which can
simulate both 3+1D and 2+1D hydrodynamic evolution and it can also operate in different
modes. In our calculation, MUSIC does everything from the start of the hydrodynamic evolution
to the Cooper-Frye freezeout. We use the default values of the parameter set in the input file of
MUSIC [228] unless otherwise stated for some specific studies. So, our simulation set-up reads
Glauber / TRENTo + MUSIC.
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Chapter 3

Collective flow and its fluctuations in
heavy-ion collision

One of the most peculiar and spectacular phenomena observed in high energy heavy-ion collision,
is the collective behavior of the final state particles produced in the collisions. This collective
nature has been studied extensively and with immense dedication over the past 30 years in
theory, as well as in the experiments. The most distinctive feature of this collective phenomena
is the collective flow, specifically the anisotropic flow [40], which has been the central focus
for these theoretical studies [40—43, 45, 44, 46, 188, 47, 23, 48-51, 229, 61, 62, 57,7, 58] and
experimental measurements [63, 52, 64, 53-56, 59, 60]. The measurement of the anisotropic
flow was the first evidence of the thermalized QGP medium produced in heavy-ion collisions.
The anisotropic flow originates from the spatial anisotropy in the initial state of the collision
leading to a pressure gradient of the fireball, which then translates into the momentum anisotropy
of the final state particles. Collective flow can be analyzed or measured through different
approaches [41, 43, 230-239]. Another very interesting and exotic characteristic of heavy
ion collisions is the event-by-event fluctuations of the collective flow of particles in the final
state [74-76, 240, 77,78, 241, 79, 80, 242, 243, 81, 244, 125, 245, 130, 246, 247, 82, 248, 83—
86, 249, 87, 250], stemming from event-by-event fluctuations in the initial state [88, 251, 89—
91, 252, 253, 92-94]. In this chapter, we will discuss the basic phenomenology of collective
flow: its origin, relation to the final state, its centrality dependence, transverse momentum

dependence and most importantly its event-by-event fluctuations.

3.1 Anisotropic flow : from spatial anisotropy to momentum

anisotropy

In a heavy-ion collision, two colliding nuclei deposit energy in the overlap area, creating a

transverse density profile at the initial state. The spatial distribution of this initial energy or
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Collective flow and its fluctuations in heavy-ion collision

entropy density in the transverse plane is not isotropic, which creates an anisotropy in the
pressure of the fluid. As a result, there exist a pressure gradient VP on the QGP fireball created
in the collision. This pressure is propagated to the final state through the viscous hydrodynamic
evolution of the fireball, resulting in larger transverse momentum of the particles originating
from part of the fluid having larger VP and vice versa. This leads to an anisotropy in the
transverse momentum distribution of the final state particles and such flow of particles is known
as anisotropic flow [40, 41, 43]. Thus anisotropic flow is a characteristic signature of the

momentum space azimuthal anisotropy of final state particles. Fig. 3.1 shows the formation

Reaction plane Pb

Pb

Fig. 3.1 Schematic representation of the almond shaped fireball formation in a non-central Pb+Pb collision
and development of momentum anisotropy at the final state. Figure taken from [254] and BNL.

of the fireball in a non-central heavy-ion collision and the translation of spatial anisotropy or
non-uniform pressure gradient in the initial state, to the azimuthal anisotropy of momentum
distribution of final state particles. Before we move into the quantification of anisotropic flow,
we need to have knowledge about the characteristic properties of the initial state.

3.1.1 Initial state properties

The nature of the anisotropic flow is largely determined by the initial energy density or entropy
density, shape and size of the overlap region at the initial state. In a non-central collision of two
identical heavy-nuclei, the overlap area assumes an almond-like shape (Fig. 3.5) and the spatial
anisotropy of entropy density distribution on the transverse plane (x,y) is characterized with
respect to the reaction plane, spanned by the impact parameter and z-axis. Let us denote the
initial energy density by €(x,y) and the entropy density by s(x,y)!. In this manuscript, we will
always consider entropy density for our calculations and hydro inputs. The spatial anisotropy of
the entropy density distribution can be identified in terms of standard eccentricity [255, 256],

2_ .2
(—:mF%, with {...}:f...s(x,y)dxdy. (3.1

'In general the initial energy density or entropy density are taken at the thermalization time or at the onset of
hydrodynamics, denoted by so(x,y) = s(x,y, 7o) or &/(x,y) = €(x,y, ).
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

In the initial years of flow study, it was believed that the standard eccentricity ey, of the
initial state leads to the formation of anisotropic flow, specifically elliptic flow, as we will explain
later, originating from the ellipsoidal shape in non-central collisions. However, later it was seen
that the elliptic flow did not disappear even in central collision especially in small collision
systems (e.g. Cu+Cu), where €, is small. The reason behind this puzzling behavior was rooted
in the fact that event-by-event fluctuations of the initial state geometry are important in central
collision to explain the anisotropic flow [133]. This phenomena is even more significant in case
of triangular flow [48]. In this regard, instead of the almond shaped overlap area of the two
nuclei, the region formed by the participant nucleons in each event is more relevant. The plane
formed by the principal axis of the participant zone and the z-axis is called the participant plane
(Fig. 3.2) which is different than reaction plane and its orientation fluctuates event-by-event
with respect to reaction plane. The spatial eccentricity which drives the elliptic flow is not the
standard eccentricity, rather the eccentricity defined with respect to the participant plane, called

participant eccentricity [48],

- 2V _ (22 1+ 4{xy)2
& VW }{yz{}+}{)xz} oy (3.2)

It is defined with respect to a coordinate system where {x} =0 and {y} = 0. In terms of polar

coordinates (r, ¢), the above equation takes the form,

pare_ /{r2c0s(290) 2 + {rsin(29) }?
2 {r2} ’

where ¢ denotes the azimuthal angle of the participant nucleon. The elliptic asymmetry of

(3.3)

Fig. 3.2 Pictorial depiction of the reaction plane and participant plane in a collision. The area with green
circles denote the participant zone whose principle axis is different than the principle axis of the almond
shaped overlap area.
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the participant zone, quantified by ¢, drives the elliptic flow at the final state. Similarly, the
triangular asymmetry, which is largely induced by fluctuations, leads to the triangular flow at

the final state, for which analogously we can define participant triangularity [48, 251],

o \/{rzcos(:s(p){}z;}{rz sin(39)}> (3.4)

In a generalized way, the eccentricity harmonic coefficients associated with the spatial
anisotropy of the participant region can be formulated through the cumulant expansion method [90,

92],
{ M eing }
€mpn €77 = —A— 2t (3.5)
{r"}

which accounts for different order moments of r associated with ' harmonic. In this definition,
€2=¢€7 7 and e3=¢3 3. However, it has been found that using the moment of r3 works as a better
estimator than 2 for the triangular flow [92], so that €3=€33. In general, the conventional
eccentricity coefficients are given by [256, 7],

. 3,00 ) 1 ,ing
€1 &' :_{r e} and ¢, emq’n:_M for n>1, (3.6)

{r’} {r"}
where €; is known as dipole asymmetry [44], which turns out to be responsible for the directed
flow, €, is the quadrupole asymmetry or ellipticity, €3 is the octupole asymmetry or triangularity

of the initial transverse density profile and so on. ®,, is the n'* order participant plane angle or

orientation angle.

Fig. 3.3 Pictorial representation of the participant eccentricity harmonics. The principal axes or participant
plane angles corresponding to the dipole (left), elliptic (middle) and triangular asymmetry (right) are
shown.

The total entropy and energy per unit rapidity at the initial state is given by,
socfs(r,q))rdrdqs and E,-ocfe(r,q))rdrdq), 3.7)
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

and the transverse size of the fireball is quantified by the RMS radius,

2 [r?s(r,¢) rdrde

=TS0y rdrds

(3.8)

3.1.2 Particle spectra

To make a quantitative description of the anisotropic flow, first we need to discuss the particle
spectra, as it includes a collective effect of all the particles in the final state. At the end of the
hydrodynamic evolution, from the freeze-out hypersurface, we obtain the transverse momentum
(pr) distribution of the particles through Cooper-Frye freezeout method. In principle, the
distribution could be obtained for individual particle species (identified particles), but in this
document we will only consider the charged particles (x*,7~,K*,K~, p, p). The distribution is

given by,
dN

prdprd¢’

which serves as the probability distribution for the particles carrying transverse momentum

f(pr,0)= (3.9)

pr» and ¢ (= ¢,) is the azimuthal angle corresponding to the transverse momentum pr. The
charged particle spectra from ALICE [257] and ATLAS [258] collaboration for Pb+Pb collision

at /syny=5.02 TeV, are shown in Fig. 3.4. In experiments, the charged particle spectra are
dN

prdprd¢dn’

rapidity bins for the spectra i.e. W. For the charged particle spectra, these two have

calculated in pseudorapidity bins? i.e. whereas in our hydro-calculation we use
similar meaning and the difference is negligible. However, for the identified particle spectra these
two differ because y depends on the mass of the particle whereas 17 does not. For this reason, in
experiments the identified particle spectra are usually measured in rapidity bins [259, 260].
The charged particle spectra can be used to calculate the total charged particle multiplicity

in an event,
Pmax dN
Nen=N = fPTdPTd¢f(PT7¢) = dpr . (3.10)
Pmin PT
Another very important collective observable is the mean transverse momentum per particle in

an event, which we denote as [pr] and it is defined as,
1 [ Pmax dN
prl=— dpr pr — . (3.11)
[ ] N Pmin de
Event-by-event fluctuations of [ pr] are also of great importance and contain interesting infor-
mation of the QGP, which we will study in detail in the next chapter.

2Although in Eq. (3.9) we present the two dimensional spectra or just the transverse momentum spectra, which
is relevant for boost invariant calculations and description of anisotropic flow, in practice we need to consider the
full phase-space (y or 11, pr ¢) or the full spectra obtained from the freeze-out hypersurface i.e. the spectra is
calculated in either rapidity or pseudo-rapidity bins
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Fig. 3.4 Event-averaged charged-particle multiplicity spectra measured by the ALICE (left) and ATLAS
(right) collaboration for Pb+Pb collision at 5.02 TeV is shown. Figure taken from [257] and [258]
respectively.

Radial flow

In the present context, it will be useful to mention another type of flow, called the radial
flow, which does not originate from the anisotropy of the initial density profile, but is due to
rotationally symmetric collective transverse fluid motion. In the case of rotational symmetric
and baryonless fluid, the transverse momentum distribution at zero rapidity (p; = 0), for any

particle species is given by the Cooper-Frye formula [20],

dN E* K
_Mexp(__)zexp(_P ”u)zexp(_w), 3.12)
2rprdpr Ty, Ty, Ty,

where we consider the Maxwell-Boltzman statistics for simplicity. E* is the energy of the
particles in the lab frame, v is the maximum transverse velocity of the fluid at zero-rapidity
according to Bjorken scaling and m7 is the transverse mass of the particles eventually depicting
the energy of the particles in fluid rest frame with p, = 0. If the fluid is at rest in lab frame, v=0
and ug = 1, which makes the spectra exponential in m7 with slope 1/T, i.e. o exp(%). This
means that the particle-spectra are scaled according to the transverse mass of each species but
having the same slope 1/7y,. This describes only the thermal motion of the particles. However,
if the fluid moves with a transverse velocity v, then on top of the thermal motion, the particles
have a collective velocity (the fluid velocity) v, which increases the overall kinetic energy of
the particles. Due to the collective motion, the heavier particles attain larger kinetic energy and
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

this breaks the mr-scaling of the spectra, because for a given m7, heavier particles have smaller
pr- As aresult, the slope of the mr-spectra becomes flatter for heavier particles [261, 262, 46].
Such transverse collective flow is known as the radial flow, named because of the radial or axial

symmetry.

3.1.3 Flow harmonics

In section 3.1.2, we have identified the magnitude of the transverse momentum in terms of
mean transverse momentum per particle in an event [pT]. Now we want to characterize the
directions or the azimuths associated with pr, as the anisotropic flow originates from the
anisotropy of the azimuthal distribution of the particles. The azimuthal distribution of the
particles is quantified event-by-event in terms of Fourier expansion with respect to the azimuthal
angle [41, 43, 5, 125, 128],

a’N_dN(
ppoTd¢ 2ﬂppoT

1+2§:Vn(pr)ei"¢) , (3.13)

n=1

where the Fourier coefficients V,, are known as n'”* order harmonic flow coefficients, which depend
on pr i.e. V, =V,(pr). It could be decomposed as V,,(pr) = v, (pr)e¥»(P1) such that V,(pr)
is interpreted as flow vector with flow magnitude v,(pr) and flow angle ¥,(pr)3. The angle
¢ is the azimuthal angle of the particles and W, is known as the event plane angle [256, 7, 8]
which serves as a proxy or an estimate of the reaction plane (orientation of which is not known
experimentally) in each event and could be determined independently for each harmonic of

anisotropic flow.

Differential and integrated flow

The harmonic flow coefficient in Eq. (3.13), V,,(pr) is a function of the transverse momentum
pr in an event and it also depends on the pseudo-rapidity(n) i.e. V,(pr,n), when full three
dimensional spectra are considered. In that case, it is called pr-differential or n-differential
flow or in general differential flow. To calculate the flow harmonics over the whole phase space

in the transverse plane, V,,(pr) should be integrated with respect to the distribution,

1 [ pmas AN
v, =—f dpr V,(pr) 2L 3.14
=5, pr Vu(pr) dor (3.14)

min

where V,, is known as integrated flow or specifically pr-integrated flow in an event. In Fig. 3.8,
differential and integrated elliptic and triangular flow for various centralities in Pb+Pb collision

have been shown.

3Please note that v, and ¥, depend on both pr and 1 i.e. v, = v,(pr,n) and ¥, = ¥,,(pr,n), if instead of only

on the transverse plane, we consider full 3D distribution, —————
prdprdodn
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3.1.4 Different types of flow and their relation to initial anisotropy

For different order n, we get different type of flow e.g. v, is called elliptic flow , v3 is called
triangular flow, v4 is known as quadrangular flow, vs is called pentagonal flow etc, which are
driven by participant eccentricities ¢, at the initial state. For n = 1, the flow is known as directed

flow vi which at the mid-rapidity is driven by dipole asymmetry [90] € of the initial state.

Elliptic flow

Elliptic flow, originally proposed by J-Y. Ollitrault [40], is identified as one of the most peculiar
and significant signature of the collective flow [42, 43, 46, 44]. It originates mainly due to
the ellipsoidal geometry at the initial state of the collision or quadrupole asymmetry of the
initial density profile. If the fireball is elliptic shaped, then it develops a pressure gradients VP
which results in larger transverse momentum of the particles that are emitted in the direction
of reaction plane because of the larger fluid velocity in that direction ( larger pressure gradient
results in larger force : F = -V P), and smaller momentum for the particles which are emitted
in the direction perpendicular to the reaction plane (Fig. 3.5). This azimuthal anisotropy of

<
O
<

| T ——— .

Fig. 3.5 Schematic representation of the origin of elliptic flow in a non central heavy-ion collision. The
left hand side shows the formation of almond shaped or elliptic geometry at the initial state, creating a
pressure gradient and hence an anisotropic outward force. The right hand side shows the development of
the momentum anisotropy at the final state due to the pressure gradient, leading to the elliptic flow of
particles.

the transverse momentum is reflected through the elliptic flow of particles and identified by
the harmonic coefficient v,. In non-central collision, the elliptic flow v is mainly due to the
elliptic geometry of the initial state, which is characterized by the eccentricity or ellipticity e

(Eq. (3.6)). There exist direct phenomenological relation between the two [48, 92],

V22 = fy ¢y 212 = ke, (3.15)
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

where it is assumed that the event plane W, approximately coincides with the participant plane
®,. The coefficient k; is the hydrodynamic response coefficient, which depends on the properties
of the QGP medium.

However, in central collisions (say, 0 -5 %), in addition to the elliptic geometry, event-
by-event fluctuations of the initial state plays a major role in contributing to the quadrupole
asymmetry ¢, generating elliptic flow in central collision, and this effect become dominant in
ultracentral collisions (0—1 %). This might not be obvious at first instance when one thinks
of v, in a single event, however in practice only the event-averaged quantities are important,
where fluctuations and its contributions play a crucial role. Generally in central collision,
event-by-event fluctuations of ¢;, fluctuations of ¥, around @, and even fluctuations of v, for
a given &, all contribute to the event averaged v,. We will explain this fact while discussing
experimental method for the measurement of v,. The scatter plot between v% and e% for central
and semi-central Pb+Pb collision at 5.02 TeV are shown in Fig. 3.6. As discussed, the correlation
is stronger in case of semi-central collision (30-40%) where elliptic geometry of the overlap are
dominates, whereas the central collision shows significant effect of event-by-event fluctuations.
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Fig. 3.6 Scatter plot between v% and e% for 0—5% (left) and 30 —-40% (right) centrality in Pb+Pb collision
at 5.02 TeV with TRENTO initial condition.

Triangular flow

Similar to the elliptic flow, the triangular flow v3 originates from the third order participant
eccentricity or triangualrity ez [48, 11], defined in (Eq. (3.6)). It also follows the approximated
phenomenological relation,

V3~ k3 €3, (3.16)

where k3 is the hydro-response coefficient for the triangular flow. The value of the response
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Fig. 3.7 Scatter plot between v% and e% for 0—5% (left) and 30—-40% (right) centrality in Pb+Pb collision
at 5.02 TeV with TRENTO initial condition.

coefficients k, can be estimated using the linear relationship between flow and eccentricity [92],

vy €n cos(n(¥, - Py)))

(€7) ’

where the angular bracket (...) denotes the average over all events*. Unlike elliptic flow, the

in®,

neinlpn — = kn — (

v ke, e (3.17)

triangularity or octupole asymmetry €3, driving the triangular flow v3, is largely dominated by the
contribution from event-by-event fluctuations of the initial density profile, even in non-central
collision and especially in central collision, as depicted in Fig. 3.7. Fluctuations at the initial

state are more important for the triangular flow.

Quadrangular and pentagonal flow

The fourth order (n = 4) harmonic flow is called quadrangular flow, v4. Similar to the elliptic and
triangular flow one could expect that v4 also originates from fourth order harmonic eccentricity
of the initial state, ¢4. However, it has been observed that the estimator is only valid for central
collision but fails to predict v4 for peripheral events. This happens because in the peripheral
collisions, due to the elliptic shape of the participant area, the second order moment e, becomes
very dominant or much larger in comparison to higher order moments such as €4 [92]. As a
result, there exist a possibility of non-linear contributions from lower order eccentricities to the
flow harmonic v4. The first choice of such contribution would be e% by symmetry?, so that the
actual predictor for v4 1s given by,
4id,
5

vaet P = kg eq M1k 3 e (3.18)

“It should be noted that Eq. (3.15) and Eq. (3.16) only imply a strong correlation (linear) between v, and €, for
n=2,3. The ratio v,/ €, (even if they are event averaged values) should never be taken as an estimation of k,, which
should always be estimated by Eq. (3.17).

SHere we mean rotational symmetry i.e. the quantity (V4(e, e”"®")™) must be invariant under rotation.
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

which serves as a very good estimator for all centralities. For central collisions, both €4 and €;
are driven by fluctuations and so they are small. As a result, the contribution of ¢4 dominates in
terms of eccentricities.

For n =35, the flow is is called pentagonal flow, vs which also assumes non-linear contribution
from the initial state anisotropies, even for central collision. In addition to €5, by symmetry the

non-linear contribution comes from e¢e3 and the estimator for vs reads [92],
vsed s = ks e5 1Ps +ks € &2 P2 ¢y 3103 (3.19)

which serves as a very good predictor for vs for all centralities.

Directed flow

For n =1 the flow is known as directed flow v; which could be separated into two parts depending
on rapidity of the particles y : rapidity-odd directed flow and rapidity-even directed flow[263].
The rapidity odd vy is the usual directed flow [264-266] which largely depends on the space-
time rapidity profile (n;) of the fireball, driven by the tilt of the fireball at the initial phase
of the evolution [50, 267-269]. On the other hand, the rapidity-even v, which shows a little
dependence on y, is interesting at the mid-rapidity and it originates from the dipole asymmetry
of the initial transverse density profile, characterized by €; [90].

Event-by-event fluctuations of the initial geometry break the symmetry of the transverse
density profile and make it steepest in a particular direction, which is quantified as the dipole
asymmetry [90, 270],

N Ly (3.20)
{r’}

contributing to vy in a similar manner as fluctuation-induced quadrupole asymmetry e con-
tributes to v, and octupole asymmetry €3 contributes to v3. The dipole asymmetry creates a
gradient in the transverse density profile, resulting in largest fluid velocity along the direction of
the steepest gradient having azimuth ®;. As a result, the particles with larger pr are emitted
along the direction of ®; and the small-p7 particles are emitted in the opposite direction [270].
Due to the conservation of total transverse momentum, v is positive for high-pr particles and
negative for small-pr particles giving rise to a specific pattern for the pr dependence of v;
[90, 270].

3.1.5 Methods of flow analysis

Anisotropic flow is originally defined as the azimuthal correlation of the outgoing particles with
the reaction plane. But experimentally the reaction plane orientation cannot be measured. That
is why the flow is represented in terms of event plane angle which we also call the flow angle. If

we drop the pr dependence for a moment or just consider the integrated flow, then we can write
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Collective flow and its fluctuations in heavy-ion collision

only the azimuthal distribution of the particles from Eq. (3.13) as,

- ‘%’ oc [ 1425 vyen(@=¥n) | (3.21)
n=1

f(9)
where ¢ is the azimuthal angle of the particle and W), is the event-plane angle. Then the flow

harmonics v, can be estimated as [43, 230],

va = (cos[n(¢ - ¥n)]), (3.22)

where the angular bracket (... ) denotes the average over all particles and over all events. The
sine term does not appear because of the reflection symmetry and it cancels out when averaged
over events. This method of estimating flow harmonics is called the event-plane method which
is obsolete and no longer in use. Modern experimental methods of flow analysis in heavy-ion
collision use the cumulant method involving multi-particle azimuthal correlations. Below we
discuss the theoretical background and experimental implementation of the method [230, 231,
235].

Cumulant method: multi-particle correlations

As the actual orientation of the reaction plane is unknown in experiments, instead of considering
a single particle, if we consider the relative azimuthal angles between the outgoing particles,
then it could capture the correlation with the reaction plane and eventually provide an estimate
of the flow [230, 231]. The simplest case would be a two-particle azimuthal correlation which
could be expressed as,

(cos[n(¢1 - ¢2)]) = (eM(O1=02)), (3.23)

which comes from the two-particle azimuthal distribution in an event f(¢;,¢,) = ﬁ and
the angular bracket has the similar meaning as before i.e. first an average over all the pairs of
particle in an event and then the average over all the events. The two-particle distribution in an

event can be decomposed as,

F(91,02) = f(01)f(92) + fe(91,92), (3.24)

where the first term on the r.h.s. represents the product of the uncorrelated distributions and the

second term denotes the correlated distribution. Accordingly, Eq. (3.23) can be decomposed as,
(eM(91=02)) = (oin91) (92} 4 ((01-02)) (3.25)

The terms (e™91) and (e92) vanishes because the angles ¢; and ¢, are measured in the
laboratory frame, assuming that the detector is a ‘perfect detector’ covering the entire acceptance
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3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

region®. The second term (e™(91-2))) represents the genuine two-particle correlation which
can include contribution from anisotropic flow as well as from other sources e.g. due to global
momentum conservation, resonance decay (in which the decay products are correlated), final
state coulomb, strong or quantum interactions etc. [271, 272], called the non-flow correlations or
‘direct’ correlations. If the source was isotropic, {e(¢1-92))) would represent only the non-flow
correlations.

The quantity (e(91-92))) is known as cumulant or specifically two-particle cumulant, which
can be obtained using a generalized cumulant expansion method from the cumulant generating
function [230, 231] and written as,

en{2) = (e 91792)) (3.26)

The contribution of the flow to the two-particle cumulant is given by [231],

va{2}? = c,{2} = va{2} =v/en{2}, (3.27)

where v, {2} represents the n"* order harmonic flow estimated from two-particle cumulant. The
advantage of this method lies in its ability to reduce the non-flow correlation, which is achieved
by constructing higher order cumulants or multi-particle cumulants. For example, similar to
Eq. (3.23), if we consider four particle azimuthal correlation, then corresponding four-particle

cumulant could be written as [230, 231],

cn{4) = ((91+92-03-04)))
= (eM(91+02793-04)) _ (pin(91-03) ) (oin(02704) ) _ (in(91=04) ) (pin(92-03) ) (3.28)
= (eM(1+02=03-94)) _ 0 (oin(91-03))2
where the simplification at the last step is due to the symmetry between ¢; and ¢,. Please note,
in the final expression of ¢,{4} on the r.h.s, both the first and second term include two-particle
non-flow (direct) correlation which is eliminated by the subtraction. Thus by constructing higher
order cumulants, we can eliminate the non-flow correlation of sub-leading orders. Similarly one
can construct six-particle cumulant ¢, {6} and corresponding contributions of the flow are given
by[231],

_Vn{4}4 =cp{4} = va{d} = (_Cn{4})1/4, .
wd anf60-als) = wle) -2y (3.29)

where v, {4} and v, {6} represent the flow estimated from four-particle and six-particle cumulants

respectively”’.

%As the azimuths of the particles are randomly oriented, average over all the events give zero
"Please note, as 2-particle estimation of flow is non-flow contaminated, it is always larger than 4- or 6-particle
estimation. In general the trend follows: v,{2} >v,{4} ~v,{6} .

65



Collective flow and its fluctuations in heavy-ion collision

0.1F =4 *
™

- RS T - & [ AUCEPbPD 0-5% (a)
= 0.15}-5.02 Tev 2.76 TeV 5.02 TeV, Ref.[27] — - 5.02 TeV 2.76 TeV
) 2, [An|=1 —wv., {2, =1
RN R N & A A Q2F ® VA2 AnP1) Vo2, JAnj>1}
[ evi{2 a1} O ve{2 a1} ] = W V{2, jAn>1} [ vaf2, An=1}
B +ﬁ2§g§ vl i = # v {2, [an]>1} Va2, |an|>1}
| 2z ] -
0.1 v. (8} i o
- =

0.05(
%k

P S
-
o 1.2 Vs v, Hydrodynamics, Ref.[25] t + = A
= - . s(T), param1 - —_
S 11E s =020 3 =
b 3 <
::|:"{':::{:::::::::{':"{:::::::::{:(??'_ E“,:
o l2F | ] E =
CRRIAIR 4 # * ] 4
@ b | E L
1-++|1|||h|||(c)_ OJI."‘ 1 1 ! L
0 10 20 30 40 50 60 70 80 0 1 2 3 4 5
Centrality percentile P, (GeVi/c)

Fig. 3.8 Measurement of differential and integrated flow using multi-particle cumulant method. The left
hand side shows the centrality dependence of the integrated flow cumulants while the right hand side
shows differential flow cumulants corresponding to different order harmonics. Figure taken from [59].

Experimental method : Q-vector

Experimentally, the above mentioned cumulant method is used for the estimation of flow
harmonics, but in a slightly different way. In experiments, the cumulants are expressed in terms
of the moments of the flow vector Q,, called Q —vector, in an event, which is defined as [235],

M .
Qn=) e, (3.30)
i=1

where M is the number of particles in the event, used for the analysis. This way, the method
is not biased by the interference of various harmonics, does not involve the approximation
as used in formalism involving the generating function [230] and can also disentangle the
detector effect more efficiently; ideal for experimental realization. As in this approach, the
cumulants are calculated without any approximation, directly from the data using the Q —vector,
it is sometimes referred as the direct cumulant or Q-cumulant method [235] which is the

experimental implementation of the cumulant method discussed just before.

66



3.1 Anisotropic flow : from spatial anisotropy to momentum anisotropy

In the experimental method, first the average two-particle or four-particle azimuthal correla-

tion are found in a single event, defined as,

- 1 Mo
2= eln(¢l_¢2) = eln(¢i_¢j)’
M(M_l iqg;l 331
1 .

Z — ein((])1+¢27(])3*¢4) - ein(¢i+¢j_¢k_¢l),

i+ j+k+l=1

M(M-1)(M-2)(M-3)

where the unequal signs between the sum indices denote the removal of self-correlation between

the particles and the factor sitting before the sum could be expressed for general k-particle
(M—k)!

correlator as ~— . Then the above correlators are expressed in terms of the moments of the

magnitude of Q,-vectors. For example, in case of 2-particle correlator,

M M
04 = 0u 0y = 37 MO0 =M+ 500 (3.32)
i.j=1 i+]

and then using Eq. (3.31), we can write,

2= % : (3.33)
Then the average over all events [235] is found, which gives the two-particle cumulant,
(2} = (cosn(91 - 02) = (- 3" in(0-00) _ (3), (3.34)
MM-1) .7,

from which flow harmonics v, {2} can be estimated using Eq. (3.27) and which would be of
course non-flow contaminated. Please note, here the angular bracket denotes only average over

events. Similarly, the fourth moment of the magnitude of O, can be written as,

M .
0nl* = 040,050 = >, M0 0m0=0) (3.35)
k.l=

l7.]7 71 1

which could involve four different cases for the indices i, j,k and [ : 1) all are different (4-
particle correlator in Eq. (3.31)), ii) three are different iii) two are different and iv) all are same.

Expanding all the cases one can obtain [235],

1 1041 1052 ~2Re[ 020,041~ 4(M ~2)[0, > +2M (M - 3) 536
M(M-1)(M-2)(M-3) ’ ’

Then after taking the average over all events i.e. (4), the four-particle cumulant can be found
following Eq. (3.28),
cn{d) = (4)-2(2)%. (3.37)
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and the six-particle cumulant can be obtained in a similar way as [230, 235],
cn{6) = (6)-9(2)(4) +12(2). (3.38)

Finally, the flow harmonics v,{4} and v,{6} can be obtained using Eq. (3.29), which are
non-flow subtracted.

In the present context, let us mention that the 2k-particle cumulants ¢, {2k} discussed above,
can be expressed as the event average of different powers of the magnitude of harmonic flow v,,.

Let us consider the 2-particle cumulant from Eq.(3.34) and Eq. (3.31),

1

M
LS (o)
Pk ) (3.39)

i+j=1

cn{2} = (2) =

Using the definition of flow vector V,, = v,e/"¥» in an event as described in Eq. (3.21), we can
write the quantity within bracket on the r.h.s. of the above equation, as a scalar product of two

flow-vectors in an event,

1

M
e R R (3.40)

i+j=1
where the self-correlation between the particles have been omitted while calculating the scalar
product. Then from Eq. (3.39) we can write,

cn{2} = (Vi) - (3.41)

Similarly, using Eqgs. (3.37) and (3.38) the 4-particle and 6-particle cumulants can be expressed
as [273],
cn{d} = (i) -2012),

and a6} = () -9 () + 12(2)° (342

Similar methods could be applied to obtain the differential flow harmonics [231, 235]. Fig. 3.8
shows the measured differential and integrated flow using cumulant method.

Flow analysis in our simulation:

Let us also mention the approach we use for flow analysis in simulation, based on which we
present results in the current and in the subsequent chapters. In our simulation set-up which uses
MUSIC [216] hydro code, we obtain the spectra dN /2 prdprdy and the differential harmonic
flow vectors V,(pr) event-by-event as a function of pr. Then in each event we can calculate the
integrated flow vector V,;, mean transverse momentum per particle [ pr | and number of charged
particle N, using Eqgs.( 3.14), (3.11) and (3.10) respectively. Then the event averaged flow is
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calculated using,

va{2} =V (VaVi) =/ (12), (3.43)

where the angular bracket denotes the average over all events.

3.2 Fluctuations of harmonic flow

One of the most exotic and distinctive features of the anisotropic flow is the event-by-event
fluctuations which have served as a phenomenon of sheer interest in both theoretical [74—
76, 240, 77, 78, 241, 79, 80, 242, 243, 81, 244, 125, 245, 130, 246, 247] and experimental
[82-86, 249, 87, 250] studies. In these studies, a wide range of aspects and potential probes of
the flow-fluctuation have been explored. The primary reason behind the flow-fluctuations are the
event-by-event fluctuations of the initial state [88, 251, 89-91, 252, 253, 92-94] (as shown in
Fig. 3.9), providing the source of the anisotropic flow in each event, along with the other sources

e.g. thermal fluctuations. Fluctuations in the initial state can originate from different sources

Fig. 3.9 Pictorial representation of fluctuations at the initial state, generated from the MC Glauber model.
Figure taken from [94].

e.g. geometry fluctuations or shape fluctuations, quantum fluctuations in the overlap of the
wavefunctions of the colliding nucleons etc. Here our primary focus is to discuss event-by-event
fluctuations of the harmonic flow coefficients v, and possible effects of fluctuations in terms
of physical observables which could potentially probe the fluctuations. One way to probe
such flow fluctuations is to study the ratio of the multi-particle cumulants which in turn could
probe the initial state fluctuations in terms of eccentricity cumulants [274, 55]. Another very
interesting observable which is our primary focus in this chapter, to study flow-fluctuation, is the
Sflow-factorization breaking coefficient or simply factorization-breaking coefficient 240, 81, 244,
125, 245, 130], accounting for the breaking of the factorization between the flow harmonics in

two different kinematic bins (pr or 1 bins), which we discuss below.
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3.2.1 Factorization-breaking coefficients

As discussed in the previous sections, the harmonic flow coefficients v, can be measured through
two-particle correlations at the lowest order, which eventually measure the flow harmonic square
v2 as given in Eq. (3.27). If the two particles are measured in two different p7 bins p; and p;
(for simplicity we use pr = p), then the factorization between the flow harmonics in those two

bins would imply [240],

Cu(p1,p2) = (cosn(@1 - 62)) = v, (2} (p1) x v {2} (p2), (3.44)

where C,,(p1, p2) is the event averaged correlation matrix, ¢; and ¢, are the azimuthal angles
of the two particles in two transverse momentum bins p; and p;, and the bracket has the usual
meaning as in Eq. (3.23). In the earlier years of flow-analysis, the factorization relation in
Eq. (3.44) was assumed to hold and was investigated in experiments [248, 82, 55]. However,
in practice even if we do not consider any non-flow correlation (which naturally breaks the
factorization), there is still considerable factorization-breaking between the flow harmonics in
two different kinematic bins [240, 81, 244, 83, 85, 86], due to event-by-event fluctuations of the
flow harmonics originating from the fluctuations of the initial state. Here we will restrict our
discussions to transverse momentum dependent flow-fluctuations.

In the case of integrated (pr-averaged) flow, the flow harmonics are obtained from the
flow vector V,, = v,ei"¥» using the standard ‘two-particle cumulant’ formula in (Egs. (3.27) and
Eq. (3.41)),

V{2 = Ve {2} = (VaVir) =/ (12) (3.45)

where the angular bracket denotes the average over all events. Similarly one can define the
transverse momentum dependent flow vector (i.e. flow vector measured in a transverse momen-
tum bin), V,,(p) = vu(p)e™¥(P), where both flow magnitude v,(p) and flow angle (event-plane
angle) ¥, (p) depend on the transverse momentum which we write as p in the present context.
Then the transverse momentum dependent or the differential measure of the harmonic flow is
given by [231, 235, 130],

(Vi (p)) (VY (p))
va{2}(p) = w2l (3.46)

which is the definition used in the experimental analysis for differential flow, where one particle

is taken from a particular transverse momentum bin p and the other particle is taken from the
entire pr-acceptance region or all the particles detected in the event. Here the flow V), serves as
the reference flow [235] for studying pr-dependent differential flow. However, an alternative

definition for the differential flow could be used, which is given by [78, 130],

va[21(P) =V (Va(P)V,f (P)) =V (va(P)?), (3.47)
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where both particles are taken within the same transverse momentum bin p. Although in
principle this definition could be used for the theoretical study, but it is not suitable for the
experimental analysis as it might be difficult to find two particles within the same pr-bin at
larger p7 , due to limited statistics®. This concept will be extremely useful for the upcoming
discussions in this section.

Let us consider two particles in two different transverse momentum bins p; and p,. Then the
event averaged correlation matrix C,(p1,p2) given in Eq. (3.44) should satisfy two conditions:
first, its diagonal elements should be positive and second, the off-diagonal elements must satisfy

the Cauchy-Schwarz inequality,

Cu(p1,p1)20 and  Cu(p1,p2)? <Cu(p1,p1)Ca(p2,p2) - (3.48)

If there is factorization between the flow harmonics in different pr-bins, then the inequality
saturates to equality condition. In other words, based on this inequality condition, we can

construct a correlation coefficient which can quantify the amount of factorization breaking [240],

_ Cu(p1,p2)
r}’l_ 9
VCu(P1,01)Cu(p2,12)

(3.49)

which could be written explicitly in terms of the event flow in two bins V,,(p;) and V,(p2)

as [240, 244],
(Vu(p)V, (p2))

V() v2(p2))

If there is factorization, r;, = 1, which is the limiting case and any deviation of r, from 1 will

r(p1,p2) = (3.50)

correspond to the breaking of the factorization. The correlation coefficient r,(p1, p2) is known
as factorization-breaking coefficient.

The factorization-breaking coefficient in Eq. (3.50) is defined as the linear correlation
coefficient between two flow vectors which are complex numbers. The effect of event-by-event
flow fluctuations is the decorrelation between these harmonic flow vectors in two different
pr-bins. In each event, V,(p) is a smooth function of p. In general, it is expected that the
correlation is stronger when p; ~ p> and it decreases as the difference between p; and p»
increases i.e there is decorrelation which is understood as the deviation of the factorization-
breaking coefficient r,,(p1, p2) from 1. The decorrelation occurs due to decoherence between
the flow vectors, induced by the quantum fluctuations in the wavefunctions of the incoming
nucleons, in the initial state. The factorization-breaking coefficient r,,(p1, p2) has been studied
in models [240, 275-277, 244] and measured in the experiments [278, 279, 83]. In Fig. 3.10, we
show the results for r,(p1, p2) as a function of the difference p| — p», calculated in our model
for Pb+Pb collision at 5.02 TeV, where the flow vector in one pr-bin is kept fixed and correlated

8From the particle spectra it is obvious that there are less and less number of particles as we go higher in pr
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Fig. 3.10 The factorization-breaking coefficient between elliptic flow vectors in two different transverse
momentum bins p; and p», plotted as a function of p; — p, for Pb+Pb collision at 5.02 TeV in 0-5%

centrality. The red squares and the black triangles denote the results obtained in hydrodynamic simulations
with Glauber and TRENTO initial conditions respectively.

with the flow vectors in other bins. As expected, the correlation r, — 1 as p; and p, are closer
to each other and it gradually deviates from 1 i.e. the decorrelation increases as the difference
p1— P> increases.

It should be noted that all the results reported in this and following sections are obtained using
a boost invariant viscous hydrodynamic model MUSIC [216] for Pb+Pb collisions at /syy =
5.02 TeV. The density distributions in the initial state, used as an input for the hydrodynamic
evolution, are obtained from two initial-state models: a two-component Glauber Monte Carlo
model [280] and the TRENTO model [194]. Unless otherwise stated, we use a constant shear
viscosity to entropy density ratio 17/s = 0.08.

The flow vector V,,(p) = v,(p)e¥(P) has two parts: flow magnitude v,(p) and flow angle
W, (p), both of which fluctuate event-by-event depending on transverse momentum. Naturally,
one would expect flow magnitude factorization breaking (decorrelation) and flow angle decorre-
lation, where the latter represents the event-by-event difference in the flow angles ¥, (p;) and
¥, (p2) (event-plane angle) at two transverse momenta. The decorrelation between the flow
magnitudes at two transverse momentum bins is defined as[244],

P (p1,pa) = {(Va(p)IIVa(p2)1) _ (va(p1)va(p2)) 3.51)

V2 02(p2)) VR (vE(p2))

and the corresponding flow angle decorrelation is given by,

(cos[n(¥n(p1)—Fa(p2))]) - (3.52)

In principle, one could study all these three quantities (flow vector, magnitude and angle
decorrelation) in models [244]. The decorrelation between harmonic flow vectors at two
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3.2 Fluctuations of harmonic flow

different momenta involves both the decorrelation of the flow magnitudes and of the flow angles
[78, 281, 244]. Therefore, it is natural to expect that the flow vector decorrelation factorizes into
flow magnitude and angle decorrelation i.e.

_ (vu(p1)va(p2) cos[n(¥n(p1) = ¥u(p2))])
rn(P1,p2) = D202 ()

o _n(p)vn(p2)) x (cos[n(Pn(p1) —¥n(p2))]),

\/(W%(Pl))("%(l?z))

which however does not hold true in practice [244].

(3.53)

Flow angle and flow magnitude factorization breaking : Need for 2nd order

It should be noted that experimentally, flow magnitude and angle decorrelation cannot be mea-
sured through the formulae presented in Eqgs. (3.51) and (3.52). The reason is that in experiment,
we can only measure the scalar product between two flow-vectors, which involves two-particle
correlation. As a result, in the first order of flow, only flow vector decorrelation (Eq. (3.50)) can
be measured, flow magnitude and flow angle decorrelation cannot measured using two-particle
correlators. In order to measure the flow magnitude and flow angle decorrelation experimen-
tally, we need to consider four-particle correlators or in other words, we need to construct
the factorization-breaking coefficients between the squares of the flow. A similar method was
applied to estimate separately, the flow magnitude and flow angle decorrelation in pseudorapidity
bins, using four-particle correlators [282]. A similar procedure can be used for the correlation
between the harmonic flow in two different transverse momentum bins [244].

The factorization-breaking coefficients between two flow vectors squared can be defined as,

(Vu(p1)?V; (p2)?)
Vi) vi(p2))

which is a four-particle correlator, measuring the breaking of the factorization between two

ru2(p1,p2) = (3.54)

flow vectors in two transverse momentum bins, in second order. Please note that in the above
definition, the four particle correlator is constructed by taking two particles from the same
transverse momentum bin p; and other two particles from the bin p;. In a similar manner, the

factorization-breaking coefficient between flow magnitude squared can be defined as,

”n'z(m,pz) _ <Vn(P1)Vn(Pl)*Vn(pz)Vn(Pz)*> _ (|Vn(p1)|2|Vn(p2)|2)
| V() V)i (p2)
(a(PD)22(p2))

VD)) (A (p2))

which in principle can be used in experiments to measure flow magnitude decorrelation. How-

(3.55)

ever, it is not possible to define an experimental observable which could directly measure the
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Collective flow and its fluctuations in heavy-ion collision

flow angle correlation between two transverse momentum bins. Only an estimate of the flow
angle correlation (or decorrelation) can be obtained by taking the ratio of four-particle flow

vector correlator and flow magnitude correlator [282] given by,

_ (Va(p1)2Vi (p2)?)
Fn(p17p2) - (vn(pl)zvn(P2)2> 7

(3.56)

which is the ratio of the flow vector squared (Eq. (3.54)) and flow magnitude squared (Eq. (3.55))
factorization-breaking coefficients.

Pb+Pb 5.02TeV 0-5% Pb+Pb 5.02TeV 0-5%
1.0
& 09 S
308 LY
o = Glauber + MUSIC © 0.8F = Glauber + MUSIC
< 0.7¢ -« TRENTO + MUSIC < + TRENTO + MUSIC
0.6: 0.7¢
0.5 ‘ ‘ ‘ ‘ — 0.6 ‘ ‘ ‘ ‘ ‘
0.5 1.0 15 2.0 25 0.5 1.0 1.5 2.0 2.5
pi-p2 [GeVl pi-p2 [GeV]

Fig. 3.11 Factorization-breaking coefficients between flow vectors squared (left) and flow magnitude
squared (right) between two different bins p; and p,, plotted as a function of p; — p; for the elliptic flow
in Pb+Pb collision for 0 — 5% centrality. The symbols carry similar meaning as Fig. 3.10.

Fig. (3.11) shows the flow vector squared and flow magnitude squared factorization-breaking
coefficients for the elliptic flow in our model calculation. It could be seen that the flow magnitude
decorrelation is smaller than flow vector decorrelation, because the other part of it is given by
the flow angle decorrelation. Although formally possible, the experimental implementation of
the formulae in Egs. (3.54) and (3.55) are not feasible because one needs two particle from
the same transverse momentum bin, which become very difficult at larger momenta due to low
statistics.

3.2.2 Removing experimental difficulty: Taking one flow pr-averaged

To ease the experimental measurement, one could take only one transverse momentum bin and
can correlate the particles from that particular bin with the particles from the entire acceptance
range. This was originally introduced by the measurement from the ALICE collaboration [85,
87, 250]. This way we could partly overcome the limitation from low multiplicity in bins at high
transverse momentum. Below we present our model calculations following this method for the
factorization-breaking coefficients. The following sections are, for the most part, presentations
from the original publications [125, 283], coauthored by the author. In the first order, the
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1_05>"r""!""r""r""r""

t Pb+Pb 5.02TeV 0-5%
1.00/
0.95"

) [
= 0.90;
0.85: -+ TRENTO + MUSIC

: e ALICE preliminary

-= Glauber + MUSIC

0.80

0.75 ‘ ‘ ‘ ‘
05 10 15 20 25 3.0

p [GeV]
Fig. 3.12 The factorization-breaking coefficient between transverse momentum averaged (V,) and trans-
verse momentum dependent elliptic flow vector( V,(p)) as a function of the transverse momentum p in
Pb+Pb collision at 5.02 TeV for 0 - 5% centrality. The results obtained in hydrodynamic simulations

with Glauber and TRENTO initial conditions are represented by the red squares and the black triangles
respectively. The blue dots represent the experimental data from the ALICE collaboration [87].

factorization-breaking coefficient can be defined as,

(VaVi (p))

= e

which measures the correlation between the harmonic flow vector averaged over transverse

(3.57)

momentum (pr-averaged flow or global flow) and the flow vector in a transverse momentum
bin p°. The coefficient r,(p) represents a two-particle correlator, where one particle comes
from the transverse-momentum bin p and the second particle comes from anywhere of the full
pr-acceptance range of the detector, which serves as the reference particle (reference flow)
much like Eq. (3.46). In fact, the factorization-breaking coefficient r,,(p) could be written using
Eq. (3.46) and (3.47) as,

IR /€310
n(P) W2 (3.58)

which is a measure of the difference between two definitions of the differential harmonic flow
coefficient [78]. Fig. (3.12) shows the factorization-breaking coefficient r,(p) for the elliptic
flow calculated in our model, along with the ALICE data. Our model results can reproduce
the qualitative nature of the data well, where both results show significant decorrelation at
higher transverse momentum. Quantitatively speaking, at large transverse momentum, the
decorrelation is stronger in our model than the data, which could be due to the presence of
non-flow correlations in the data. We will return to this point shortly after.

We can use the similar idea to define the factorization-breaking coefficient in second order
of flow, which is our ultimate goal. In the second order, we can define the factorization-breaking

we use p = pr, where p represents a particular pr-bin
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coefficient between the flow vector squared as,

(Vv (p)?)

) A

which is a four-particle correlator, where two of them are from the transverse momentum bin p

(3.59)

and the other two are taken globally and eventually represent the correlation coefficient between
V2 and V2(p). Figs. 3.13 and 3.14 show the results obtained in the hydrodynamic model, for the
factorization-breaking coefficients r,.2(p) in the case of elliptic and triangular flow respectively,
for 0-5% and 30-40% centrality in each case. A first observation of the figures reveal that

1.1

T T T 11 T T T
Pb+Pb 5.02 TeV 0-5 % Pb+Pb 5.02 TeV 30-40 %
1.0
1.0 I ° [} Y
g 09 g
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0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
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Fig. 3.13 Factorization-breaking coefficients between momentum averaged (V22) and momentum depen-
dent elliptic flow (V5(p)?) vector squared as a function of the transverse momentum in Pb+Pb collision at
5.02 TeV for 0—-5% (left) and 30 —40% (right) centrality. The symbols carry similar meaning as Fig. 3.59.
The figure is from the original publication [125], coauthored by the author.

the decorrelation is significantly larger for the centralities where fluctuations dominate i.e. for
the elliptic flow in central collisions and for the triangular flow in any centrality. In Fig. 3.13,
for the elliptic flow, the model results are similar to the data for 0 - 5% centrality and there is
large decorrelation between the flow vectors at high transverse momentum. On the contrary,
for 30 -40% centrality (semi-central collisions) the decorrelation is much smaller as there is
less fluctuations, but the model results show stronger decorrelation than in the data at high
transverse momentum, making the difference prominent for p > 2.0 GeV. A possible reason
behind this phenomena could be that our model calculation do not include any contributions
from non-flow correlations, while in the experimental data non-flow effects are present, which
are usually reduced by using larger rapidity gaps between the measured flow vectors. A
precise quantification of the contributions of the remaining non-flow correlation and the genuine
difference in flow fluctuations between the model and the experiment, to the observed difference
between the model results and the data in Fig. 3.13 (right), lies beyond the scope of our present
study.

The decorrelation between the triangular flow vector squared in Fig. 3.14, is quite strong for
both 0—-5% and 30-40% centralities due to dominating flow fluctuations. A careful inspection of
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Fig. 3.14 Flow vector squared factorization-breaking coefficients between momentum averaged and
momentum dependent triangular flow in Pb+Pb collision at 5.02 TeV for 0-5% (left) and 30 —-40%
(right) centrality. Symbols are same as Fig. 3.13. The right panel is from the original publication [125],
coauthored by the author.

the two plots discloses another interesting fact: there is a considerable decorrelation even at low
transverse momentum, which is not so noticeable in case of elliptic flow. The origin of this effect
lies within the definition of the factorization-breaking coefficient r,,.»(p) in Eq. (3.59). Here we
correlate the flow vector in a transverse momentum bin V,,(p)? with the pr-averaged flow vector
V,, which correspond to the average transverse momentum over all events, (pr) = (p) ~ 0.8
GeV. As the difference between p and (p) increases, which could happen for both low and
high transverse momentum bins, there could be decorrelations. This effect is small for V,, but

dominant in the case of V3.

Flow magnitude decorrelation

Similar to Eq. (3.59), through a four-particle correlator we can define the factorization-breaking
coefficient between the flow magnitude squared with one flow momentum-averaged and another

flow in a momentum bin,
(viva(p))

NI

which is easier to measure in experiment as compared to Eq. (3.55), because now it requires

i (p) = (3.60)

to find only two particles in a transverse momentum bin p. Fig. 3.15 shows the results ob-
tained in the hydrodynamic model and comparison with the data, for the factorization-breaking
coefficients between magnitude squared of elliptic flow, r;% (p) for 0-5% and 30-40% central-
ity. Similar to the flow vector factorization breaking coefficients, the magnitude factorization
breaking coefficients show that the experimental data lie above the simulation results at high
transverse momentum. This discrepancy can be partly attributed to the contribution of non-flow
correlations. The disparity is particularly noticeable for the 30 —40% centrality, where certain

data points even surpass 1, indicating significant dominance of the non-flow correlations.
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Fig. 3.15 Factorization-breaking coefficients for the flow magnitude squared between transverse momen-
tum averaged and transverse momentum dependent elliptic flow as a function of the transverse momentum
in Pb+Pb collisions for 0 - 5% (left) and 30 —40% (right) centrality. The symbols carry similar meaning
as Fig. 3.13. The figure is from the original publication [125], coauthored by the author.

A second observation reveals that the flow magnitude decorrelation accounts for roughly

one-half of the flow vector decorrelation, i.e.

(1= ru(p)] 2 2[1 = P)] . (3.61)

This suggests that the other half of the flow vector decorrelation can be approximately attributed
to the flow-angle decorrelation, as we will see shortly. This relation regarding the flow vector,
magnitude and angle decorrelation, as an outcome of the event-by-event flow fluctuations is
expected in a random toy model [246](Appendix. A.1). Although it is generally possible to have
any proportions of angle and magnitude decorrelation contributing to total vector decorrelation,
previous experimental measurements [86] and model calculations [81] have shown that flow
decorrelation in rapidity exhibits a roughly equal strength of angle and magnitude decorrelation.
The results for the triangular flow are qualitatively similar, which we do not show here.

In the present context, let us point out that the correlation coefficient in Eq. (3.60) which
is a measure of the flow magnitude squared factorization-breaking, is not equal to or not to be

confused with the Pearson correlation coefficient between v2 and v2(p),

(viva(p)) = (vi) (vi(p))
V) = 2 (i (p) - (vi(p)?)

Fig. 3.16 shows the comparison between these two definitions of the correlation coefficient

. (3.62)

for elliptic flow, along with the data for flow magnitude decorrelation. It could be clearly seen
that the correlation coefficient in Eq. (3.60) follows the trend of the data and much closer to it,
hence provide true measure of flow magnitude decorrelation, whereas the Pearson correlation
coefficient in Eq. (3.62) shows completely different behavior and huge departure from the data.

Please note that the extraction of the flow vectors squared and flow magnitudes squared

factorization breaking coefficients from the experimental data of the ALICE collaboration,
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Fig. 3.16 Comparison between different definitions of flow magnitude factorization-breaking coefficient
for the elliptic flow, in Pb+Pb collision at 5.02 TeV in 0 — 5% centrality with TRENTO initial condition.
The black triangles represent our usual definition of flow magnitude squared factorization-breaking
coefficients given in Eq. 3.60, while the green triangles denote the Pearson correlation coefficient between
v% and v%( p). The blue dots represent the ALICE data for the flow magnitude decorrelation.

involves several considerations. The experiment does not directly measure these flow vector
and flow magnitude factorization coefficients (Eq. 3.59 and 3.60) [284, 87, 250]. The primary
challenge lies in extracting the four-particle correlator (v (p)), sitting at the denominator of the
correlation formulae, because all four particles are from a narrow transverse momentum bin.
On the other hand, the fourth moment (v#) which involves four particles from anywhere in the
full acceptance, can be measured. The results presented by the ALICE Collaboration for the
correlators, are with different scaling [284]19, e.g. for flow magnitude squared correlations,

(vava(p))

(v vi(p))

Upon dividing this scaled correlator by (v4)/(v2)? [284], an estimate of the flow magnitude

(3.63)

squared factorization-breaking coefficient,

2oy ava(p)){vi)
m'(p) = % T (3.64)
! (v (vi(p))
or the flow vector squared factorization-breaking coefficient,
V2y* 2\ (1,2
( n'n (p) )(Vn> (365)

m2(P) = v )

10please note that when we performed our analysis, the data from the ALICE collaboration was in the preliminary
form, as presented in the IS2021 conference in Rehovot [284]. In the original publication [87], which came after
our publication [125], the data for magnitude squared correlation was presented with the scaling presented in
Eq. (3.64), so is followed in a recent preprint with more systematic study [250]
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can be obtained. The difference between Egs. (3.65) and (3.64) and the factorization-breaking
coefficients defined in Egs. (3.59) and (3.60) is a factor,

(vi(p))(v2)? (3.66)

(v vi(p))*

In our hydrodynamic simulations, we have verified that the deviation of this factor from unity is
less than 6 x 103 for transverse moemntum ranging from 0.5 GeV to 3.0 GeV. The experimental
values for the flow vector and magnitude squared correlations depicted in the figures are
determined using the formulae given in Egs. (3.65) and (3.64).

Flow angle decorrelation

As discussed earlier, an experimental observable which could directly measure the flow angle
correlation (or decorrelation) cannot be defined. Therefore, the flow angle decorrelation between
the momentum averaged flow and momentum dependent flow could be defined following the
similar prescription as in Eq. (3.56), i.e. by taking the ratio of flow vector squared (Eq. 3.59)

and flow magnitude squared (Eq. 3.60) factorization-breaking coefficients,

_ rn;2(p) _ <Vn2Vn*(p)2>
Fu(p) = I’Z%(p) (va(p)?)

(3.67)

which could be easily measured in the experiments.

Figs. 3.17 and 3.18 show the results for the flow angle decorrelation obtained in hydrody-
namic simulations compared to the ALICE data, for elliptic and triangular flow respectively.
The model simulations predict a noticeable flow angle decorrelation between the global flow V,,
and the differential, momentum dependent flow V,,(p), for both the elliptic and triangular flow.
For the elliptic flow in central collision (0 —5%), the simulation results are consistent with the
preliminary data from the ALICE collaboration. However, for the centrality 30 —40%, both the
model results and experimental data show a smaller angle decorrelation in comparison to the
central collision. Once again, this can be linked to the unavoidable presence of the non-flow
correlations which are expected to be relatively more important in off-central collisions. The
difference in the decorrelation strength between the central and semi-central collisions arises
from the global correlation of the elliptic flow with the initial geometry in non-central collisions.

Moreover, as claimed earlier, from Fig. 3.17 it could be seen that the flow angle decorrelation

is roughly one half of the flow vector decorrelation (Fig. 3.13). Therefore, it is quite safe to infer
the following theorem (at least for the central collisions) based on our analysis,

80



3.2 Fluctuations of harmonic flow

11 ; ; ; 1.02 ; ; ‘
Pb+Pb 5.02 TeV 0-5% Pb+Pb 5.02 TeV 30-40 %
1.0f 1.00f
1 i
£ oo} % 0.98]
°© @ ALICE Preliminary © @ ALICE Preliminary
5 08! N1 5096 3]
o Glauber + MUSIC TRENTO + MUSIC o Glauber + MUSIC TRENTO + MUSIC *
07l F2(p) —— Fa(p) " 094l % Fa(p) —— Fa(p) 1
’ {v2* Cos[4 (9, (P)-¢)1) {v2* Cos[4 (9, (P)-¢)1) ’ {v2* Cosl4 (2 (p)-w2)1) (v2* Cosl4 (2 (P)-w2)])
(v2*) * (v2*) (va') * (va*)
0.6 L 1 1 1 1 0.92 L L i
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
p [GeV] p [GeV]

Fig. 3.17 Flow angle decorrelation as a function of the transverse momentum for the elliptic flow in
Pb+Pb collision at 5.02 TeV for 0 -5% (left) and 30 —40% (right) centrality. The red squares and black
triangles denote the results obtained with the initial conditions from the Glauber and TRENTO model
respectively. The solid lines denote the estimate of the flow angle correlation (or decorrelation) that can
be measured in experiments while the dashed lines denote the actual flow-angle correlation. The blue
dots represent the corresponding ALICE data for flow angle decorrelation. The figure is from the original
publication [125], coauthored by the author.

Transverse momentum dependent flow vector decorrelation approximately amounts to the

summation of flow magnitude and flow angle decorrelation (Appendix. A.1) :

(1= ra(p)] = (1= D]+ [1=Fo(p)] - (3.68)

In Fig. 3.18, similar to the past situations, there exist flow decorrelation on either side of
the average transverse momentum ({p)), indicating the peculiar characteristics of the triangular

flow, coming from the dominance of fluctuations.
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Fig. 3.18 Flow angle decorrelation for the triangular flow with 30 —40% centrality in Pb+Pb collision at
5.02 TeV. The symbols have similar meaning as Fig. 3.17. The figure is from the original publication [125],
coauthored by the author.
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The formula in Eq. (3.67) provides a way to estimate the flow angle decorrelation in

experiments. It measures the quantity,

{(vava(p)*cos[2n(Pa(p) -¥n)])

5 (3.69)
(viva(p)?)
providing an estimate of the true measure of the flow angle decorrelation,

(vi) ’
which involves only the angle decorrelation. The above expression for the actual flow angle
decorrelation is based on the implicit assumption that the decorrelations between the flow

magnitudes in the numerator and the denominator cancel out. In other words, the transverse

momentum dependence of the flow magnitudes in Eq. (3.69) vanishes, so that we could get,

(vacos[2n(¥u(p) = ¥n)])
(vi) '

The above formula (Eq. (3.70)) cannot be directly applied in experimental analysis. However,

F,(p)~ (3.71)

in our model, we can assess the similarity between the results obtained with the two formulae in
Egs. (3.69) and (3.70), specifically addressing the validity of Eq. (3.71). This is equivalent of
examining whether the momentum dependence of the magnitude and flow angle in the numerator
of Eq. (3.69) factorizes in the hydrodynamic model simulations. The results from hydrodynamic
model calculated using both formulae are presented in Figs. 3.17 and 3.18. It can be clearly
seen that the two formulae produce similar results, which implies that the experimental measure
(Eq. (3.67)) can be used to estimate the weighted flow angle decorrelation. It should be noted
that the angle correlation is weighted by the fourth power of flow magnitude i.e. only the v}
weighted or magnitude weighted flow angle decorrelation can be measured in the experiment.
Another interesting fact in the present context is that the simple average of the cosine
between the angles,
(COS[Zn(‘Pn(p) _\Pn)]> (3-72)

is not a measure of the angle decorrelation. Fig. (3.19) (left) shows the comparison between
different definitions of the angle decorrelation compared with the ALICE data. It can be seen
that Eq. (3.72) provides very different results. However, such results are quite expected. In

events where flow harmonics are large (large |V, | and large |V,,(p)|), the random decorrelation
between two vectors is relatively small, making the angle decorrelation minimal. For a detailed
discussion of the effect we refer interested readers to Ref. [81].

It is to be noted that in the experiment, only the angle decorrelation between the flow vectors

squared can be measured. However, in the model one can check how it is related to the angle
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Fig. 3.19 Left: Comparison between different definitions of flow angle correlation along with the
data for Pb+Pb collision in centrality 0 —5%. The red and black squares denote the experimental
measure and actual flow angle correlations respectively. The green squares represent the simple angle
correlation without any weights of flow magnitudes. The blue dots denote the ALICE data. Right:
The flow angle correlation between the first moment of flow vectors V2(p) and V5 as a function of
the transverse momentum for centrality 30 —40% (black triangles), compared to its approximation by

\/F>(p) (red squares) and its upper limit /(1 + F>(p))/2 (green dots). The figure is from the original
publications [125, 283], coauthored by the author.

correlation between first order of flow i.e. between first moments of flow vectors :

(vacos[n(¥u(p) -¥n)])
(vi) ‘

In Fig. 3.19 (right), we show the hydrodynamic model results for the flow angle correlation

(3.73)

between the first moments and we find that it can be approximated as the square root of the

angle decorrelation between the flow vectors squared F,(p), i.e.

v2cos[n (¥ -y
A similar relation was found for the correlators of higher moments of flow vectors in pseudora-

pidity bins [86]. In Fig. 3.19 (right), we also show the upper limit for the flow angle correlation,
given by \/(1+F,(p))/2, as proposed by the ALICE Collaboration [284, 87].

3.2.3 Mixed-flow factorization-breaking: measure of non-linearity

It is a general characteristic of flow harmonics V;, that as we go higher order in n (n > 2), the flow
vectors get contributions from the subsequent lower orders of flow, identified as the non-linear
flow correlation [93, 285]. The major contributing factors behind such non-linear behavior
in the final state are the similar non-linear relations of the higher order eccentricities to the
lower orders (Egs. (3.18) and (3.19)) at the initial state, as discussed in Sec. 3.1.4. As a natural
consequence, the correlations between mixed flow harmonics or specifically, the correlations

between the event planes corresponding to different orders of harmonic flow could provide very
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Collective flow and its fluctuations in heavy-ion collision

good measure of nonlinearities in the hydrodynamic expansion, as well as of the correlations in
the initial state [93, 285-287, 256, 288, 236, 289-295].

Typically these studies involve correlators between the flow vectors of different orders or
moments of flow, which are averaged over transverse momentum. However, the momentum
dependent correlation between flow harmonics of different orders could reveal interesting
measure of differential non-linear response of the medium and put additional constraints on
the initial state models [296, 81]. Such studies involve higher order moments of mixed-flow
harmonics in bins of transverse momentum i.e. many-particle correlator in small bins, which

again cannot be measured easily in experiments due to limited statistics.
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Fig. 3.20 Mixed-flow correlation between sz and Vi (p) (left), and between V,V3 and Vs(p) (right) as a
function of transverse momentum in Pb+Pb collision at 5.02 TeV with 30 - 40% centrality. The results
from the hydrodynamic model using Glauber and TRENTO model initial conditions are represented
by the red squares and black triangles respectively. The solid, dashed and dotted black lines represent
results with /s =0.08, 0.12, 0.16 respectively for the TRENTO initial conditions. Corresponding
correlation coefficients between the momentum averaged flow vector V2 and V,, and between V,V3 and
Vs are denoted by the horizontal lines. The figure is from the original publication [125], coauthored by

the author.

Following the similar method as before, we can construct a correlation coefficient (in this
context the name correlation coefficient suits more, as used in the literature as well, instead of
factorization-breaking coefficient) in the first order, between the mixed flow harmonics, with
only one of the flow harmonics restricted to a transverse momentum bin through a generalized

formula,
(ViVivi: (p))

(22 (02 (p))

with m = k+ /. For m # k+1, the cumulant in the numerator becomes zero by symmetry and no

(3.75)

physical information can be extracted in that case.
Owing to the non-linear relationships described in Egs. (3.18) and (3.19), we can write
the non-linear relationships for the quadrangular and pentagonal flow in terms of elliptic and

triangular flow as,
Va=VF+xuVy and  Vs=VE+ys WV, (3.76)
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3.2 Fluctuations of harmonic flow

where V4L and VSL correspond to the linear contributions with ¥4 > and 5 >3 as the non-linear
response coefficients respectively. Therefore, we can construct the correlation coefficients
between sz — V4 and V,V3 — Vs, to measure the non-linearity. In particular, the momentum-

dependent correlations would read,

(‘/22‘/4yr (p)) and <VZV3V5yc (p)) ' (3.77)
(va)(vi(p)) V(33 vi(p)) .

In Fig. 3.20, we show the results for the correlation coefficients measuring the nonlinear
coupling between V4(p) and V22 (left) and between Vs(p) and V3V, (right) as a function of
the transverse momentum. We present the correlation coefficients for semi-central (30 —40%)

collisions only, where the nonlinear components in V4 and V5 have dominant contributions.
It could be seen that the correlations are the largest for small transverse momentum and the
decorrelation gradually increases with increasing transverse momentum in case of V22 -Vi(p)
correlation. For V,V3 —Vs(p) correlation, there are decorrelations on the either side of average
transverse momentum, similar to the triangular flow. Additionally, for mixed-flow correlations
we show results corresponding to different 1 /s with TRENTO initial conditions. The results
show a weak dependence on the shear viscosity of the medium. The transverse momentum
dependence of the mixed-flow correlations gives an additional constraint on the initial state and

on the hydrodynamic evolution.
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Fig. 3.21 Correlation coefficients between flow vector squared V24 and V42( p) (left) and flow magnitudes
squared v‘zt and vﬁ (p) (right) as a function of the transverse momentum in Pb+Pb collision at 5.02 TeV
with 30 —-40% centrality. The symbols have similar meaning as Fig. 3.20. The figure is from the original
publication [125], coauthored by the author.

In order to extract the momentum-dependent flow angle correlation (or event-plane correla-
tion) between mixed flow harmonics, separately from the magnitude decorrelation, similar to
the previous methods, correlators involving higher powers of flow harmonics must be taken into
account. For example, if we consider the non-linear coupling between V, and V5, the correlation
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Collective flow and its fluctuations in heavy-ion collision

coefficient between the flow vector squared is given by,

(V;Vf (P)z)

) 378
0] G789

while the correlation coefficient or factorization-breaking coefficient between the non-linear

flow magnitude squared can be constructed as,

(viva(p)?)
ATV YIRS (3.79)
<V2><V4 (p))
and then the flow angle correlation can be estimated from the ratio of the above two as,
V4v* 2
VVi(p)r) 24 (p)2 ) (3.80)
<V2V4 (p) )
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Fig. 3.22 Flow angle decorrelation between V24 and V42 (p) as a function of transverse momentum in
Pb+Pb collision at 5.02 TeV with 30 -40% centrality. The red squares and the black triangles denote
the hydrodynamic results obtained with Glauber and TRENTO model initial conditions respectively.
The solid lines denote the estimate of the flow angle decorrelation while the dashed lines represent the
actual measure of flow angle correlation between the mixed harmonics. Corresponding angle correlations
between the momentum-averaged flow V24 and V42, are indicated by the horizontal lines. The figure is
from the original publication [125], coauthored by the author.

The correlation coefficients between flow vector and magnitude squared are shown in
Fig. 3.21. It should be noted that the correlation between higher powers of the flow vectors
(Fig. 3.21 (left)) is smaller than between the lower powers of the respective flow vectors
(Fig. 3.20 (left)). Moreover, it could be seen that the flow magnitude decorrelation accounts
for about one half of the flow vector decorrelation shown in Fig. 3.21. Therefore, the relation

described by Eq. (3.61) is also valid for non-linear mixed-flow correlators.
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3.2 Fluctuations of harmonic flow

In Fig. (3.22), we show results for the flow-angle correlation for mixed-harmonics, which
involve six-particle correlators and could be extracted from the experimental data. It could be
observed that the flow angle decorrelation is again approximately one half of the flow vector
decorrelation (Fig. 3.21). We notice that the flow angle correlation (Eq. 3.80) defined as the ratio
of the correlation coefficient between flow vectors and of the factorization breaking coefficient
between the flow magnitudes, serves as a good approximation for the flow angle correlation

weighted with the powers of flow magnitudes,

(vivicos[8(Wa(p) - ¥2)])

(viv3) ’

which is the true measure of the flow angle correlation as discussed previously. For completeness,

(3.81)

in Fig. 3.23, we show the centrality dependence of flow angle decorrelation between momentum
averaged flow vectors V42 and V24. Alongside the momentum dependent flow angle correlation
depicted in Fig. 3.22, this can serve as an extra experimental observable, showing sensitivity to

various models of initial conditions.
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Fig. 3.23 Centrality dependence of the flow angle correlation between V24 and V42 in Pb+Pb collision at
5.02 TeV. The hydrodynamic results with Glauber and TRENTO model are denoted with red squares
and black triangles respectively. For the TRENTO model initial conditions, the solid, dashed and dotted
lines represent results with the viscosities, 17/s =0.08, 0.12, and 0.16 respectively. The figure is from the
original publication [125], coauthored by the author.

3.2.4 Experimental measurements and removing non-flow correlation

As seen in the discussions above, the simulation results for centrality 30 —40% do not reproduce
the experimental data of the ALICE Collaboration. This is because in semi-central collisions, in
general we find stronger decorrelation in our model, while in the experiment the harmonic flow
correlation is somewhat larger and sometimes surpassing 1. This might be attributed to a large

contribution of non-flow correlations in the measured data.
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Collective flow and its fluctuations in heavy-ion collision

In order to minimize the non-flow correlations, an estimate of correlation measures can be
constructed involving four harmonic flow vectors in separated pseudorapidity bins. For example,
using four bins in pseudorapidity located at —ng,—n,n, Nr, the factorization coefficient for flow

vectors squared can be estimated as,

(Va(=np)V, (=1, p)V,r (N, p)Va(NE) NV, (=1) V(1))

raa(p) = T ; , (3.82)
20 )V Vs Ve (ne) )V, . p)Vadn. )
the factorization breaking coefficient between flow vector magnitudes can be defined as
A I ACNACNACINACNNACNIIE
and the flow angle correlation is estimated from the ratio the two quantities above
Vo(-mr)V, (-m,p)V, (N, p)Va Vo(-MF)Va(-M)V, (n)V,;

<Vn(_nF)Vn(_n7p)Vn*(n,p)vn*(nF)><Vn(_nF)Vn*(_n)vn*(n)vn(nF)) 7

similar to [86]. The four-particle correlators in these formulae involve flow vectors at different
pseudorapidity and transverse momentum. Consequently, in the result we would observe
a combination of flow decorrelation in transverse momentum as well as in pseudorapidity.
However, assuming the longitudinal decorrelation factorizes from the transverse momentum

decorrelation, it eventually cancels between the numerator and the denominator, i.e. we assume,

(Va(n.p)Vir (1.0)) =V (Va(m)Vik (MW Va(p)Vi () - (3.85)

In the above formulae for experimental measure, we also use the approximation

Vi(p) V(i) (3.86)
(Va(p)) — (v3) 7

as discussed earlier in Eq. (3.66). By using this approximation, we remove the difficulty of

measuring a four-particle correlator in the experiment, where all flow vectors are defined in
a narrow transverse momentum bins, as in the denominators of Egs. (3.59) and (3.60). Note
that the flow vectors at forward and backward rapidities +nr do not require the measurement
of the transverse momenta of the particles and can be measured using the forward/backward
calorimeters. Only the flow vectors V,(£1, p) necessitate the measurement of the individual
particles’ transverse momenta. For this purpose, two bins well separated in pseudorapidity within
the central rapidity region of the detector’s acceptance can be utilized. Thus employing a simple
approximation (Eq. (3.86)) and using well-separated bins in pseudorapidity, the experimental
difficulty in measurement of multi-particle correlators due to limited statistics can be surmounted

and the influence of non-flow correlations can be substantially reduced.
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Chapter 4

Transverse momentum fluctuations in
ultracentral collisions

In a heavy-ion collision event, a large number of particles (around 35000 hadrons in a head-on
collision of two 298Pb nuclei at 5.02 TeV at the LHC) are emitted at the final state, which share
the total energy of the initial fireball in terms of individual momentum, specifically transverse
momentum (p7) which is particularly interesting in the present context. In each such event, one
can define a mean transverse momentum per charged particle, which we denote as [ pr] and
it is defined as [pr] = (X pr)/Nep. Similar to the fluctuations of anisotropic flow, discussed in
the previous chapter, event-by-event fluctuations of transverse momentum per particle [pr |, are
of great interest and can serve as an excellent and even more direct probe of the QGP matter
produced in the collision. For collisions with same N, the transverse momentum per particle,
[pr] fluctuates from event to event. There exist of course trivial statistical fluctuations of [pr],
due to averaging over finite number of charged particles, but the measured fluctuations are
larger than that. The excess fluctuations are known as true dynamical fluctuations of [pr],
which we are interested in. They originate due to event-by-event fluctuations of the distribution
of the source in the initial state of collisions, known as shape fluctuation which could have
a geometrical origin as well as a quantum or intrinsic origin reflecting the randomness in
positions of the nucleons in colliding nuclei. The dynamical fluctuations of [pr] have been
studied over the years in theoretical models [297-306, 96, 307, 308] and have been measured
in experiments [309-314]. In this chapter, we will focus on the characteristics of [pr] in
ultracentral [278, 315-320] Pb+Pb collisions at the LHC. The intriguing behavior of average
transverse momentum ( which we denote as (pr) = ([ pr]), averaged over events) in ultracentral
collisions provides a sensitive probe of hydrodynamics and could help in extracting important
physical quantities e.g. speed of sound in the QGP medium with utmost precision [173]. After
subtracting the trivial statistical fluctuations, the dynamical fluctuations of [ pr] are very small
(below 1%) [312]. However, recent measurements by the ATLAS collaboration [102, 321],

studying the variation of [ pr] as a function of N, shows a very striking and peculiar pattern of
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Transverse momentum fluctuations in ultracentral collisions

[ pr]-fluctuation in the ultracentral (high N,,) regime. This motivated us to perform a meticulous
and careful study of [ pr]-fluctuation in ultracentral Pb+Pb collisions, which ultimately proves
to offer great physical significance and direct probe to the formation of the QGP fluid. The
following sections are, for the most part, presentations from the original publications [126, 127],

coauthored by the author.

4.1 Variance of | pr|-fluctuation

Fluctuations of the mean transverse momentum per particle [ pr] observed in heavy-ion colli-
sions can have many features. In general, fluctuations can be characterized by different orders
of cumulant: mean, variance, skewness, kurtosis etc. Let us first consider the variance, which is

the primary quantity when one talks about fluctuations.

4.1.1 Strange behavior of the ATLAS data

We start with the ATLAS data for [pr]-fluctuation [102, 321] presenting the variance as a
function of the centrality estimator which can be either the charged particle multiplicity N, or
the transverse energy deposited on the forward calorimeter E7, shown in Fig. 4.1. The ATLAS
collaboration at the LHC detects the charged particles through an inner detector that covers
an angular range of approximately 10° < 8 < 170° (where 0 represents the angle between the
collision axis and the particle’s direction). The detector measures the transverse momenta of
these particles, given by pr = psin 8, where p is the magnitude of total momentum. The analysis
includes all charged particles detected in a specific interval of pr. In particular, results in two
pr intervals: 0.5 < pr <5 GeV/c and 0.5 < py <2 GeV/c are presented. Let us first consider the
results for the interval with larger upper pr-cuti.e.0.5 < pr <5 GeV/c, the default interval in
our analysis. Later we will discuss the effect of pr-cut dependence of the fluctuations.

A first observation on the plots reveals that after subtracting trivial statistical fluctuations,
the remaining dynamical fluctuations [311] are very small, below 1% in central Pb+Pb colli-
sions [312]. We focus on these small dynamical fluctuations in this chapter. The left panel of
Fig. 4.1 displays their variance as a function of N,;,. It is seen that the variance decreases as N,
increases i.e as we approach towards more central events. The most striking phenomenon is
a sudden steep decrease, by a factor of ~ 2, over a narrow interval of N, around 3700. Other
models of the collision in which the Pb+Pb collision is treated as a superposition of indepen-
dent nucleon-nucleon collisions fail to reproduce this behavior. For example, in the HIJING
model [143, 322], the decrease of the variance is found to be proportional to 1/N,, [312, 308] for
all N.;,. In the following, we argue that the impact parameter, b, plays a crucial role behind this
phenomenon. It will be shown that the relation between multiplicity N, and b is not one-to-one,

while [ pr] depends on both quantities.
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Fig. 4.1 Variance of the transverse momentum per particle [ pr] as a function of the centrality estimators
N, (left) and E7 (right). Symbols represent the ATLAS data [102]. The model fit to the data are
represented by the solid red lines. We show separately the two contributions to the variance as per
Eq. (4.13) from our model calculation : the contribution from intrinsic and impact parameter fluctuations
represented by dashed and dashed-dotted lines respectively. The sum of the two contributions is the solid
red line. The figure is from the original publication [126], coauthored by the author.

4.1.2 Hydro vs HLJING results at fixed b

In order to illustrate the dependence of [pr] on N, we simulate 1000 Pb+Pb collisions
at 5.02 TeV at fixed impact parameter b = 0, using relativistic viscous hydrodynamics, and
evaluate N, and [pr] for every collision. Our hydro-simulation set up remains same as
before and discussed in Appendix. B.1. The right panel of Fig. 4.2 displays the distribution
of [pr] and N, at b =0. One can see that both the quantities exhibit significant dynamical
fluctuations and span finite ranges. In particular, for N, the fluctuations around the mean
extend up to ~ 14%, whereas it is around ~ 3% for [pr]. These fluctuations originate from
different sources of quantum fluctuations: from the fluctuations in the positions of nucleons
at the time of impact [138], from the partonic content of the nucleons [323] as well as from
the process of particle production.! These fluctuations are taken into account [74] in modern
hydrodynamic simulations by implementing a different initial density profile (the initial condition
of hydrodynamic equations) for each collision event. The second observation in Fig. 4.2 is that
there is a significant positive correlation between [ pr] and N, in hydrodynamics, which carries
a crucial importance in our analysis.

Thermodynamic interpretation of the correlation: The correlation observed in Fig. 4.2
could be interpreted as a natural consequence of local thermalization. Thermalization is an
underlying assumption of the hydrodynamic description of the QGP evolution. If we fix
the impact parameter b, we essentially fix the collision volume V (left panel of Fig. 4.2).

Then at fixed volume, larger N, implies a larger density N.,/V. In hydrodynamics, as the

IPlease note that we only consider spherical nuclei. For deformed nuclei, the fluctuations in their orientations
must be considered, which in turn affect both the multiplicity [119] and the momentum per particle [104].
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Fig. 4.2 Left: Pictorial depiction of Pb+Pb collisions at fixed multiplicity but different impact parameters:
b=1.8 fm (left) and b = 1.0 fm (right). The impact parameters correspond to centrality fractions ¢, ~ 1.5 %
and ¢, ~ 0.5 % respectively. The difference between these two values is typically the spread of ¢;, at fixed
multiplicity. A larger value of b corresponds to a smaller collision volume, resulting in a larger density,
which we symbolically denote with a darker color. Right: The scatter plot between the charged particle
multiplicity N,;, and the transverse momentum per particle [ pr ] in Pb+Pb collisions at 5.02 TeV and b = 0.
The symbols and the solid lines represent the results obtained from hydrodynamic simulations for 1000
events. The dashed lines correspond to the results of 1.4 x 10° collisions simulated with HIJING [322]
(individual points are not shown). The results are obtained using the same kinematic cuts used in the

ATLAS analysis. Instead of plotting N, and [pr] themselves, we plot the differences N, — N, and
Spr = [pr]-DPro, where N, = 6662 and pr = 1074 MeV /c are the event averaged values. The straight
lines indicate the average value S_pT(NCh,b =0) (Eq. 4.13), and the ellipses are 99% confidence ellipses
evaluated by assuming that the distribution is a correlated Gaussian using Eq. (4.7). The left panel is
from the original publication [127] and the right panel is a modification of the figure in the original
publication [126], coauthored by the author.

system is locally thermalized, a larger density corresponds to a higher initial temperature. It
should be noted that, relativity plays an essential role in this interpretation. In non-relativistic
thermodynamics, density and temperature are independent variables and if we heat a system at
constant volume, the density remains unchanged, because the number of particles is conserved.
On the other hand, in a relativistic system, particles can be both created (by converting kinetic
energy into mass) and destroyed. In that case, a larger temperature implies a higher density.
Therefore, a higher density of the system implies a higher temperature, resulting in a higher
energy per particle in the final state of hydrodynamic evolution, which eventually means a larger
momentum per particle [pr] [11]. In the previous sentence we mean that the larger energy
per entropy in the initial state translates into larger energy per particle in the final state, while
maintaining consistency with the thermodynamic picture.

The above phenomenon could be understood from the perspective of collective flow as well.
The larger density at fixed collision volume increases the overall magnitude of the outward
pressure in the fireball. This is another way of realizing the thermalization of the system
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4.1 Variance of [ pr |-fluctuation

manifested through the equation of state (pressure and energy density are related). The larger
pressure, through collective flow, results in larger transverse momentum per particle in the final
state after the hydrodynamic evolution.

In order to illustrate that the positive correlation between [pr] and N, is not trivial but
caries a greater physical significance, we also display results of simulations using the HIJING
model [322] in the right panel of Fig. 4.2. In HIJING which is a non-thermal model, particles
do not interact after they are produced. We see that the corresponding correlation is much
smaller (individual points are not shown) by a factor of ~ 10. However, on should note that
while thermalization always implies a positive correlation, the converse statement does not
hold. As an example, in the color-glass condensate picture of high-energy collisions, such a
correlation could be already present at the level of particle production, since both the momentum
per particle and the particle density increase with the saturation scale [323]. More details about

the analysis of hydrodynamic and HIJING simulations are given in Appendix B.1

[ pr]-fluctuation at fixed N, : Effect of impact parameter fluctuations

Let us now discuss how thermalization plays an important role on the observed [ pr ] fluctuations
in the data. First, note that the experimental analysis is performed at fixed N, which is
traditionally used as an estimator of centrality, whereas our hydrodynamic simulation is done
at fixed b (= 0 to be specific in this case). Both choices are driven by practical considerations.
Experimentally, the impact parameter b cannot be measured. On the other hand, in simulations, b
can be fixed before starting, and the final multiplicity N, is obtained only at the end. Therefore,
in order to interpret experimental results, we need to provide explanations at fixed N, with
b varying. Let us understand the phenomenon of thermalization and its effect on [pr], as
explained in the paragraph preceding the last, at fixed N, and fluctuating b. If N, is fixed and b
fluctuates, then a larger b results in a smaller collision volume V and so a larger density N;,/V,
hence larger temperature and eventually larger [ pr ] on average in the final state. The opposite
scenario occurs if b is smaller, as shown in the left panel of Fig. 4.2. Thus thermalization and
collective flow of the QGP medium have direct consequences on [ pr] of the particles and at
fixed multiplicity, impact parameter fluctuations contribute to transverse momentum fluctuations.
This is the main underlying physics behind our analysis, as we will see that the contribution of
impact parameter fluctuations gradually disappears in the ultracentral regime causing the sharp

decline observed in the data.

4.1.3 Modelling the correlation : Two dimensional Gaussian

To understand the data, we first need to model the correlation between [pr] and N, as seen in
Fig. 4.2. The figure shows that even both b and N, are fixed, [pr] can still fluctuate. Instead of
b, let us use the centrality fraction ¢, ~ b?/opy, [67] (Where Opy, is the inelastic cross section of
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the Pb+Pb collision) as an equivalent variable throughout this chapter, where c¢;, lies between 0
and 1. We assume that the joint probability distribution of N, and [pr] at fixed ¢}, given by
P([pr],Nerlcp), is a two dimensional correlated Gaussian. The choice of this Gaussian ansatz
can be justified through the following arguments. Within a hydrodynamic model, fluctuations
in N, and [pr] originate from fluctuations in the initial density profile. When the impact
parameter is fixed, these density fluctuations stem from quantum fluctuations which may occur
either in the wave functions of colliding nuclei [324, 138, 323] or in the dynamics of the
collision. At ultrarelativistic energies, the fluctuations at different locations on the transverse
plane are independent due to causality. Therefore, it can be thought that a large number of such
independent contributions result in the fluctuations of N, and [pr]. According to the central
limit theorem, these fluctuations can be treated as approximately Gaussian.

The two-dimensional Gaussian distribution (as will be shown shortly) is characterized by
five parameters: The mean and variance (or equivalently standard deviation) of N, and of [pr],
which we denote by pr(cp), Na(cp), Var(pr|cy), Var(Ne|cp,) respectively and the Pearson
correlation coefficient (or the covariance) ry,,(c,) between [pr] and N,;. We expect this

correlation to be positive as shown in Fig. 4.2. We now explain how they are obtained.
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Fig. 4.3 Histogram of the charge particle multiplicity N, (left), measured by ATLAS, and of transverse
energy Er (right), deposited at the forward and backward calorimeters. The fits using superposition of
Gaussians are denoted by the solid lines (Eqgs. (4.2) and (4.3)). Contributions of collisions at fixed impact
parameter b, given by Eq. (4.2) are shown corresponding to centrality fractions 0, 5%, 10%, 15% by thin
blue lines. The “knee” is denoted the vertical dashed line, defined as the average value of N, or Er at
b =0. The figure is from the original publication [126], coauthored by the author.

Constructing ‘“‘knee” of the N_;,-distribution

Let us discuss how we obtain N, (cp) and oy, (c,). First, without any microscopic modeling,
precise information can be obtained about the probability distribution of impact parameter
at fixed N, given by P(cp|Nz) [67]. To achieve this, we first solve the inverse problem:
Finding the probability distribution of N, at fixed ¢}, given by P(N_|cp, ). Then we apply Bayes’
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4.1 Variance of [ pr |-fluctuation

theorem:

P(Neplep)P(cp)

P(cp|Nen)P(Ne) = P(Neplep )P(cp) = P(cp|Nep) = P(N.p) ,

4.1

where P(cp) ~2nb/op), depicting the probability distribution of . As explained earlier, colli-
sions at the same impact parameter vary due to quantum fluctuations, which result in fluctuations
of N.j,. In nucleus-nucleus collisions, these fluctuations are sufficiently small to be approximated
as Gaussian. The Gaussian distribution is characterized by the mean, N, (c},), and the variance,
Var(Nej|cp) (or equivalently oy, (cp)). The distribution is given by,

| (New-Ner(e))?

exp| -
\/27mVar(N,|b) 2Var(Nen|cp)

In experiment, one measures the marginal distribution P(N.,) which is obtained after

P(Nenlcy) = (4.2)

integrating Eq. (4.2) over ¢;, within O < ¢, <1 :

|
P(Nch):/() P(Nerlcp)dcy (4.3)

shown in Fig. 4.3 (left). In the figures, we display values of N, larger than some threshold that
corresponds to 20% centrality, which can be considered as fairly central collisions on which our
analyses focus. The distribution P(N,;,) shows a mild variation up to N, ~ 3500, after which
it declines sharply. We assume that N;(cp,) is a smooth function of ¢j,, and parametrize it as
the exponential of a polynomial. A third-degree polynomial provides an excellent fit to P(N,,)

within this range:

3
Noa(cs) = Non(0) exp ( zakc’g) . (44)
k=1

Similarly, we assume that the variance Var(N,;|c;,) encounters a smooth variation with ¢;,. The
parameters are obtained by fitting Eq. (4.3) as a superposition of Gaussians, to the distribution
P(N,;) measured by ATLAS in Pb+Pb collisions. The fit is shown in Fig. 4.3. We normalize
the probability distribution P(N,,) using the centrality calibration provided by the ATLAS
collaboration, that 40% of events have N, > 705. The fit is in agreement with data within 2%.
Through fitting we can precisely reconstruct N, (cp) and Var(Np|cp =0) [325]. The knee
of the distribution, representing the mean value of N, for collisions at ¢; = 0, is accurately
reconstructed, and denoted with a vertical line on Fig. 4.3. Above this knee, the rapid decline of
P(N,,) provides direct access to Var(N.|c, = 0). It is important to note that the variance can
only be reconstructed at ¢, = 0, and we assume Var(N|c;) /N (cp) to be constant by default.
Additionally, we have tested two alternative scenarios: one assuming constant Var(N|cp)
and another assuming constant Var(N,|c,) /N (cp)?. We have checked the robustness of our

results with respect to these assumptions; the quality of the fit remains equally good and the
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N Nen Er
N(b=0) 36834 | 4.435:0.003 TeV
Var(N|b=0) | 168.1+0.1 | 0.1433+0.0001 TeV
ai 4.31+0.02 4.18+0.01
a -4.19+£0.03 -3.45+0.01
as 10.21£0.09 8.54+£0.05

Table 4.1 Values of the fit parameters for Pb+Pb collisions at | /syy = 5.02 TeV. The central value for each
parameter is obtained with the assumption that the variance is proportional to the mean. The error bars
reflect the changes after considering alternate scenario with the variance being constant, or proportional
to the square of the mean.

fit parameters are essentially unchanged, as summarized in Table 4.1. Thus performing the
fit to the N, distribution, along with our assumption, we obtain two parameters: N, (cp) and
Var(N,4|cp), out of the five parameters of the correlated Gaussian.

In our analysis, the events with multiplicities above the knee are termed as ultracentral
collisions [326, 278]. These events constitute a small fraction of the total, approximately 0.35%.
However, ATLAS has observed enough collisions that for a few events N, exceeds the knee by
20%, corresponding to 4 standard deviations. It should be noted that the Poisson fluctuations
contribute only by 15% to the variance [325], indicating that N, fluctuations are predominantly
due to dynamical factors.

The main source of error in determining the impact parameter from data lies in the global
normalization, due to the difficulty in experimentally estimating which fraction of the cross-
section is detected [71]. Since we are interested in ultracentral collisions, this issue can be
ignored. When we mention using the 20% most central events, we refer to the 20% most central
of the events that are actually observed in the detector. The overlapping circles in Fig. 4.4 are
pictorial depictions of the colliding Pb nuclei, having a radius R = 6.62 fm. The values of b
are calculated from the inelastic cross section of Pb+Pb collisions, oppp, = 767 fm2. Using
Egs. (4.2) and (4.3), the probability distribution of the impact parameter at fixed N, is obtained
from Eq.(4.1):

P(cp|Nen) = ﬁp(l\’chkb)a (4.5)
where P(cp) = 1 have been used, because the probability distribution of ¢, is uniform by
construction. The distributions P(c,|N,;) becomes narrower as we move towards ultracentral
collisions, illustrated in Ref. [67].

Impact parameter dependence of other parameters: For the 30% most central collisions,
the average transverse momentum is largely independent of centrality [327]. Therefore, we
assume pr(cp) is independent of ¢, and we denote its value by pro (= (pr)). We decompose
[pr]=Pro+ dpr, and we only model the distribution of & pr, as we show below. Since we

only consider fluctuations around pr7g, our results are independent of its value. The variance

96



4.1 Variance of [ pr |-fluctuation

Var(pr|cp) may vary with the impact parameter, but this dependence should be smooth. For
statistical fluctuations, the variance is proportional to 1/N,;,. For the ¢, dependence, we assume

a more general form for Var(pr|c;) which behaves like a power law of the mean multiplicity:

Nen(0) \°
Var(prley) = 0, (ch) = 0, (0)(—C : (4.6)
pPr pr Nch(Cb)
where 0,,,(0) and « are constants. Finally, for the sake of simplicity, we also assume that the

correlation coefficient ry,, does not vary with impact parameter.

4.1.4 Var(pr|Nc) from the correlated Gaussian :

Once we fix the impact parameter dependence of the parameters of correlated Gaussian distri-
bution, we can fit the remaining three parameters ( N,;(cp,) and Var(N|c,) are already fixed
) 0,;(0),c¢ and ry,, to the ATLAS data for variance. To do so, we need an analytic expres-
sion for Var(pr|Nc,) which is obtained from the correlated Gaussian distribution at fixed ¢y,

P(S8pr,Ngp|cp) given by,

1
P(épr,N, =
(0pr,Nenlcn) 2n\/(1—r2)VaI'(pT)Var(Nch)
. . 47
xexl 1 Gpr)? (Na-Na)”  r(New-Na)dpr ] 7
PITZ2 " 2var(pr) ~ 2Var(Na) \/ Var(Ne; ) Var(pr)

where the impact parameter (c;) dependence on the right hand side is implicit, we have used r
to represent ry,, and as explained above instead of [pr], we use pr = [pr] - Ppro. The linear

correlation between [ pr] and N, can be understood as,

[OO [Oo 8p1 (N = Nep)P(8 pr,Nep)dN,d 8 pr = r\/Var (N, ) Var (pr) . (4.8)

A characteristic of the two-dimensional Gaussian distribution is that its marginal distributions
which are obtained by integrating over one of the variables, are also Gaussians. Integrating
Eq. (4.1.3) over O pr, one recovers Eq. (4.2). Similarly, integrating Eq. (4.1.3) over N, one
obtains the distribution of é pr at fixed cy:

1 (5]?T)2 )
P(8 - B ' '
k)~ vy et 7

Another interesting property of the two-dimensional Gaussian is that if one of the variables

is fixed, let us say N, the distribution of the other variable, e.g. dpr, is also Gaussian. The
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Transverse momentum fluctuations in ultracentral collisions

distribution of 0 pr at fixed N, and ¢, is defined by,

P(Opr,Nenlcp)

P(8pr|Nen,cp) =

P(Nepcp) A
N S, [_(5PT—K1(Cb))2] (10
B \/271'1(2(6‘17) P 2K2(Cb) ’

where we omit the dependence on N, in the right-hand side. The coefficients k;(c;) and k> (cp)

represent the mean and the variance of 6 py at fixed N, and cy,, given by:

Var(pr|cy)

Var(Nex|cp)
GPT(Cb) —
r—————— (Nen —Nen(cp) ) 5
GNch(Cb) ( ( ))

and K (cp) = Var(pr|New, ) = (1-7%) Var(prlep) = (1-77) O'I%T(cb) )

K1(cp) = pr(Napscp) =7 (Noh—=Nen(cp))

4.11)

where we omit ¢,-dependence of r as per our assumption.
The n' order moment is obtained by multiplying Eq. (4.10) with & P and integrating over

O pr. The first and second order moments are given by :
(pry=x1 and (Sp})=ki+ks, (4.12)

where the dependencies on ¢; and N, are implicit. These moments are then averaged over ¢y,
to obtain only the N_;,-dependence which can be compared to the data. The mean and variance
of pr at fixed N, are finally constructed using the cj-average of the moments in Eq. (4.12) as,

<5pT|NCh> = (Kl >Cb = (B_IJT(NCflacb)>Cb )
Var(pri) = 63+ ) =, = 067 0, ) G iy

= ((5_17T(Nch,cb)2)c,, - (6_17T(Nch,cb))gb) +(Var(pr|Nen,cp))ey »

with,
1

P(Nch)

1 1
(...)Cbzfo . .P(cy|Nop)dey = fo ..P(Napley)dey 4.14)

where we have used Eq. (4.1)? in the last line. Putting the explicit expressions of & p7(Ney,cp)
and Var(pr|N,cp) from Eq. (4.11) into Eq. (4.13), we obtain the multiplicity dependence
of mean (average) of 0 pr and variance of pr. The first term of the expression for variance

in Eq. (4.13), denoted within bracket, stems from the variation of d pr(N.;,cp) with impact

2¢p, is the cumulative distribution of b, therefore, P(c;) = 1 by construction.
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4.1 Variance of [ pr |-fluctuation

parameter, reflecting the contribution of b-fluctuation to [ pr ]-fluctuation. We refer to the second
term as the intrinsic variance (or intrinsic fluctuations), in the sense that it is not a by-product of
impact parameter fluctuations. We will see that both terms are of comparable magnitudes below
the knee, and most importantly the first term explains the peculiar pattern (steep fall) observed
for large N,,. The variance Var(pr|N,;) is fitted to the ATLAS data in Fig. 4.1 (left) with three
parameters 0, (0), o and r,,, details of which are provided in Appendix B.2. The fitted values
of these parameters are shown on the figure.

4.1.5 Fit results: Thermalization and predictions for mean (6 pr)

Let us first examine the distribution of 8 p7 and N, returned by our fit, shown in the left panel
of Fig. 4.4. The white curves represent 99% confidence ellipses at fixed impact parameter [325],

which are drawn using the probability given by Eq. (4.9). It can be seen that they are tilted
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Fig. 4.4 Joint distribution of 6 pr and N, (left) or E7 (right), obtained from the fit of our model and
integrating Eq. (4.7) over c,. The white curves are 99% confidence ellipses at fixed impact parameters,
obtained from the correlated Gaussian distribution in Eq. (4.1.3) at fixed values of ¢;,. Schematic
representation of two nuclei colliding with these impact parameters are also shown. The black line is the
mean value of 6 pr (Eq. (4.13)), and the red band is the 1-c band, representing square-root of the red line
in Fig. 4.1. The figure is from the original publication [126], coauthored by the author.

with respect to the horizontal axis, similar to the hydrodynamic calculation of Fig. 4.2. This tilt
reflects the positive correlation between 0 pr and N, parameterized by ry,,. As explained above,
this correlation is a natural consequence of thermalization. The width of the 6 pr distribution
for fixed N, can be attributed to two contributions. A part of it comes from the fact that several
ellipses contribute for a given N, (first term in Eq. (4.13)), and the rest is due to the vertical
width of a single ellipse (second term in Eq. (4.13)).

The left panel of Fig. 4.1 displays the data and the model fit, along with the two terms of
Eq. (4.13). There exist equal contributions from the two terms below knee. However, above
knee the first term (b-fluctuation) gradually disappears. Thus our model precisely explains

the observed steep decrease of the variance around the knee which comes from the first term,
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Transverse momentum fluctuations in ultracentral collisions

namely, from impact parameter fluctuations at fixed N.,, whose effect becomes negligible in
ultracentral collisions. The magnitude of this term is essentially determined by the correlation
coefficient ry,,, which is thus constrained by data.

As a corollary, we also predict a small increase in the average transverse momentum (0 pr),
represented by a black line in Fig. 4.4, in ultracentral collisions. This effect had been predicted
a while ago [173, 328] and has recently been observed by CMS collaboration [329]. Note that

our model calculation quantitatively predicts this increase.

Using different centrality estimator: Transverse energy Er

A particularity of the ATLAS analysis is the use of an alternative centrality estimator, in
addition to N.: the transverse energy E73. This is defined as energy multiplied by sin 8 and
is measured in two calorimeters located symmetrically on either side of the collision point,
covering approximately the angular ranges 1° < 8 <5° and 175° < 8 < 179°. Our analyses and
results are presented for the observables of interest with both centrality estimators N, and E7,
presented on the left and right panel of the figures respectively. The variance analysis can be
repeated by selecting events based on Er, rather than N, as illustrated in the right panel of
Fig. 4.3. Similarly, our model calculation can be repeated by replacing N, with E7 everywhere.
This serves as a valuable and rigorous check for the validity of our approach.

Although the distributions of N, and E7 are similar in shape (Fig. 4.3 (right)), it could
be seen that the decline above the knee is steeper for E7 than for N;,. Please also note, only
0.26% of events fall above the knee for E7, while for N, it is 0.35%. It is interesting to note,
despite this difference, the observed decrease in variance around the knee remains consistent
for both estimators, as measured by ATLAS (Fig. 4.3 (right)). The parameters o, (0) and ¢,
determining the impact parameter dependence of the variance of [ pr], should not depend on
whether the events are classified according to N, or E7. Therefore, we find the values that show
best simultaneous agreement with N, and E7-based data, discussed in detail in Appendix B.2.

However, the Pearson correlation coefficient g, between [ pr| and E7 is independently fitted
and does not necessarily match ry,. Note that the correlation ry,, pertains to the correlation
between [ pr] and N, for the same particles, whereas rg, pertains to the correlation between
[ pr] and the E7 measured in different angular windows separated by rapidity interval. Therefore
we expect rg, < ry,,, which is confirmed by the fit from our analysis. The similarity in the values

indicates that particle depositions in different & windows are strongly correlated.

4.1.6 Effect of py interval on variance

Another peculiar aspect of the ATLAS analysis is its study of how [ pr]-fluctuations change
with the pr interval. The default analysis involves all particles in the range 0.5 < py <5 GeV/c

3The quantity used as the centrality estimator can be generically denoted as N, can be either N, or E7.
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4.1 Variance of [ pr |-fluctuation

(particles with py < 0.5 GeV/c are not detected, and those with py > 5 GeV/c are likely to be
associated with jets, and not relevant to the collective behavior). Additionally, in this section we
present results for the particles in the range 0.5 < pr < 2 GeV /¢, which excludes about 7% of the

particles as considered in the previous case. The remarkable effect is that the variance decreases
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Fig. 4.5 Same as Fig. 4.1, but for the the transverse momentum range of the particles in: 0.5 < py <
2 GeV/c. One sees that there is a factor of ~ 4 reduction in the magnitude of variance in comparison to
Fig. 4.1 with 0.5 < pr < 5 GeV/c, thus showing the effect of pr interval on pr-fluctuation.

by a factor ~ 4, when comparing these intervals in Figs. 4.1 and 4.5. Strikingly, the phenomenon
is also observed in the hydrodynamic simulations, where the magnitude of d py is reduced by a
factor of approximately 2 for the smaller pr-interval (see Fig. 4.6). Numerically, the variance
representing the average value of & p%, decreases by a factor 4.3 +0.2, aligning with the ATLAS
result.

We provide an estimate how the variance depends on the pr selection. Fluctuations in fluid
velocity cause global fluctuations in the pr distribution, where the tail of the distribution is
largely affected. Thus in hydrodynamics, event-by-event [ pr] fluctuations arise from transverse
fluid velocity fluctuations. The momentum distribution of particles follows a boosted Boltzmann
distribution, where pr appears in the exponent. Thus relative change in the pr distribution

f(pr) = 4N que to a small change in the fluid velocity is linear in pr [330]:

= dpr
f(pT)=(f(pr))(1+X(pT—<pr))), (4.15)
where (f(pr)) denotes the event average of the pr distributions, and (pr) = ([ pr]) given by,
_ [ pr{f(pr))dpr 16
= o (10

is the average pr. Here x is a random variable fluctuating event to event around zero. For a class

of events with the same multiplicity, the integral of f(pr)—(f(pr)) must vanish, making the
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Fig. 4.6 Distribution of 8 py and N, for two different py-intervals: 0.5 < pr <2.0 GeV and 0.5 < pr <5.0
GeV, denoted by red and blue symbols respectively, similar to Fig. 4.2. The results are shown for 150
events in Pb+Pb collision at 5.02 TeV and b = 0 obtained from hydrodynamics. The solid and red curves
denote the 99% confidence ellipses. For the interval 0.5 -5 GeV/c, the value of the average (Eq. (4.16))
Pro is 1074 MeV/c. As one removes particles with higher values of pr, the average value pro decreases
to 970 MeV/c for 0.5-2 GeV/c interval. The straight lines indicate the average value &8 pr (N, b = 0).
The values of the standard deviations (Eq. (4.17)) obtained for the two intervals are 6 MeV/c and 13
MeV/c for 0.5-2 GeV/c and 0.5-5 GeV/c respectively, showing factor of 2 increase (i.e. factor of 4
increase in variance) and reflecting consistency with ATLAS data.

relative fluctuation proportional to pr — (pr), instead of just pr. The fluctuations in transverse
momentum per particle are obtained by integrating the spectrum (4.15) over the pr range used
in the analysis:
o o (T P2 (pr))pr
' s (f(pr))dpr

Pmin

4.17)

We assume the fluctuations are small enough to replace f(pr) with the average distribution
(f(pr)) in the denominator.

The dependence of the right-hand side of Eq. (4.17) on the upper bound pp,ax can be evaluated
using spectra measured by ALICE in central Pb+Pb collisions at the same energy [257], in place
of (f(pr)). We find that lowering pmax from 5 down to 2 GeV/c reduces the right-hand side of
Eq. (4.17) by a factor 2.05, leading to a decrease in variance by a factor 4.23, consistent with
ATLAS observations.

One should note, in this model, the only variable parameter in Eq. (4.17) is the overall factor
x, which sets the fluctuation magnitude. This can be checked in hydrodynamics. First, it could
be checked by eye that in Fig. 4.6, symbols of different types appear in pairs with the same
N, Each pair represents one collision event, and the proportionality factor x in Eq. (4.17)

fluctuates event-by-event. The change in 8 pr # from one symbol to the another in the same pair

“Please note that (8 pr) is the average shown in Fig. 4.4.
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is roughly the same for all events, as suggested by Eq. (4.17). More quantitatively, the Pearson
correlation between the two d pr values for each event (i.e. between 6 pr(0.5 < pr <5) and
opr(0.5< pr <2)) is about ~ 0.97, close to its maximum value 1, implied by Eq. (4.17). The
observed dependence of the variance on the pr selection is another layer of evidence supporting

the hydrodynamic origin of [pr] fluctuations.

Importance of b-fluctuation

It is interesting to note that the impact parameter is a classical quantity. One can calculate its
quantum uncertainty which is negligible: Heisenberg’s principle gives 8b=h/P ~4x10~7 fm for
a Pb+Pb collision at the LHC, insignificant compared to the range spanned by b, of order 15 fm.>
The only classical quantity characterizing a collision is the impact parameter, and collisions with
the same impact parameter differ only by quantum fluctuations. As the collision occurs at high
energy, a single quantum fluctuation can produce a large number of particles, which promotes
such fluctuations to the status of a classical fluctuations. (Elliptic flow in central collisions [324]
and triangular flow [48] are driven by a similar mechanism.) The effect studied here, involves a
subtle interplay between classical fluctuations of impact parameter, and quantum fluctuations of

the collision multiplicity.

4.2 Non-Gaussian features of [pr|-fluctuation : Skewness

and Kurtosis

In the previous section, we discussed the leading order cumulant of [ pr ]-fluctuation i.e. variance.
However, one could also think of higher order cumulants, namely skewness and kurtosis of
[ pr]-fluctuation, which can also exhibit interesting features in ultracentral collisions. The
observed decrease in the variance above the knee is caused by the decrease of impact parameter
fluctuations with the increase in multiplicity at the ultracentral regime. In this section, we will
show that the same mechanism is also responsible for strong non-Gaussian characteristics of
the fluctuations of [ pr] in ultracentral collisions.® Using the same model of [pr] fluctuations
outlined above, we present robust quantitative, parameter-independent predictions for skewness
and excess kurtosis, which characterize standard measures of the non-Gaussianity.

>Note that in event-by-event simulations, the impact parameter is correctly defined only if each nucleus is
recentered after randomly drawing nucleon positions. The recentering correction is larger by orders of magnitude
than the quantum uncertainty. It is however not implemented in the simulations shown in Fig. 4.2, but this does not
alter the conclusions we draw from the figure.

61t has already been observed that hydrodynamic calculations imply a significant skewness of [p7] fluctua-
tions [307], but the crucial role of impact parameter has not been studied.
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4.2.1 Non-Gaussianity from a simplified model

We begin by explaining the origin of non-Gaussian fluctuations based on a simplified model, in
which [pr] is a single-valued function of N, and c,. In other words, [ pr] does not fluctuate if
we fix both N, and c;,. Given that the variation of ¢, at fixed N, is small, the dependence of
[pr] on ¢, can be linearized:’

[pr]= PP + ey, (4.18)
where p‘Tmn and A depend on N,,. This approximation in turn means that the correlation
coefficient between [pr] and N, r assumes a value close to 1 8. The probability distribution of
[pr] at fixed N, is then determined by the probability distribution of ¢;, at fixed N,. The latter
one, denoted by P(cp|N.y,), is obtained using Eq. (4.1) and from the probability distribution
of N, at fixed ¢, (Eq. (4.2)), which we have assumed above to be Gaussian. For ultracentral
collisions where ¢;, << 1, one can neglect the dependence of oy, on c;, and then the variation of

the mean can be linearized as:
m(cb) :Nknee_ﬁcb» (4.19)

where Nipee = N,;,(0) and § determines how mean multiplicity decreases with centrality. As was
done earlier, the values of these parameters can be obtained by fitting the measured distribution
of N, P(N.,)(Fig. (4.3)). From the numerical fit, we obtain the values of the parameters as:
Ninee = 3680, oy, = 168, B = 18300, similar to Table 4.1.

With the linear approximation, the probability distribution of ¢; for fixed N, is then given

by,

P(Cb|Nch) =

P(Neplcp) ocexp(—(NCh_Nknee+Bcb)2) (4.20)

P(Nch) 26]%]

ch
where we have used Egs. (4.1) and (4.19). Eq. (4.20) indicates that the distribution of ¢}, is
Gaussian, with a width oy, /B ~0.9%. However, this distribution is not a full Gaussian, but
rather a truncated Gaussian distribution, which is truncated on the left because of the boundary
condition ¢, > 0 [66, 67]. Consequently, Eq. 4.18 suggests that the probability distribution of
[pr] is also a truncated Gaussian, subject to the boundary condition [p7] > pi". The truncated
Gaussian distribution for [ pr] is obtained from Eq. (4.20), with the condition that [ pr] is given
by Eq. (4.18). This results in the solid curves shown in Fig. 4.7, which are truncated on the left
due to the lower limit of [pr] (cp).

This truncation has several effects which lead to peculiar patterns for the cumulants of
[ pr]-fluctuation in the ultracentral regime. First, the distribution of [pr] becomes narrower

(Fig. 4.7), which results in a decrease of the variance, which we have discussed and is reflected

"Note that observables depend quadratically on ¢;, for small b due to symmetry reasons [331], which percludes
a dependence of the type ,/c;, for small b.

8This could be understood if we consider the hydro results in Fig. 4.2 (right). If [pr] (or equivalently &pr)
does not fluctuate at fixed ¢, and N, then the values of 8 pr coincides with the average E(Nch,cb) given in
Eq. (4.11) making r — 1.
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Fig. 4.7 Probability distribution of [ pr ] at fixed multiplicity N, for various values of N,;,. If the centrality
is defined according to N, these values of N, correspond to the centrality fractions, from top to bottom,
2.2%, 1.1%, 0.3% and 0.04%. Similar to previous figures, we plot the distribution of 8 pr rather than
[pr] . The distributions obtained with the simplified model are denoted by the solid lines, where [ pr ]
only depends on N, and impact parameter (Eq. (4.19)) and it does not fluctuate if both are fixed. The
results with a more realistic model are represented by the dashed lines, assuming Gaussian fluctuations of
[pr] at fixed N, and ¢, obtained from Eq. (4.21), which is referred as “full model” on the figure. The
figure is from the original publication [127], coauthored by the author.

in Figs. 4.1 and 4.5. Second, the truncation gives rise to non-Gaussian features such as skewness

and kurtosis, which we discuss below.

4.2.2 Skewness and kurtosis from the full model

In reality, in addition to the effect of impact parameter fluctuations, [ pr] fluctuates even if both
¢p and N, are fixed, as seen in Fig. 4.2 and expressed via Eq. (4.10), which we referred as the

intrinsic fluctuations previously. The distribution of 0 pr at fixed N, is obtained by averaging
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Eq. (4.10) over the impact parameter:

1
P(8priNa) = [ P(8priNanscs)P(colNon)des

1

!
= P
PN ./0 (0pr,Nenlep)dep,

4.21)

where we have used Egs. (4.1) and (4.10) to arrive at the last line. The distributions P(dpr|N.;,)
are shown by the dashed lines in Fig. 4.7 for selected values of N, close to the knee. The solid
lines in this figure, representing the truncated Gaussian, are obtained by setting the correlation
coefficient to its maximum value r = 1, corresponding to the simplified model in Eq. (4.19). Note
that when r — 1, the variance k(¢ ) approaches zero and P(8 pr|N,cp) collapses into a Dirac
delta function 6 (6 pr — k1 (cp) ), which implies that & pr is solely determined by N, and c;,.

Similar to Eq. (4.12), the third and fourth moment of 8 p7 is obtained by multiplying Eq. (4.9)
with 6 p3. and & p} respectively and integrating over 8 pr:

(6p%~>:K13+3K2K'1 s (422)
(8p3) = k! +610K7 +3K3, '

where again the dependence on ¢; on the right-hand side is implicit. Averaging the above

moments over ¢, and using the third and fourth order cumulant formula we find the skewness

and kurtosis 2:
Skew(pr|Noy) = (<K13>—3<’<12)(K1)+2(K1)3)+3((K2K1)—(Kz)(1€1)) ,

Kurt(pr|Nen) - (<r<i‘>—4<1<f><1<1>+6<K%><K1>2—3<K1>4)
(4.23)

+6((K2’<iz)—(Kz>(K12>—2(K2K1)<K1)+2(’<2)(K1)2)
+3(<K§>—<Kz>2) ,

where angular brackets denote averages over ¢, : (...) =(...), and the N, dependence on
the right hand side has been omitted. The expression for skewness has two terms: the first
term involves k7 only, and the second term is proportional to the correlation between x; and
K». The excess kurtosis has three terms: two of which are similar to skewness and the third
term is proportional to the variance of k». The skewness and the kurtosis capture the non-

Gaussian characteristics of the event-by-event fluctuations of [ pr]. In our model, we assume

9Note we do not consider intrinsic skewness and consider only excess kurtosis, because our model is based
on a Gaussian fluctuation model of b. For a Gaussian distribution (Eq. (4.10)), skewness (k3 (cp,Ny)) is zero and
kurtosis (k4 (cp,Nep,)) is 3. Therefore, our results represent an underestimation of these quantities and will always
lie below the measured values.
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Gaussian fluctuations for a fixed impact parameter. Therefore, any non-Gaussianities in our
model results originate from fluctuations in the impact parameter. In the absence of impact
parameter fluctuations, each term in the above expressions of Skew(pr) and Kurt(pz) would

be zero.

Two parametrization : DUKE vs JETSCAPE

Similar to the analysis of variance, the dependence of the mean multiplicity, N, (cp) and the stan-
dard deviation ON,,(c;;) O Cp Can be inferred from the experimental distribution P(N,;,)(Fig. 4.3).
However, because existing data do not constrain the ¢;, dependence of oy, we avoid mak-
ing assumptions, and instead adopt a more realistic approach. We borrow information from
state-of-the-art models tuned to experimental data via Bayesian analyses. Specifically, we use
the Maximum A Posteriori parameter sets from two sources: one from the Duke group [27]
and another from the JETSCAPE collaboration ( which use the Grad viscous correction to the
distribution function at freezeout) [28]. The JETSCAPE analysis, tuned to a larger dataset that
includes several collision energies, differ from the Duke analysis which is particularly tuned to
5.02 TeV data ( the same energy used in our analysis) and accounts for the nucleon substructure,
which may potentially affect the fluctuations. We evaluate oy, (c,) based on both models,
the method of which is explained in detail in Appendix B.3. The prediction by the DUKE
parametrization is an increase in oy, between b =0 and b = 3.5 fm, whereas the JETSCAPE
model predicts a slight decrease. The difference between these two models provides an estimate

of the errors in our predictions.

4.2.3 Results : Predictions for skewness and kurtosis

We find quantitative predictions for the skewness and kurtosis of [ pr]-fluctuations based on
Eq. (4.23) and using the fit parameters obtained by fitting the variance data in Fig. 4.1. Our
quantitative predictions are displayed in Figs. 4.8 and 4.9. Note that the fit parameters 6, (0)
and « are not the same as Fig. 4.1, because here we take different ¢, dependence for oy,
based on the two different parametrizations: DUKE and JETSCAPE. However the correlation
coefficient r remain unchanged in Figs. 4.1 and 4.8. One can see that, the results on the skewness
and the kurtosis exhibit sharp variations around the knee. In particular, our model predicts
an increase of the skewness below the knee (such an increase has already been seen by the
ALICE collaboration [332], as will be discussed below), followed by a steep decrease above
the knee. The kurtosis, on the other hand, has first a minimum below the knee, followed by
a maximum roughly at the knee and then it encounters sharp decrease. It is interesting to
note that, these peculiar patterns come from the terms involving ki, also caused the sharp
decrease in variance around knee, and are actually inherited from the truncated Gaussian,

reflecting the effect of b-fluctuation at the ultracentral regime. Note that it is possible to calculate
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Fig. 4.8 Predictions for the standardized skewness as a function of N, (left) and E7(right), based on our
model fit to the variance data from ATLAS, and using the Duke and JETSCAPE parametrizations of the
centrality dependence of oy, (Appendix B.3). The difference between the two parametrization is sizable
and it is shown as a gray shaded band, thereof serves as error in our prediction. The various terms in
Eq. (4.23), contributing to skewness, are shown for the Duke parametrization only. The figure is from the
original publication [127], coauthored by the author.

the cumulants of the truncated Gaussian (Fig. 4.7) analytically. Quantitatively speaking, the
maximum skewness occurs around N, ~ Ngpee — On,, ~ 3510, while the kurtosis reaches a
minimum at N, =~ Ngpee — 20y, ~ 3340, followed by a maximum at N, ~ Ngpee ~ 3680. These
numerical values correspond to the structures seen in our model results.

Our predictions show a little dependency on whether one adopts the Duke or JETSCAPE
parametrization to characterize the centrality dependence of the multiplicity fluctuations. In fact,
the primary limitation of our model lies in assuming a Gaussian distribution for [ pr | at fixed N,
and b. Since [ pr] is inherently positive, it naturally exhibits a positive skewness k3 and a positive
excess kurtosis k4. These factors additionally give positive contributions to Skew(pr|N,;) and
Kurt(pr|N.y,) in Eq. (4.23), in the form of (x3) and (k4). One should consider our predictions
as lower bounds both for the skewness and for the kurtosis. Precise quantitative predictions of
the values of these additional terms would require extensive hydrodynamic simulations with
high statistics. However, we can safely comment that these additional contributions should
have a smooth dependence on N, resulting in a positive offset from our predictions. The
sharp variations of the skewness and kurtosis around the knee in Figs. 4.8 and 4.9 are robust,
quantitative predictions.

Like the results for the variance, here also we present predictions based on both centrality
estimators N, (left) and E7(right). However, E7 turns out to be a better centrality estimator than
N_j,, because of having smaller impact parameter fluctuations [331, 325]. In our model, all the
non-Gaussianities arise from the impact parameter fluctuations and hence, both the skewness
and the kurtosis are expected to be smaller if the centrality is determined by E7 instead of
N,p,. This is exactly seen in our predictions (Figs. 4.8 and 4.9). Experimental verification of

these predictions will be essential in assessing the importance of impact parameter fluctuations.
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Fig. 4.9 Same as Fig. 4.8 but for the predictions for the standardized excess kurtosis. The figure is from
the original publication [127], coauthored by the author.
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Fig. 4.10 Predictions for average (8 pr), based on our model, using DUKE and JETSCAPE parametriza-
tion. The difference is negligible for the mean, unlike skewness and kurtosis. The figure is from the
original publication [127], coauthored by the author.

Similar to Fig. 4.4, here also we present predictions on the increase of the average (6 pr) based

on two different parameterizations displayed in Fig. 4.10.

Comparison with ALICE measurements

Finally, let us compare our results with the recent results on the skewness and kurtosis from the
ALICE collaboration [314]. ALICE collaboration uses the amplitude deposited in scintillators
located at forward rapidities as the centrality estimator. This is qualitatively similar to the
Er-based centrality determination by ATLAS. The skewness measurements are performed in the
central pseudorapidity (1) region, again analogous to the ATLAS analysis but with a narrower
n interval. The centrality binning by ALICE is significantly coarser compared to ATLAS, with
each point covering a 5% interval. Our analysis focuses on approximately the 20% most central
collisions. Therefore, our predictions can only be compared with the last four data points from
ALICE, corresponding to the ranges (in TeV) 1.6 < E7 <2.1,2.1 < E7 <2.7,2.7<Er <3.5, and
Er>35.
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Fig. 4.11 Measurement of the standardized (left) and intensive (right) skewness of [ pr |-fluctuation by
ALICE for Pb+Pb. Figure taken from [314].

The quantities shown by ALICE are both standardized and intensive skewness [307] shown
in Fig. 4.11. The standardized skewness measured by ALICE for the last four points (ultracentral,
centrality range of our analysis) is within 0-0.1, with a slight increase for the last data point,
consistent with our prediction. In our prediction, the skewness starts to rise after E7 ~ 4.0 TeV, for
which data from ALICE is not available. The intensive skewness, on the other hand, is obtained
by multiplying the standardized skewness with the average value, (pr), and normalizing by
the standard deviation Var(pr)!/2. We have not evaluated this quantity because we are not
provided with the values of (pr) by the ATLAS collaboration. Given the pr range covered by
ATLAS, an approximate estimate for (p7) might be around ~ 1 GeV/c. We then predict that
the intensive skewness remains relatively constant and approaches approximately 10 within the
interval 1.8 < E7 < 3.5 TeV. In comparison, ALICE reports the values for the intensive skewness
(Fig. 4.11, right) that rise from (slightly below) 4 to (slightly above) 5 over a similar range. It is
important to note that direct comparison of the absolute values is not straightforward due to the
difference in the pr coverage: ALICE covers 0.2 < pr <3 GeV/c, whereas ATLAS considers
0.5<pr<5GeV/c19,

Interestingly in the ALICE data, the intensive skewness is close to 8, in the most central
bin, which is significantly higher than in the previous bins. This last point of the ALICE data
corresponds to the Er interval: E7 > 3.5 TeV, over which our model predicts a rise followed by
a fall of the intensive skewness, peaking at a value ~ 18, below the knee. ALICE measurements
(not shown) on standardized kurtosis (lies between 3.02 - 3.07 for the right most four points)

are consistent with our predictions for excess kurtosis. It is tempting to interpret the ALICE

10The dependence of 0, (cp) on the pr interval is not trivial. How fluctuations of the pr spectrum depends on
pr is at present not known, and assessing it would require to measure the quantity vo(pr) introduced in Ref. [96].
Recently we have found that the observable vo(pr) carries much more significance in relation to [ pr ]-fluctuation.
One can actually capture the pr-interval dependence of the fluctuations through vo(p7). Work on this particular
phenomenon is in progress.
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results corroborating with our predictions and possibly as a first confirmation. It will be useful
if the ALICE analysis is repeated in finer centrality bins, specifying the values of the centrality

estimator in each bin and if they can provide measurements for more ultracentral events.
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Chapter 5

Transverse momentum-harmonic flow
correlations

In Chapter 3, we discussed fluctuations of harmonic flow (v,) and in Chapter 4, we discussed
fluctuations of the mean transverse momentum per particle ([ pr]) in heavy-ion collisions. We
have seen that both of these final state quantities are largely determined by the properties of the
initial state. The harmonic flow is directly related to the initial spatial anisotropy or eccentricities
(€,)[48, 92], whereas the mean transverse momentum of the particles is related to the size of
the initial fireball (R) [303, 96]. Events with a smaller size of the interaction region have larger
energy density gradients, resulting in a larger transverse push during the expansion and hence
larger [pr] at the final state. As a result, the event-by-event fluctuations of v, and [pr] are
governed by the event-by-event fluctuations of the initial state. The fluctuations of the harmonic
flow coefficients could be due to fluctuations of the shape of the initial fireball, as well as due to
dynamical fluctuations in the expansion dynamics. Analogously, fluctuations of [pr] can be
related to the fluctuations of the size of the fireball as well as fluctuations of the initial entropy
or energy (S or E;) [97, 128]. Therefore, naturally one can expect that these two final state
quantities, [ pr] and v, are correlated.

The Pearson correlation coefficient between the mean transverse momentum per particle
and harmonic flow coefficient, p([pr],v?2), first introduced by P. Bozek [95], hence sometimes
referred as Bozek coefficient [106], serves as an excellent tool to study the correlation between
collective observables at the final state and a fine probe to the correlation present in the initial
state [186, 96, 97, 225, 128]. Another significant importance of this correlator p is that it can
be used as a fine tool to study nuclear structure and deformation in high energy heavy-ion
collisions [110, 106, 108, 98], which we will discuss in detail in the next chapter. Moreover
it can be used in Bayesian analysis to put precise constraints on the initial state and medium
properties of the QGP [333, 28, 334]. The observable p([pr],v2) has been measured in
experiments [100-102, 335, 336] and been studied extensively in models over the past few
years [186, 96-98, 225, 128, 337-340].
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In this chapter, at first we discuss the centrality dependence of p([pr],v2) and higher order
correlations between transverse momentum and different orders of harmonic flow through
normalized symmetric cumulants [237, 99, 273] which put additional constraints on the initial
state properties and correlations. In the second part, we include momentum dependence within
the harmonic flow and construct the correlation coefficient between [ pr | and differential flow
va(g)'. This provides the momentum dependent measure of the correlation coefficient and
further constrain the initial state parameters. The following sections are, for the most part,

presentations from the original publications [128, 129], coauthored by the author.

5.1 Correlation between | pr| and integrated flow v,

Let us first consider the correlation between mean transverse momentum per particle [ pr | and
squares of the harmonic flow v2, which could be constructed as Pearson correlation coeffi-
cient [95, 186] at the lowest order or as higher order correlations involving different orders of
flow through the symmetric cumulants [99, 273].

5.1.1 Pearson correlation coefficient : p([pr],v2)

The Pearson correlation coefficient, first proposed in [95], between the mean transverse momen-
tum per particle and the harmonic flow, can be used to measure the event-by-event correlation

and it is defined as,
Cov([pr],va)

p([prlv;) = N TR (5.1)
where the covariance is given by,
Cov(lprlvi) = ([pr ViV, ) = ([pr ){(VaVir ) (5.2)
and the variances in the denominator as,
Var([pr]) = ([pr]?)={[pr])* and  Var(vz) = ((VaV,)?) = (VaVir )*. (5.3)

The Pearson correlation coefficient p ([pr],v2) is particularly robust as it does not depend on
the hydrodynamic response coefficient k,, and essentially insensitive to the medium properties.
Moreover, it is insensitive to statistical fluctuations and picks up only genuine correlation
between mean transverse momentum and harmonic flow coefficients. The covariance in the
numerator of the correlation coefficient in Eq. (5.1) involves three particle correlations, whereas

the variance of the flow harmonic in Eq. (5.3) is a four particle correlator. The experimental

'We do not use the notation p here and use ¢ instead, to denote transverse momentum bins to avoid confusion.
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measurement for the covariance and the variances in Eq. (5.1) involves up to three or four sums

over particles in the event, with self-correlations excluded, as discussed in [95].
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Fig. 5.1 The Pearson correlation coefficient between the mean transverse momentum per particle [ pr | and
the elliptic flow squared v% in Pb+Pb collisions at 5.02 TeV as a function of centrality. The experimental
data shown are from the ATLAS collaboration [102] (blue points). The results of the hydrodynamic
simulations with Glauber initial conditions are denoted by the red squares, the black triangles represent
the results for the correlation coefficient corrected for multiplicity fluctuations (Eq. 5.5) and the star
symbols with the blue dashed line represent the correlation coefficient obtained from the linear predictor
(Eq. 5.6). The figure is from the original publication [128], coauthored by the author.

To calculate these quantities in our model, here also we simulate Pb+Pb collisions at
V3NN = 5.02 TeV using the boost invariant version of MUSIC [216] with the initial energy
densities obtained from the two-component Glauber Monte Carlo model [280] in each event.
The details of the model for the initial density can be found in [95]. Unless otherwise specified,
we use a constant shear viscosity to entropy ratio 1 /s = 0.08 for the hydrodynamic evolution.

Fig. 5.1 shows the model results for the centrality dependence of the transverse momentum-
elliptic flow correlation coefficient p([pr],v3) along with the experimental data from the
ATLAS collaboration [102]. The model calculations for p([pr],v3) follow a qualitatively
similar centrality dependence as compared to the ATLAS data [102]. In particular, the correlation
coefficient p([pr],v3) decreases in the most central collisions as well as in peripheral collisions.
Both the data and the model calculations show a sign change in peripheral collisions. However,
It can be seen that the change of sign for p ([ pT],v%) occurs at different centralities, with the
model calculation changing sign in more central collisions as compared to the data.

The correlation coefficient for the triangular flow p([pr],v3) and the quadrangular flow
p([pr],v3) are shown in Fig. 5.2. The measured correlation p([pr],v3) is small as compared
to our model results. Moreover, our simulation results cannot describe the full features of the
experimental data. Such discrepancies observed between the data and simulations results for
p([pr],v3) may stem from some underlying physics of the dynamics in the model or it could
indicate that we are missing in our model calculations some essential correlations present in the

initial state. For peripheral collisions with very low multiplicities, some correlations may be
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Fig. 5.2 Left: The Pearson correlation coefficient between the mean transverse momentum per particle
and the triangular flow in Pb+Pb collisions at 5.02 TeV as a function of centrality. Right: The same for
quadrangular flow. The symbols are same as Fig. 5.1. The left panel of the figure is from the original
publication [128], coauthored by the author.

attributed to the presence of non-flow contributions and/or the initial flow, but why a significant
discrepancy for p([pr],v2) occur at the mid-central collisions, is unclear. The correlation

coefficient p([pr],v?3) is the prediction based on our model.

Correction for multiplicity fluctuations: Partial correlation

Along with the mean transverse momentum per particle and harmonic flow, the multiplicity
also fluctuates event-by-event. As a result, the correlation between [ pr] and v2 may partially
originate from the correlations of these quantities with the event multiplicity N (We denote
multiplicity in an event by N = N,;,). Usually the experimental analysis is performed in narrow
bins of centrality, where such residual correlation can be significantly reduced. To tackle this
effect in model calculations, the dependence of the variance or covariance of the observables of
interest on the fluctuations of a third variable, (e.g. here the multiplicity) are taken into account
by calculating the partial variance or covariance [341]. The partial correlation coefficient

between [pr] and v2 is given by,

p(pr) ) -p(Lpr NP (N, 12)
V1-p([pr].N)2/1-p(v2,N)?

which provides an estimate of the correlation coefficient in a centrality bin at fixed multiplic-

p([pr],vieN) (5.4)

ity [280]. Figs. 5.1 and 5.2 show the results for the partial correlation coefficients, denoted by
black dashed line. One can see that there is sizable correction due to multiplicity fluctuations
for the elliptic flow. Moreover, the model results obtained for p ([ pT],v%) after correcting for
multiplicity, is closer to the experimental data in comparison to the uncorrected one (red solid
lines). However, for p([pr],v3) and p([pr],v7), the correction are not so significant and both
of the calculations lie close to each other.
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In general, if an observable O has an approximately linear dependence on the multiplicity in
a given bin, then the correction for multiplicity fluctuations to O can be implemented as [96],

_Cov(O,N)

0= Var(N)

(N=(N)) , (5.5)
where O denotes the multiplicity-corrected observable. In principle, one can use the above
equation for [pr] and v2 and calculate p([pr],vZ). This is equivalent of using the formula
for the partial correlation coefficient presented in Eq. (5.4). Later in this section, we use the
corrected observables O while estimating the higher order cumulants/correlations to remove the
effects of multiplicity fluctuations.

In order to compare with the experimental data, obtained in narrow bins of multiplicity, the
model calculations should always be corrected for the multiplicity fluctuations and only then
it should be compared. If the experimental multiplicity bins are wide or a different centrality
estimator (as discussed in the previous chapter) is used for defining centrality bins, a correction
for the observables using Eq. (5.5) should be done (where N will denote the centrality estimator)
in order to establish a consistent description of correlations and cumulants between different

experiments and model calculations.

5.1.2 Mapping to initial state: Linear predictor

The collective observables in the final state of heavy-ion collisions are largely determined by the
initial conditions of the collision. In particular, the mean transverse momentum per particle [ pr]
and the harmonic flow coefficients v, are strongly correlated to these properties of the initial
state[92, 76, 187, 303]. As discussed in Chapter 3, the harmonic flow coefficients can be mapped
to the spatial anisotropy or eccentricities €, of the initial density distribution (Egs. (3.15),(3.16)
and (3.18)), therefore resulting in a strong correlation as seen in Figs. 3.6 and 3.7. The mean
transverse momentum per particle, on the other hand, can be related to the the RMS size of
the transverse profile R (Eq. 3.8) [342, 305], the total initial entropy S (Eq. 3.7) as well as the
initial eccentricities. Fig. 5.3 shows the scatter plot between the mean transverse momentum and
transverse size R on the left, and between mean transverse momentum and total entropy per unit
elliptic area S/A, on the right, where A, = TR?\/1 - 822 denoting the elliptic area of the initial
transverse profile. The figure shows a strong correlation (negative) between [ pr] and R, as well
as a significant correlation (positive) with the total entropy S and ellipticity of the initial state &,.

The anti-correlation between the mean transverse momentum per particle [pr] and the
transverse size R observed in Fig. 5.3 (left) can be understood by the same thermodynamic
argument presented in Chapter-4. If we fix the multiplicity (i.e. initial entropy), then a smaller
transverse size implies a smaller collision volume, and hence larger density. Then by relativistic
thermodynamics, it means larger temperature and eventually larger pressure gradients which

results in larger energy per particle or larger transverse momentum per particle [ pr]. The reverse
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scenario occurs when R is large which produce smaller [ pr]. Similar argument can be made
for explaining the positive correlation between [pr] and S at fixed collision volume, this is
equivalent to dividing the event-by-event total entropy by the transverse area. At fixed collision
volume, a larger entropy means a larger density and hence by the same principle of relativistic
thermodynamics, it produces larger transverse momentum per particle at the final state resulting
in the strong positive correlation observed in Fig. 5.3 (right). As an alternative way, [ pr] can be
also predicted from the initial energy per rapidity (E;) [97] or the energy weighted entropy [96].
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Fig. 5.3 Left: Scatter plot between event-by-event mean transverse momentum per particle and transverse
size of the initial source for 0 — 5% centrality in Pb+Pb collision at 5.02 TeV obtained with TRENTO
initial condition. Right: Similar scatter plot between mean transverse momentum per particle and total
entropy per unit elliptic area.

The correlation present in the initial state between these quantities can be captured by
constructing an appropriate predictor for [ pr] and v,. It was proposed [186] that in order to
construct a predictor for the Pearson correlation coefficient between the mean transverse mo-
mentum per particle and the elliptic or triangular flow, the initial state eccentricities should also
be included in the predictor for the transverse momentum [ pr]. According to Ref. [186], such
an improved predictor can well describe the transverse momentum-harmonic flow correlation
p([pr],v2), in connection to the full hydrodynamic simulation. Therefore, for our analysis we

use general linear predictors for [ pr] and v,,, based on moments of the initial density?, given by

95 = ko&3 + SR+ B2 8S
03 =k3€3 + 038R+ B35S, (5.6)
[pr]= ([PATD+O‘p5R+ﬁp55+7p5822+AP5832 ,

ZPlease note [ pr] can be simultaneously related to R, S and also &,. In Fig. 5.3 (right), we show the correlation
between [pr] and S/A, which contains all of these quantities in terms of entropy density and hence the correlation
is remarkably strong. But in Eq. (5.6) we construct a general predictor from individual quantities, in order to
capture the genuine correlations between them through the Pearson’s correlation coefficient and the symmetric
cumulants.
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5.1 Correlation between [ p7 | and integrated flow v,

where the hat symbol is used to denote the observables predicted from initial state in order to
distinguish from the one obtained from hydrodynamic simulations. For any observable O, we
have 80 = O—(0), where (...) denotes the event average of the observable and the coefficients
sitting before each moments can be thought as hydrodynamic response coefficients. One can

also write the linear predictor in Eq. (5.6) in a generalized form,
80;=LIsM; (5.7)

where M; is a set of moments of the initial density and Llj are the response coefficients. In our
analysis we optimize each of the observables in Eq. (5.6) separately. Only after the parameters
or the response coefficients are fixed for a linear predictor, the cumulants and correlation are
calculated between the predicted observables. Using Eq. (5.7), the covariance or the correlations
between the final state observables can be expressed as a linear transformation of the correlation
at the initial state,

(80i...80;) =L} ... L5(6M...8My) . (5.8)

Figs. 5.1 and 5.2 show the results for the correlation p([pr],v2) calculated using the
linear predictors in Eq. (5.6), presented by blue lines. The results are in fair agreement with
the corresponding correlations calculated from hydrodynamic simulations. This shows the
robustness of the linear predictors and how well it can capture the initial state correlations.
This also establishes the fact that the Pearson correlation coefficient (and aslo the higher order
cumulants, as we will see shortly) involving the final state observables can be understood as
a linear hydrodynamic response of the correlations present in the initial state. Note that the
correlation p([pr],v4) cannot be predicted using the set of linear predictor used in our analysis.

Therefore in Fig. 5.2 (right), we only present the results obtained from hydrodynamics.

5.1.3 Higher order correlations: Symmetric cumulants

Pearson correlation coefficient p ([ pr],v2) represents the leading (lowest) order correlation be-
tween mean transverse momentum per particle and the harmonic flow coefficient, and it involves
flow harmonic of a specific order. However, in order to understand additional information on
such correlations and interplay between transverse momentum and different orders of flow har-
monics, one needs to look into higher order correlations. Study of such higher order correlation
coefficient is also useful to understand the higher order and mixed correlations present in the
initial state. A correlation of order larger than 2, between mean transverse momentum and flow
harmonics cannot be constructed using Pearson correlation coefficient and one needs to resort
different constructions such as symmetric cumulants (SC). Such symmetric cumulants between
the magnitudes of the harmonic flow of different orders have been studied [237]. We adopt

similar methodology in order to construct SC between [pr] and v/s.
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2nd order normalized symmetric cumulants (NSC)

We start with the second order symmetric cumulants in analogy to the Pearson correlation
coefficients. The second order SC is simply the covariance between two observables

SC(A,B) = (AB) - (A){(B) = Cov(A,B) . (5.9)

Then the normalized symmetric cumulant (NSC) is obtained by scaling the above equation by

the individual mean of the observables involved in SC. In case of correlation between transverse
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Fig. 5.4 Left: Normalized symmetric cumulant between mean transverse momentum per particle and
elliptic flow coefficient in Pb+Pb collision at 5.02 TeV as a function of centrality. The red squares
denote the results obtained from hydrodynamics and the black triangles denote the results corrected for
multiplicity fluctuations. The blue stars represent the cumulant obtained from the linear predictor. Right:
Same for the triangular flow.

momentum and harmonic flow of a particular order, NSC can be defined as,

NSC([pr],v2) = ([pT](V[%;T_]g[(’;ZT;)(V%) . (5.10)

The normalized symmetric cumulants NSC([pr],v2) for the elliptic and triangular flow are
shown in Fig. 5.4 . NSC([pr],v3) represents the event by event correlations between the mean
transverse momentum and the harmonic flow and this information is contained in the covariance
of the two observables in the numerator. This implies that NSC([pr],v2) basically carries
the same information as the correlation coefficient p(pr,v2), which is reflected in the results
of Fig. 5.4. However, the orders of magnitude of the correlation are changed because of the
changed normalization. Furthermore, it should be noted that the experimental extraction of
normalized symmetric cumulant is simpler than the Pearson correlation coefficient p. This is
because the denominator of Eq. (5.10) involves at most a two particle correlator, whereas the
denominator in Eq. (5.1) requires the measurement of three or four particle correlators. The
definition in Eq. (5.10) is favourable by experiments and also methods for reducing non-flow

effects can be implemented, even in small collision systems [337].
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5.1 Correlation between [ p7 | and integrated flow v,

Third and fourth order NSC

Next, we move to the constructions of higher order NSC, which may contain additional infor-
mation on correlations between mean transverse momentum and harmonic flow. Such higher
order cumulants of only harmonic flow of different orders have been studied [237, 99, 273].
We implement the same methodology for cumulants of [ pr] and vZ. In general, the n-th order
normalized symmetric cumulant involves only the genuine correlation between n observables,
where all the lower order correlations are subtracted. This way it is similar to the construction
of multi-particle flow cumulants discussed in Chapter-3. The third and fourth order symmetric

cumulants for scalar observables are defined as [99],

SC(A,B,C) = (ABC) - (AB){(C) - (AC)(B) - (BC){A) + 2(A}(B)(C) ,
and SC(A,B,C,D) = (ABCD) - (ABC)(D) - (ABD){(C) - (ACD)(B) — (BCD)(A)
—(AB){(CD) - (AC)(BD) - (BC){AD)

+2(<AB><C><D>+<AC><B><D>+<AD><C><B> (5.11)
+<BC><A><D>+<BD><A><C>+<CD><A><B>)
~6(A)(B)(C)(D) ,

and the corresponding normalized symmetric cumulants are given by
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Fig. 5.5 Third order normalized symmetric cumulant between mean transverse momentum per particle,
elliptic flow and triangular flow coefficient in Pb+Pb collision at 5.02 TeV as a function of centrality. The
symbols carry similar meaning as Fig. 5.10. The figure is from the original publication [128], coauthored
by the author.

SC(A,B,C,D)

SC(A,B,C)
(A)(B{CNHD)

D B1C and NSC(A,B,C,D) = (5.12)

NSC(A,B,C) =
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In Figs. 5.5 and 5.6, the simulation results for the third order normalized symmetric
cumulants NSC([pr],v3,v3), NSC([pr],v3,v5) and NSC([pr],v3,v3) are presented. As noted
earlier, for the higher order symmetric cumulants, the effect of multiplicity fluctuations is
reduced by correcting the observables for multiplicity using Eq. (5.5). A first observation is that
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Fig. 5.6 Third order normalized symmetric cumulant between [ pr ], v3 and vJ in the left and between [pr],
v% and vﬁ in the right for Pb+Pb collision at 5.02 TeV as a function of collision centrality. The red squares
and black triangles denote the results obtained from the hydrodynamic simulation without and with
corrections for multiplicity fluctuations respectively. The figure is from the original publication [128],
coauthored by the author.

for all the third order normalized symmetric cumulants, the magnitude of the correlation is much
smaller as compared to p, which confirms the fact that it measures only genuine third order
correlations. The cumulants NSC(pr,v5,v3) and NSC(pr,v3,v3) increase for the peripheral
collisions, whereas the cumulant NSC(pr, v%, vi) show a decrease in peripheral collisions. For
NSC(pr, v2,v3) the linear predictor (5.6), based on the initial correlations only, describes the
full hydrodynamic calculation within centrality range: 0-50%. Like in the previous case, the
cumulants involving v4 cannot be predicted using our linear predictor, so that we only present
the hydro results for them and they could serve as a precise measure of nonlinearities between
harmonic flow of different orders with subtle interplay between average transverse momentum
and flow. The fourth order normalized symmetric cumulant NSC( pT,vz, v3,v 1) is presented in
Fig. 5.7. The results are compatible with zero within the statistical accuracy of our calculation.

For completeness, we also study the third and fourth order NSC between [pr], N and v2,
the results of which are shown in Fig. 5.8. Such correlations involving the multiplicity (or any
centrality estimator) as one of the observable could be sensitive to the fluctuations in the entropy
deposition at the initial state and the correlation of it with its moments. Our simulation results
and the linear predictor show opposite behavior for the peripheral collisions which opens the
scope for further investigation of the peripheral behavior of such higher order cumulants. Please
note that the results presented in this case, for the observables [ pr] and v2, are not corrected for
multiplicity fluctuations, because the cumulant involve multiplicity as an observable within itself.
Normalized symmetric cumulants involving multiplicity might not carry much significance for

spherical nuclei collisions but have a greater importance for deformed nuclei collisions, where
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Fig. 5.7 Fourth order normalized symmetric cumulant between [ pr], v%, v% and vﬁ in Pb+Pb collision at

5.02 TeV as a function of centrality. The symbols have similar meaning as Fig. 5.6.

fluctuations of multiplicity is more significant and can probe deformed structure of the nucleus.

Such effects will be discussed in detail in the next chapter.
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Fig. 5.8 Left: Third order normalized symmetric cumulant between mean transverse momentum per
particle, multiplicity and elliptic flow coefficients in Pb+Pb collision at 5.02 TeV as a function of centrality.
The red squares and blue stars represent the results obtained from the hydrodynamic simulation and the
linear predictor respectively. Right: Fourth order normalized symmetric cumulant between [pr], N, v%
and v%. with symbols carrying same meaning.

Change of normalization: Scaled symmetric cumulants (SSC)

The denominator of the normalized symmetric cumulants in Eq. (5.12) involve averages of
the observables for which the cumulant is calculated. However, with such definitions the
interpretation of the results become less obvious than the Pearson correlation coefficient p. The
average transverse momentum in a collision can depend on many factors [304] such as the
freeze-out procedure, the bulk viscosity, the preequilibrium flow and even the experimental range
for transverse momentum. Moreover, the linear predictor for the mean transverse momentum per

particle in an event Eq. (5.6) can only predict the deviations from the average and the absolute
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Fig. 5.9 Third order scaled symmetric cumulant between mean transverse momentum per particle, elliptic
flow and triangular flow coefficients in Pb+Pb collision at 5.02 TeV as a function of centrality. Symbols
have similar meaning as Fig. 5.5. The figure is from the original publication [128], coauthored by the
author.

value for the average transverse momentum is not provided by the experiments. To overcome all
these limitations, a modification for the normalization of the SC could be necessary.

Such an alternative normalization for the symmetric cumulants can be the standard deviations
of the observables involved in the denominator instead of mean. With that, we construct the

scaled symmetric cumulants given by,

SC(A,B,C)
\/Var(A)Var(B)Var(C) 7
SC(A,B,C,D)
\/Var(A)Var(B)Var(C)Var(D) .

SSC(A,B,C) =
(5.13)

and SSC(A,B,C,D) =

The scaled symmetric cumulant has two-fold advantages. First the prediction of SSC from the
initial state does not require the input on the value of the average transverse momentum, which
is sometimes not known from either the simulations or the experiments. Second, the values of
the scaled symmetric cumulants can be relatively well predicted using the linear hydrodynamic
response (Eq. (5.6)).

Fig. 5.9 shows results for the scaled symmetric cumulant between [pr], v% and v%. The
results display a very similar behavior as the normalized symmetric cumulants presented in
Fig. 5.5. The only noticeable difference is in the order of magnitudes. The numerical values for
SSC are larger as compared to NSC because of the change in normalization. It could be noted
that the sole change of the normalization from the average (mean) transverse momentum to its

standard deviation results in a change by a factor in the range3: 20— 100.

3This effect can be related to the 1% relative dynamical fluctuations of [ p7] discussed in the last chapter
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5.2 Momentum dependent correlation: Between [pr] and

differential flow v,(g)

In the previous section, we discussed the correlations and cumulants between mean transverse
momentum per particle [ pr] and integrated flow v,. One can think of generalizing this class
of observables to momentum dependent correlation coefficients, by introducing transverse
momentum dependence within the flow harmonics. In particular, such correlation coefficient
would read as a correlation between mean transverse momentum per particle in an event [ pr |
and the harmonic flow coefficient in a transverse momentum bin, denoted by v,(q) (here, ¢
denotes a particular transverse momentum bin). Such momentum dependent correlations can
provide useful insights in many aspects. Apart from providing a complementary statistical
information of the event-by-event distribution of those particular observables, [pr]-v,(q)
correlations could shed light on several interesting issues related to heavy-ion collisions, which
serve as motivating factors for engaging in such studies, as outlined below. The momentum
dependent correlation coefficient between mean transverse momentum and differential harmonic

flow

* could help us to understand the observed pr-cut dependence of the correlation coefficients
such as p([pr],v2) [100],

* could provide useful insights on specific modes in the initial state which can be related to

the final state transverse momentum and harmonic flow [342],

* could show sensitivity to nucleon width or granularity in the initial state [98], which plays

a significant role for momentum dependent flow.

* could provide a measure of the correlation between transverses momentum and harmonic
flow independent of the shape of the momentum dependence of the particular flow

harmonics,

* if used for identified particles, it could also test the hadronization mechanism and its
possible dependence on the transverse expansion.

e or, could help in identifying the correlations between mean transverse momentum and

harmonic flow from other models such as the color glass condensate dynamics [343].

In this section, we propose possible definitions for the momentum dependent correlation
coefficient between the mean transverse momentum and the harmonic flow. We mostly focus on
the momentum dependent construction for Pearson correlation coefficients. Similar momentum
dependent higher order cumulants can also be studied but lies beyond the scope of our current
study. We also explore the sensitivity of such correlation coefficients to the granularity in the

initial state and medium properties (e.g. shear viscosity), and propose new covariance that could
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be measured in experiments. We propose alternate simplified expressions for the momentum
dependent correlation that could be used in experimental analyses with lesser difficulty. Like
the previous cases, the simulation results are presented for Pb+Pb collisions at 5.02 TeV energy,
which are obtained from the boost invariant relativistic viscous hydrodynamics code MUSIC,
with initial conditions generated from the TRENTO or Glauber initial condition model.

5.2.1 Pearson correlator: p([pr],vi(q)?) =p([pr],Va(q)Va(q)*)

The momentum dependent construction for the Pearson correlation coefficient between mean
transverse momentum per particle and the harmonic flow coefficient in a transverse momentum

bin can be defined as,

Cov([pr],Va(q)Va(q)*)

- JVn Vn * — Y
p(lpr],Va(@)Va(9)") VVar ([pr]) Var (Va(q)Va(a)*)

(5.14)

where the covariance and variance in the above expression are defined similarly as Egs. (5.2)
and (5.3). The correlation coefficient in Eq. (5.14) is a function of the transverse momentum,
denoted by ¢ in order to distinguish from [ p7 ] which is not a variable. The quantity V,,(¢)V,(¢)*
denotes the differential harmonic flow in the transverse momentum bin ¢ in an event and is
equivalent to v,(q)? (Eq. 3.47). We write it explicitly in order to distinguish it from V,,V,,(¢)*
(Eq. 3.46) which will be discussed shortly.

Figs. 5.10 and 5.11 (left) show the results for the correlation coefficient p ([ pr],Va(q)Va(q)*)
for the elliptic and the triangular flow. For the elliptic flow, the results are shown for three
centralities: 0—-5%, 30-40% and 60 —70%, whereas for the triangular flow results are shown
only for 0—5%. In the figures, the hydrodynamic results are presented only up to g =2 GeV,
where hydrodynamics is more applicable. However, it should be noted that the measurements
at higher ¢ could be interesting to study non-flow effects, correlations originating from the
color-glass condensate etc. Please also note, in order to maintain clarity, the error bars are shown
on the figures for specific points to show statistical errors in our simulation results. Fig. 5.10
shows that for the elliptic flow, the correlation coefficients p ([pr],V2(q)V2(g)*) display strong
dependence on the transverse momentum ¢ in all centralities. This momentum dependence can
be attributed to experimentally observed dependence of the momentum independent correlation
coefficient, p([pr], v%), on the transverse momentum cuts [100]. Similar dependence on g for
triangular flow in Fig. 5.11 is weak as compared to the elliptic flow. The momentum dependent
coefficient, p ([pr],Va(q)Va(q)*), measures the correlation between the mean transverse mo-
mentum per particle and the fraction of total (momentum averaged or integrated) harmonic flow
at a definite transverse momentum ¢ in an event. Therefore, it does not depend on the specific
shape of the g-dependence of the event averaged harmonic flow (Eq. (3.47)) given by (v,(q)?).
The importance of this momentum dependent construction of the Pearson correlation coefficient
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Fig. 5.10 Left: Momentum dependent Pearson correlation between mean transverse momentum per
particle and elliptic flow, p([pr],V2(q)V2(g)*) in Pb+Pb collision at 5.02 TeV for three different
centralities: 0-5 %, 30-40 % and 60-70 %. The red solid lines denote the results obtained from
hydrodynamic simulations with Galuber initial condition and the blue dashed lines represent the results
corrected for multiplicity fluctuations. The horizontal lines denote the correlation coefficients between
the momentum averaged flow, p([pr], v%), serving as the baselines for the momentum dependent curves.
Right: Same but for the other definition of the momentum dependent correlation p([pr],V2V2(gq)*),
where one of the flow harmonics is momentum averaged. The lines and symbols have same meaning as
left plot. The figure is from the original publication [129], coauthored by the author.

is that it removes two significant limitations: dependence on transverse momentum cuts and
g-dependence of harmonic flow (averaged over events).

For completeness, in those figures we also present results for the momentum independent
correlation coefficient p([pr],v2), plotted as the horizontal solid lines, serving as the base-
lines for the momentum dependent coefficients. It is important to note that the correlation
coefficient for the momentum averaged or integrated flow, p([pr],v2), is not simply equal to
the momentum average of the correlation coefficient for momentum dependent or differential
flow p ([pr],Va(q)Va(g)*). In particular, it turns out that the observed g-dependence of the
correlation coefficient as seen in Figs. 5.10 and 5.11 is due to its construction which involves the
ratio of two average quantities, namely the covariance and the variance, which are individually
momentum dependent. Later in this section, we discuss this in detail by directly comparing the
two covariances, Cov ([ pr],Vu(q)Va(q)*) and Cov ([ pr],v3).
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Fig. 5.11 Same as Fig. 5.10 but for the triangular flow and only for 0-5 % centrality. The figure is from
the original publication [129], coauthored by the author.

Like the momentum averaged case, the momentum dependent Pearson correlation coefficient
between mean transverse momentum and harmonic flow is impacted by the multiplicity fluctua-
tions in a specific centrality bin, as in our calculation we use wide bins of centrality. Therefore,
we correct both quantities [pr] and V,(g)V,(¢g)* for the multiplicity fluctuations in each cen-
trality bin using Eq. (5.5). In Figs. 5.10 and 5.11, we also show the results for the correlation
coefficient after multiplicity-correction or at fixed multiplicity, denoted by the dashed lines. It is
seen that the corresponding correction is numerically sizable and hence once again emphasizes
the necessity of such corrections whenever studying similar correlation coefficients. In the
following parts, unless otherwise specified, we always use quantities corrected for multiplicity

fluctuations.

Experimental definition : p([pr],V,V,(q)*)

The correlation coefficient in Eq. (5.14) is difficult to use in experiments. An alternative
definition for the momentum dependent correlation coefficient between the mean transverse

momentum and the harmonic flow can be,

COV([pT]aVnVn(CI)*)
VVar([pr])Var (VaVa()*)

(5.15)

P ([pTLVnVn(Q)*) =

which is constructed in analogy to the experimental definition of transverse momentum de-
pendent harmonic flow (Eq. (3.46)). The difference between the correlation coefficients in
Eq. (5.14) and Eq. (5.15) is similar to the difference between Eq. (3.47) and Eq. (3.46). The
above correlation coefficient p([pr],V,V,(g)*) is relatively easier to measure experimentally.
The denominator of Eq. (5.15), Var(V,V,,(¢)*) is a four particle correlator where only two of
them are restricted to a particular transverse momentum bin, unlike Var (V,(¢)V,(g)*), where

all the four particles are from same bin hence more difficult to measure in experiment especially
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for larger value of q. However, the correlation coefficient in Eq. (5.15) does not have such a
simple interpretation as the coefficient in Eq. (5.14). The results for p([pr],V,Va(g)*), from hy-
drodynamic simulations, are presented in the right panels of Figs. 5.10 and 5.11. The qualitative
behavior of the transverse momentum dependence for the correlation coefficient remains similar
to Eq. (5.14) for all centralities with, however, weaker dependence for p ([pr],V,Va(q)*), in
comparison to p ([pr],V.(q)Vu(g)*). This shows that even though we change the definition
for the momentum dependent correlation coefficient for the sake of experimental measurement,

there is no significant effect on the overall results.

5.2.2 Constraining granularity in the initial state

Granularity in the initial state is defined by the nucleon width w and it is identified by the size of
the region where the nucleons deposit energy (entropy) at the time of the collision. If w is small
then the initial state is more granular and a larger w indicates a less granular initial state. The
information on w is important because it defines the nucleon wave function which is considered
as Gaussian as discussed in Chapter-2. It has been seen that the correlation coefficient between
the mean transverse momentum and harmonic flow is sensitive to the nucleon width or the
granularity of the initial state for the hydrodynamic evolution [95, 98]. Therefore, we study the
same thing for momentum dependent correlation coefficient between transverse momentum and
harmonic flow, where granularity of initial state can have more significant effect. In models,
the granularity of the initial state can be modified by changing the nucleon size, defined by the
wave function of the nucleon. In our analysis, we use TRENTO model to obtain the initial state
for this particular study, where the granularity is changed by changing the 2D Gaussian width w
(described in 2.6.1) associated to each nucleon in TRENTO. Experimental results suggest that
the size of the region where the nucleon deposit energy is small, which corresponds to an initial
state with high granularity [98]. In our analysis, we study this size dependence by changing the
nucleon width in TRENTO with three different values: w=0.3, 0.5, and 0.8 fm.

Fig. 5.12 (left) shows the results for the momentum dependent correlation coefficient
p([pr],Va(q)Vu(q)*), for 20-30% centrality for different nucleon widths. For the elliptic flow,
the correlation coefficient shows a strong dependence on the transverse momentum ¢ for all
granularity. However, the increase of the correlation coefficient with ¢ is less steep for the
initial state with a more granularity 1.e. with smaller w. The effect becomes dominant for
the triangular flow (panel (b). For triangular flow, the correlation even decreases with g for
most granular state having w = 0.3 fm. Specifically, the correlation coefficient shows different
patterns of transverse momentum dependence within the range: g = 0-1.5 GeV for different
w. The momentum independent correlation coefficients (baselines), on the other hand, follow
a particular dependence on the granularity; the correlation decreases as w increases or the

granularity decreases.
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Fig. 5.12 Left: Pearson correlation coefficient p([pr],V,(q)Va(g)*) between the mean transverse
momentum per particle and momentum dependent elliptic flow (a) and triangular flow (b) obtained with
TRENTO initial condition in Pb+Pb collision at 5.02 TeV with 20-30 % centrality for different granularity
of the initial state: w =0.3,0.5 fm and 0.8 fm denoted by red, blue and green colors respectively. The
horizontal lines denote the baselines corresponding to the correlation between the momentum averaged
flow. Right: Same but for the other definition of momentum dependent correlation : p([pr],VaVa(g)*).
The figure is from the original publication [129], coauthored by the author.

The correlation coefficients, p([pr],V.Va(q)*), is shown on the right panel of Fig. 5.12.
The coefficients show a quite similar behavior for the transverse momentum dependence as
p([pr],Va(q)Va(g)*). Again for the triangular flow, the initial state with higher granularity
shows less steep dependence on g and furthermore for this correlation coefficient the difference
between the initial states with different w is the strongest in the range g = 0-1.5 GeV. There-
fore, it would be interesting to verify our model predictions in experiments, particularly for
these correlation coefficient p([pr],Va(q)Va(gq)*) or p([pr],VaVa(q)*), which will put precise
constraints on the parameters of the initial state in the hydrodynamic modeling of heavy-ion
collisions [98]. A comparison of the results in Fig. 5.12 indicates that the momentum dependent
correlation coefficient p([pr],V,V.(g)*) serves as a better candidate to probe the granularity
whereas its experimental measurement is easier than p([pr],V,.(¢)Va(g)*). We will again come

to the effect of granularity later while discussing the momentum dependent covariances.

Viscosity dependence

In order to present a comprehensive picture, discussing the dependence of this momentum
dependent correlation coefficient on medium properties such as shear or bulk viscosity remain
indispensable. In Fig. 5.13, the correlation coefficients for three different values of the shear
viscosity to entropy density ratio 1/s are presented for both definitions and for both elliptic
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Fig. 5.13 Same as Fig. 5.12 but for the comparison of three different values of shear viscosity to entropy
density ratio 1/s: 0.08, 0.12, 0.16 denoted by red, blue and green colors respectively. The figure is from
the original publication [129], coauthored by the author.

and triangular flow. The qualitative nature of the transverse momentum dependence of the
correlation coefficient remain similar for different values of shear viscosity. The dependence
on the shear viscosity is rather much weaker in comparison to the granularity. The change
in shear viscosity causes a overall shift of the curves, without altering the specific shape
for the momentum dependence. The shift is, however, much smaller in magnitude; there
is practically not much difference between 7 /s = 0.08 and 1n/s = 0.12 for both momentum
dependent correlation coefficients and their baselines. Therefore, the momentum dependent
correlation coefficient is not specifically sensitive to shear viscosity according to Fig. (5.13); the
shape of the curves are similar for different values of shear viscosity. The correlation coefficient
between mean transverse momentum and the harmonic flow might not be an ideal candidate
to probe the viscosity of the QGP medium. We have checked that the momentum dependence
on the bulk viscosity of the considered correlation coefficients is similar as the dependence on

shear viscosity.

5.2.3 Addressing experimental challenges: Alternative definitions

The experimental measurement of the momentum dependent correlation coefficient, p ([ pr],
Va(q)Vu(gq)*) is difficult for low statistics at large g. The estimation of p([pr],V,Va(q)*) is
relatively easier but still sufficiently difficult in comparison to the momentum independent
correlation coefficient, p([pr],V,V,S). The main experimental difficulty lies in estimating
the variances in the denominators i.e. Var (V,(q)Vu(q)*) or Var(V,V,(g)*). These quantities

require the measurement of a four (or two) particle correlator in the same transverse momentum
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bin, which turn out challenging for the bins with large g due to limited statistics. Below we
propose alternate and approximated choice for the momentum dependent correlation coefficients

that could be easily used in experiments.
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Fig. 5.14 Momentum dependent correlation coefficient between [ pr] and V,,(¢)V,(g)* for 0-5 % (panel
(a) ) and 30-40 % (panel (b)) centrality in Pb+Pb collision at 5.02 TeV for the elliptic (left) and triangular
(right) flow coefficient. The red lines denote the original definition in Eq. (5.14). The blue dashed lines
denote the approximated definition for the correlation in Eq. (5.16) and the green dotted line denotes
the results obtained with the scaled correlation coefficient in Eq. (5.20). The figure is from the original
publication [129], coauthored by the author.

One of the possibilities would be to use the momentum averaged or integrated variance,
Var (v2), in the denominator within the square root of the correlation coefficient, because it
would be much easier to estimate a four particle correlator in the full transverse momentum
acceptance. But then at the same time we need to divide the new construction with Va(g)Va(a)')

(vii)
(or %) in order to properly retain the momentum dependence. With this, the new modified

approximate formula for the momentum dependent correlation coefficients would read,

Cov ([pr).Va(@)Val)") 03) 516
WVar([pr) Var (2)Va(a)Vala)*)

Pa ([pT]aVn(q)Vn((Z)*) =

and
Cov([pr],VaVa(q)*) (v2) (5.17)

VVar ([pr])Var () (VaVu(q)*)

The approximate formulae in Egs. (5.16) and (5.17) are expected to reproduce very close

pa([pTLVnVn(Q)*) =

results as of the original momentum dependent correlation coefficients in Egs. (5.14) and (5.15),
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because if we take the ratios of the new formulae to the original ones then the factors

VVar (Va(q)Va(g)*){vi)

! (5.18)
\/Var(vn)(Vn(q)Vn(q) )
and
\ Var (V%)<ann(‘1)*)
are consistent with 1 as discussed in Chapter-3 [125].
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Fig. 5.15 Same as Fig. 5.14 but for the correlation coefficient between [ pr] and V,V,,(¢)*. The figure is
from the original publication [129], coauthored by the author.

Another possibility to re-construct the correlation coefficients would be to scale the covari-
ance between the mean transverse momentum and the harmonic flow sitting at the numerator of
those expressions, by the average of momentum dependent harmonic flow squared instead of the
standard deviation. Such modifications are expected to rescale the magnitudes of the correlation
coefficient without changing its specific momentum dependence. The formulae for the scaled
correlation coefficients are given by,

Cov([pr],Va(@)Va(q)*) (5.20)

pe(lprlVal@Vla)) = e s V)

and

* COV([PT]aVnVn(Q)*)
s 7VnVn = . 5.21
o (lpr] (@) Var ([pr]){(VaVa(q)*) 20

The scaled correlation coefficients, ps, are expected to appear as a good approximation of the

original correlation coefficients p when the harmonic flow is dominated by fluctuations i.e when
VVar (Vo(@)Vu(g)*) = (Vu(q)Va(q)*) and \/Var (V,Vi(q)*) = (V,Va(g)*). According to the
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discussions in Chapter-3, this happens in case of elliptic flow in central collision and triangular
flow in all centralities. For completeness, the momentum independent version of the scaled

correlation coefficient would be,

2) - Cov([pr],v3)

pellpr]vz Var([pr])(v3)

which is almost same as the normalized symmetric cumulant between the mean transverse

(5.22)

momentum [ pr] and the harmonic flow vZ as discussed earlier. Moreover, STAR collaboration
has used Eq. (5.22) for studying the nuclear deformation in relativistic Au+Au and U+U
collisions systems [344].

Figs. 5.14 and 5.15 show the comparison between the original momentum dependent
correlation coefficient and the approximated definitions for the momentum dependent correlation
coefficient p ([pr],Va(q)Va(q)*) and p ([pr],VaVa(q)*) respectively for 0—5% and 30 -40%
centralities and for the elliptic and triangular flow. It could be seen that almost in every cases,
within the range g < 2 GeV, the results with the approximated expressions coincide with the
original formula for the correlation coefficient. In particular, the correlation coefficient p, is very
close to the correlation coefficient p in all cases and therefore could serve as a good experimental
estimate of the momentum dependent correlation between mean transverse momentum and
harmonic flow. The scaled correlation coefficient p; also provides equally good approximation
except for the elliptic flow in peripheral collisions where fluctuations have less importance than
the geometry. Therefore, ps can be used in experiment for the triangular flow and for the elliptic
flow in central collisions where fluctuations dominated harmonic flow exists. It should be noted
that all of these approximated formulae represent well-defined measures for the momentum
dependent correlation coefficients between [ pr | and momentum dependent flow harmonics, and
they could be measured in the experiments and compared to the models, although they are not

exactly the Pearson correlation coefficients.

5.2.4 Scaled covariance

As an extension of our study, we also study the momentum dependence of the covariance
between the mean transverse momentum and momentum dependent harmonic flow. The
covariance appears at the numerator of the momentum dependent correlation coefficients,
p ([pr],Va(q)Vu(q)*) or p ([pr],VuVa(g)*), and significantly contribute to their strong depen-
dence on the transverse momentum ¢g. Therefore, it would be interesting to look directly at the
momentum dependent covariances between the mean transverse momentum and the harmonic
flow, which itself is an as good observable as the correlation coefficient and remove the mo-

mentum dependence of the denominator. But of course we have to normalize the covariance
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Fig. 5.16 Normalized covariance between mean transverse momentum [ p7 | and momentum dependent
harmonic flow V,V,,(¢)* for 20-30 % centrality in Pb+Pb collision at 5.02 TeV with TRENTO initial
condition for three different values of w: 0.3, 0.5 and 0.8 fm denoted by red, blue and green colors
respectively. Panel (a) and (b) represent the results for the elliptic and triangular flow respectively. The
figure is from the original publication [129], coauthored by the author.

properly. In particular, momentum dependent normalized covariance can be defined as,

Cov([pr].Va(a)Va(a)")

Covy ([pr],Va(9)Vu(q)*) = Var(orD)02) (5.23)
and
Covy ([pr].VaVa(g)*) = S Uer) VaVa(@)") (5.24)

VVar(lprD(vi)

where the normalization is chosen in a similar way as for the normalized symmetric cumu-
lants between the mean transverse momentum and the harmonic flow coefficients discussed
earlier. It is interesting to note that the baselines for both Covy ([pr],V.(q)Va(g)*) and
Covy ([pr],VaVu(q)*) are given by ps([pr].v3) given in Eq (5.22). Such normalized co-
variances can be useful to constrain the granularity of the initial state in better way, in the sense
that it is relatively easier to measure in experiment in comparison to the full correlation coeffi-
cient. It can also pick up the robust sensitivity of such momentum dependent observable between
[ pr] and harmonic flow, which does not get partially washed out by the similar dependence in
the denominator.

Fig. 5.16 shows the normalized covariance in Eqgs. (5.23) and (5.24) for the elliptic and
triangular flow in 20-30% centrality. It is clearly visible that the normalized covariance between
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the mean transverse momentum and the momentum dependent harmonic flow shows a strong
dependence on the transverse momentum ¢ and a remarkable sensitivity to the granularity of
initial state or the nucleon width w, showing a significant separation between three cases. This
occur due to the absence of momentum dependence in the denominator. The effect is particularly
pronounced for the triangular flow, where a steepest dependence on ¢ is observed for w=0.3
fm in the range of transverse momentum g < 1 GeV, along with a striking difference from the
other two cases. Therefore, the normalized covariance in Egs. (5.23) and (5.24) could serve as
an ideal candidate to constrain the granularity in the initial state of heavy-ion collision upon

successful verification of our results in the experiments.
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Fig. 5.17 Left: Ratio of the momentum dependent and momentum independent covariance between
mean transverse momentum per particle and harmonic flow coefficients for 20-30 % centrality in Pb+Pb
collision at 5.02 TeV for three different values for granularity in the initial state : w= 0.3 (red), 0.5 (blue)
and 0.8 (green) fm. In the upper and lower panel, the numerators of the ratios are with momentum
dependent flow V,,(¢)V,(¢)* and V,,V,,(¢)* respectively. Right: Same as left plot but for three different
values of shear viscosity to entropy ratio 1/s: 0.08 (red), 0.12 (blue) and 0.16 (green). The figure is from
the original publication [129], coauthored by the author.

An alternative way to look into the momentum dependence of the covariance would be
directly studying the ratio of momentum dependent and momentum averaged (independent)

covariance, given by,
Cov([pr],Va(q)Va(q)*)

5.25
Cov([pr].VaVi) ©:29)

and Cov([pr],VuVa(q)*)

Cov ( [pT] ) ann* )

The construction of such observables is possible whenever the denominator is not close to zero

(5.26)

otherwise it will make the ratio to diverge. In Fig. 5.17 (left), the simulation results for the
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covariance ratios in Egs. (5.25) and (5.26) are shown for three different values of granularity
parameter w in collisions with 20-30 % centrality. The covariance ratios show even more
spectacular transverse momentum dependence. For both of the covariance ratios, all lines cross
the baseline of 1, at the average transverse momentum ¢ ~ ([ pr]). Then the lines split at higher
momenta depending on the granularity of the initial state given by w and especially showing
a remarkable difference for g ~ 1-2 GeV. Thus the covariance ratio also shows outstanding
sensitivity on the granularity and could be measured in experiment to constrain w with great
precision.

To complete the picture, the right panel of Fig. 5.17 shows the shear viscosity dependence
of the covariance ratios for different values of 1/s in the same centrality. The results suggest
that the momentum dependence of the covariance ratio has a weak dependence on the value of
shear viscosity. The particular shapes of the momentum dependence of such observable could
be used as an additional constraint on the value of shear viscosity in Bayesian analysis of model

simulation and experimental data [333, 28, 334].
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Chapter 6

Nuclear deformation through heavy-ion
collisions

Nuclear structure is primarily studied in low energy theoretical and experimental nuclear
physics. As we have seen that the information on the nuclear density profile and the Woods-
Saxon parameters are particularly important to sample nucleon positions in a nucleus. Such
information on nuclear structure can be obtained from low energy electron scattering experiments.
So far in our discussions, we were limited to the collision of spherical nuclei i.e. 208Pb+208Pb.
However, the majority of atomic nuclei in their ground state are not spherical and posses an
intrinsic deformation having in the leading order an axially quadrupole or ellipsoidal structure.
Such deformations result in non-zero electric multipole moments of the nucleus with respect
to the nuclear wave function. The deformation is quantified by a dimensionless deformation
parameter 3, [345-347]. Examples of such deformed nuclei are uranium (238U), xenon (12Xe)
etc. which posses a significant non-zero quadrupole deformation ;.

In low energy experiments, information on these deformation parameters are obtained by
measuring the electric multipole transition probability of the nucleus from the ground state to
excited states [345, 346]. In low energy theory and simulations, the structure and deformation
parameters are estimated through ab-initio calculations [348-351]. On the other hand, high-
energy nuclear experiments or relativistic heavy-ion collisions can serve as an excellent platform
for nuclear structure and deformation studies [347, 104, 106, 109, 119, 122]. In particular, over
the last few years, there have been numerous theoretical [103, 347, 104—118, 352, 353] and
experimental [119-123, 101, 102, 124] efforts to study deformed nuclear structure of heavy
nuclei through high energy relativistic heavy-ion collisions at RHIC and the LHC energies. At
RHIC, most of these studies have focused on the structures of nuclei such as 238U, 197 Au and
isobars such as °Ru and %°Zr. At the LHC, the study of collisions with the deformed xenon
nucleus 29Xe along with its comparison to spherical lead nuclei 2°8Pb, has served as a candidate

for nuclear deformation studies.
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The deformation of nuclei has a direct impact on the shape and the geometry of the initial state
of heavy-ion collisions, leaving a significant effect on fluctuations and correlations of collective
observables in the final state. Especially, the quadrupole deformation of the uranium nucleus is
found to have a substantial effect on the event-by-event mean transverse momentum per particle
[pr] and harmonic flow coefficients V,, [104, 106]. As a result, the correlations, cumulants
and the fluctuation-probing factorization breaking coefficients between those observables are
found to exhibit a distinctive behavior [104, 106, 128, 130], paving the path to probe the
deformation parameter 3, through heavy-ion collisions. In this chapter, we will discuss the
observables that are discussed in the earlier chapters, for U+U collision at RHIC energy, which
could put exclusive constraints on the quadrupole deformation (f3;) of uranium nucleus. The
following sections are, for the most part, presentations from the original publications [128, 130],
coauthored by the author. We denote the quadupole deformation by 8 for simplicity, as we will

limit our discussion to only quadrupole deformation of uranium nuclei.

6.1 Collision of deformed nuclei

If two deformed nuclei are collided in a collision, then the geometry and shape of the overlap
region is directly impacted by the deformed structure of the nuclei. This effect is translated to
the final state observables such as mean transverse momentum per particle [ pr | and harmonic
flow V,, through hydrodynamic expansion. Therefore, to understand how the deformed structure
affect these quantities, first we need to implement the nuclear deformation in the Woods-Saxon
density distribution for such nuclei, which is used for sampling the nucleon positions in those

nuclei before collision.

Woods-Saxon density distribution for a deformed nucleus:

The mass density distribution for a deformed nucleus with axial symmetry is given by three
parameter Fermi distribution function with Woods-Saxon parametrization [347, 134, 104, 109,

116],
Po
p(r,0,9) = - :
1+6Xp[r R0(1+IZY2,0(9,¢)]

where only the leading order quadrupole deformation is considered, identified by the dimension-

6.1

less quadrupole deformation parameter (= 32), which is most relevant for the uranium nuclei.
The other parameters Ry, pg and a carry similar meaning as before (Eq. (2.15)) with R = R for
a spherical nucleus. The spherical harmonic Y, (6, ¢) breaks the spherical symmetry of the

nucleus and is given by,

5
Y20(0,0) = E@COSZQ—U : (6.2)
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where 0 and ¢ are the polar and azimuthal angles in the intrinsic nuclear frame. The quadrupole
deformation parameter 3, given by[354, 106],

4z [2p(r,0,0)Y20(0,0)dF
T 5 [Pp(r6,9)d%F

B (6.3)

leads to an ellipsoidal structure of the nucleus. If 8 >0 (238U) then the nuclear structure is

prolate and the nucleus is oblate when 8 <0 (197 Au).

Z

X

Fig. 6.1 Deformed uranium nucleus having prolate structure with 8 > 0. The nucleus is randomly oriented
with respect to the laboratory frame with a polar tilt 8" and an azimuthal rotation ¢’. The z axis represents
the beam-axis in laboratory frame and (x,y) plane is the transverse plane. The figure is a modification
from [106].

6.1.1 Geometry of the overlap region in deformed nuclei collisions:

In heavy-ion collision experiments, the deformed nuclei are injected through the beam pipe of
the accelerator, where the colliding nuclei have random orientations in the laboratory frame.
This is because the principal axes of the ellipsoids have random angles with the beam-axis.
In particular, the principal axis has a polar tilt 8’ and an azimuthal rotation ¢’ with respect to
the beam-axis z in the laboratory frame, as shown in Fig. 6.1. As a result, at the time of the
collision, the two deformed nuclei collide with two random orientations resulting in different
shapes of the overlap area in each collision. This phenomenon has a great impact on the mean
transverse momentum and harmonic flow. In this chapter, we consider uranium nuclei which
have a positive B and hence have a prolate structure. Additionally, we restrict ourselves to
central collisions where the overlap area of the two nuclei is maximum and the effect of the

deformation is especially pronounced.
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Let us consider central or ultracentral collisions of uranium nuclei with maximal overlap
between the two nuclei. Let us also label the two nuclei as A and B with their orientations with
respect to the collision axis in the lab frame, at the time of collision, defined by the sets of angles
(61, ¢,) and (6, @) respectively. There are two extreme cases of fully-overlapping scenario
which are particularly interesting [104, 106]:

body-to-body tip-to-tip

GIA =

8, =0,="/72 6g=0orm

PA=0p

»
>

elliptic overlap circular overlap

> X —> X

Fig. 6.2 Pictorial representation of the body-to-body and tip-to-tip collision of deformed uranium nuclei.
For body-to-body collision (left) the polar angles of the nuclei with the collision axis assume 6 = 6 = 7/2
and azimuthal angles @1 = ¢z, resulting in an elliptic overlap area after collision. On the other hand a
tip-to-tip collision (right) occurs when 6} = 6 = 0 or 7, producing a circular overlap area after collision.
The figure is motivated from [106].

* A body-to-body collision. In this case two nuclei are essentially perpendicular to the
collision axis with 6; = 8 = /2 and both nuclei are rotated by same azimuthal angle
¢, = ¢ as shown in Fig. 6.2 (left). Then the overlap area on the transverse plane takes
an elliptic shape, which originates from the shape of the colliding nuclei, enhancing the

ellipticity of the initial state even in the central collisions.

* A tip-to-tip collision. In such configuration, the principal axis of each colliding nucleus

coincides with the beam-axis (z) i.e. 912 = 05 = 0 or 7. This results in a circular overlap
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region on the transverse plane, as shown in Fig. 6.2 (right), having smaller transverse area
than the body-to-body collisions.

The other configurations fall in between these two cases.

6.1.2 Deformation effect on the collective observables

In central collisions of deformed nuclei, the different configurations of the initial states directly
influence the collective observables such as mean transverse momentum per particle [pr] and

harmonic flow coefficients V,, in the final state.

Transverse momentum

Let us consider the above mentioned configurations for events with full overlap of the nuclei
at fixed multiplicity i.e. fixed entropy in the initial state. In the case of a tip-to-tip collision,
the transverse size of the overlap area (circular) or collision volume is smaller corresponding
to a larger density at fixed multiplicity [104, 106]. According to relativistic thermodynamics,
this results in larger temperature, hence larger pressure and larger energy per particle, which
eventually give rise to larger transverse momentum per particle [ pr]. The opposite situation
occurs when the collision is body-to-body, which leads to larger transverse size and hence a
smaller [ pr]. Thus in central collisions of deformed nuclei, the deformation has a direct impact
on [pr]. Nuclear deformation contributes significantly to the event-by-event fluctuations of
mean transverse momentum per particle. In general the average transverse momentum in heavy

ion collision can be related to the temperature of QGP medium as [11],

(pr)=3T, (6.4)

where T is the effective temperature of the medium. The dependence of [ pr] on the transverse

size of the overlap region R can be written as [106],

Opr ,_,06R

(6.5)

(rr) . (R

where dpr = [pr]-{(pr), SR =R-(R), c; is the speed of sound in the QGP and (...) denote
the event-averaged quantities. The negative sign denotes the anti-correlation between mean

transverse momentum per particle and transverse size, as seen in Fig. 5.3.

Harmonic flow coefficients

The nuclear deformation largely affects the harmonic flow coefficients [106], specifically the
elliptic flow, in central collisions. In a central collision of spherical nuclei, when two nuclei

fully overlap, the harmonic flow is mostly driven by the event-by-event fluctuations. This is also
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the case for elliptic flow, unlike a non central collision where it is driven by the elliptic geometry
of the initial state.

However, in case of deformed nuclei collision this is no longer true. Let us consider the two
extreme cases of fully overlapping nuclei in central collision, as discussed earlier. In body-to-
body collision, the overlap region takes the shape of an ellipse resulting in a significantly large
ellipticity €, even in central collision. This leads to an enhanced contribution to the elliptic flow
v, in the final state which gets dominating contribution from geometry than fluctuations. On
the other hand, in tip-to-tip collision, the overlap area is circular, which does not contribute to
the geometrical component of v, but solely to the component arising from fluctuations. Thus
deformation plays a significant role in enhancing the eccentricity and therefore the elliptic
flow in central collision. This fascinating phenomena creates an unique opportunity to probe
the deformation parameters by studying the correlations and fluctuations of flow and related
observables.

The contribution of deformation to the initial eccentricity can be written as [109],
e {2}?=dy+b5B?, (6.6)

where, €; {2} = \/@ is the event averaged eccentricity (ellipticity) in analogy to vo{2}. As
discussed in Chapter-3, the elliptic flow can be related to the initial eccentricity as the hydro-
dynamic response of the initial state v,{2}2 = k; €3 {2}, with k, being the hydro-response
coefficient. Therefore, the elliptic flow can be related to the deformation parameter of the

nucleus through similar parametric dependence,
v{2}2=a,+b, B . (6.7)

It should be noted that the coefficients @), and a, quantify the contributions to the participant
eccentricity and elliptic flow, that do not arise from the deformation of the nucleus, while b’2
and b, pick up contributions to the eccentricity and elliptic flow driven by deformation of the

colliding nuclei.

6.2 Fluctuations and correlations for deformed nuclei colli-
sion

Due to nuclear deformation, event-by-event fluctuations of harmonic flow which we studied
in terms of the momentum dependent factorization-breaking coefficients, and the correlation
coefficients or the cumulants between mean transverse momentum and harmonic flow get
impacted, showing peculiar characteristics in central collisions of such deformed nuclei, which
can be potentially used to put constraints on the deformation parameter 3.
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For the results presented in this section, we simulate U+U collisions at RHIC energy
VSnn =193 GeV with TRENTO initial conditions and then relativistic hydrodynamic evolution
through MUSIC. The Woods-Saxon and deformation parameters used for uranium-238 nucleus

is presented in Table 6.1.

Nucleus Ry (fm) a (fm) B
238y 6.86 042 0.265

Table 6.1 Woods-Saxon parameters for nuclear density distribution (Eq. 6.1) in deformed uranium
nucleus [347, 134].

6.2.1 Factorization-breaking coefficients

Let us first discuss the factorization-breaking coefficients which measure the decorrelation
between flow vectors in different transverse momentum bins as discussed in Chapter-3. Here we
want to explore if nuclear deformation plays any role in modifying these factorization-breaking
coefficients. For this, we consider three different scenarios: a) U+U collision with deformation
(B =0.265), which could be considered as the default case. b) Collision of deformed U+U but
without any fluctuations in entropy deposition in the initial state. This is achieved by setting
the fluctuation-parameter k > 1. and c¢) Collision of spherical U+U with f8 = 0 while keeping
all other parameters same. This is not realized in reality but we consider this situation in order
to show the impact of deformation more prominently by making a direct comparison with the
deformed case.

Fig. 6.3 displays the factorization-breaking coefficients between flow vectors, where one of
the flow harmonics is global or momentum averaged and the other one is momentum dependent
as discussed in Chapter-3, for 0-5 % centrality in U+U collisions. The correlation coefficient
gradually deviates from 1 with increasing transverse momentum (shown as p = pr ), reflecting
a significant decorrelation for both deformed (red curve) and spherical (orange curve) nuclei
collisions. Spherical nuclei collisions show remarkably larger decorrelation with increasing
transverse momentum as compared to the deformed nuclei collision. The particular difference
emerges more profoundly when the fluctuations in the initial entropy deposition are switched
off (blue curve), where the decorrelation is further reduced.

Let us explain the above results. The decorrelation of flow vectors in transverse momentum
is governed by event-by-event fluctuations of flow, which means that the decorrelation would be
larger where fluctuations dominate. In Fig. 6.3, as we consider 0-5 % centrality, for spherical
nuclei collision the elliptic flow is mostly due to fluctuations and the overall magnitude is smaller.
Therefore, it is easier to decorrelate and hence we observe a larger decorrelation between the
flow vectors in transverse momentum. In case of deformed nuclei collisions, on the other hand,

the presence of nuclear deformation increases the geometrical component in the total eccentricity.
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Fig. 6.3 Factorization-breaking coefficients of elliptic flow vector squared r,.,(p) between momentum
averaged flow and momentum dependent flow for 0-5 % centrality in U+U collision at \/syy = 193
GeV. The momentum dependent coefficients obtained from hydrodynamic simulation with TRENTO
initial conditions for the spherical (8 = 0) and deformed (8 = 0.265) nuclei collisions, are denoted by
orange diamonds and red circles respectively. The blue squares represent the simulation results obtained
without fluctuations in the entropy deposition at the initial state, where the parameter k is set to > 1
while obtaining the initial conditions. The figure is from the original publication [130], coauthored by the
author.

Therefore, even in central collisions there is significant influence of the elliptic geometry on
the observed elliptic flow. The contribution of fluctuations to elliptic flow is partly washed out
by the geometrical component resulting in a smaller decorrelation in transverse momentum as
reflected in the results. This situation mimics the case of a semi-central collision of spherical
nuclei (at a relatively large impact parameter) [355], where the overall magnitude of the flow is
larger and the flow vectors in different transverse momentum bins are also more correlated with
the overall orientation in the transverse plane, resulting in a smaller decorrelation in transverse
momentum.

In the case of collision of deformed nuclei without fluctuations in the initial entropy depo-
sition, event-by-event fluctuations of the elliptic flow are further reduced, resulting in an even
smaller decorrelation as shown by the blue lines. This once again portrays the role of fluctuations
in the flow decorrelation. The momentum dependent factorization breaking coefficients ;.2 (p)
puts useful constraints on 8 and could be verified in experiments.

Fig. 6.4 shows the flow magnitude factorization-breaking coefficients (left) and flow angle
decorrelations (right) for the elliptic flow coefficients. Similar trends of the results are observed
in both cases; the decorrelation is smaller for the deformed case. Both of these quantities
can be measured experimentally and therefore would provide additional constraints on the
deformation. Most notably, the relation proposed in Chapter-3, also holds true for the deformed

nuclei collision,
2
[1-rua(p)] = 2[1-r ). (6.8)
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Fig. 6.4 Left: Flow magnitude squared factorization breaking coefficient for the elliptic flow r;% (p) for
0-5 % centrality in U+U collision at 193 GeV. Right: Flow angle decorrelation between momentum
averaged and momentum dependent elliptic flow coefficients. The symbols with different color have
similar meaning as Fig. 6.3. The solid and the dashed lines on the right panel represent the results
obtained with experimental estimation and the actual definition of flow angle decorrelation respectively.
The figure is from the original publication [130], coauthored by the author.

Moreover, the experimental estimate of the angle decorrelation and true angle decorrelation
coincide with each other also for deformed nuclei collisions, once again validating this approxi-

mation.
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Fig. 6.5 :Momentum dependent mixed flow correlation between V22 —Va(p) (left) and V,V3 - Vs (p) (right)
for 0-5 % centrality in U+U collision at 193 GeV. The results obtained for the spherical and deformed
nuclei collisions are represented by orange and red lines respectively. The blue lines denote the results
with no entropy fluctuations in the initial state. The horizontal lines with same colors represent the
corresponding mixed flow correlations between the momentum averaged flow coefficients. The figure is
from the original publication [130], coauthored by the author.

As the triangular flow is largely driven by the fluctuations, nuclear deformation has negligible
to no effect on it, and is therefore irrelevant in the present context. To complete the picture, in
Fig. 6.5 we present the results for the momentum dependent mixed-flow correlation between
V22 —-V4(p) and V,V3-Vs(p). As expected, the correlation is larger for deformed nuclei collisions,
also depicted by the corresponding baselines representing the respective correlation between
momentum averaged flow. The transverse momentum dependence is similar for the deformed

and spherical nuclei with however a slightly larger difference between the two curves at the low
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momentum. The study of such momentum dependent mixed flow correlations could give further

constraints on the deformation and can be tested in experiments.
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Fig. 6.6 Comparison of the deformation effect through flow vector factorization breaking coefficient for
the elliptic flow in central (0 —5%) and ultracentral (0—1%) U+U collisions at 193 GeV. The results
obtained from hydrodynamic simulation for the spherical and deformed nuclei collisions are represented
by the orange and red colors. The solid and the dashed lines represent the results corresponding to 0— 1%
and 0—5% centrality respectively. The figure is from the original publication [130], coauthored by the
author.

In order to emphasize the fact that the deformation effect is more pronounced in central
collisions or as the collisions are more central, in Fig. 6.6 we present results for the factorization-
breaking coefficient rp.2(p) for two cases : 0-1 % centrality (solid lines) which represents the
ultracentral collisions and usual 0-5 % centrality (dashed lines) which represents in general
central collisions. It can be seen that the correlation is smaller as we move towards ultracentral
collisions for both deformed and spherical nuclei. The difference between the two centralities is
larger in spherical case, because of enhanced fluctuations and less prominent for the deformed
case due to relatively smaller contributions of fluctuations, reflecting the fact that the eccentricity
without deformation is smaller for 0-1% centrality. On the other hand, the relative difference
between the spherical and the deformed case is substantially larger in 0 - 1% centrality than
0-5%. Please note that when we say the effect of deformation, we particularly mean this
relative difference.

6.2.2 Pearson correlation and symmetric cumulants

The nuclear deformation not only affects event-by-event fluctuations of the mean transverse
momentum per particle and harmonic flow coefficients but also significantly impacts the corre-
lation between them. In particular, we see that because of the deformed structure of uranium
nuclei, there exist an anti-correlation between [ pr] and v% in central collisions, which reduces

the overall correlation between them [106] as discussed below.
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6.2 Fluctuations and correlations for deformed nuclei collision

Anti-correlation between [pr] and v2

Let us consider the body-to-body case for fully overlapping nuclei in a central collision. We have
seen that because of the larger transverse size or larger collision volume at fixed multiplicity,
this leads to a smaller transverse momentum per particle. On the other hand, due to the elliptic
shape of the overlap region the elliptic flow is enhanced. Therefore deformation of the nucleus
has opposite effect on [pr] and vy, resulting in a negative or anti-correlation between them,
which drastically reduce the correlation and eventually makes it negative as one moves towards
ultracentral collisions [106].

In this section we present the results for the Pearson correlation coefficient, normalized and
symmetric cumulants as discussed in Chapter-5, for U+U collision at 193 GeV. Our simulation
set-up remains same with three cases : deformed (8 = 0.265), spherical (8 = 0) and deformed
without entropy fluctuations in the initial state (f = 0.265,k > 1).
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Fig. 6.7 The Pearson correlation coefficients between mean transverse momentum per particle and elliptic
flow coefficient as a function of centrality in 0 —10% central collisions of U+U at 193 GeV. The red
squares denote the results obtained from the hydrodynamic simulation with TRENTO initial condition
for deformed nuclei (8 = 0.265). The blue circles represent the corresponding results for the spherical
nuclei (B = 0) collisions. The black triangles depict the results for the deformed nuclei collision without
fluctuations in entropy deposition in the initial state. The figure is from the original publication [128],
coauthored by the author.

Fig. 6.7 displays the results for the Pearson correlation coefficient [95] p([pr],v3) for the
three cases. As expected, the correlation is drastically smaller for deformed nuclei as compared
to the spherical one. In the ultracentral region it even goes to negative, as discussed earlier. In
the absence of entropy fluctuations in the initial state, the correlation get further reduced, as
it should be because it suppress the fluctuations of both [pr] and v, and reduces correlation
with multiplicity. In this case, the correlation coefficient is negative for centrality < 5%. Please
not that in this case we do not correct the correlation coefficient or the observables within it
for multiplicity fluctuations. Because in central collisions, the covariances of the harmonic

flow and mean transverse momentum with multiplicity are small. Furthermore, here we use
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Fig. 6.8 Left: Pearson correlation coefficient between mean transverse momentum [ pr | and triangular
flow v%, as a function of centrality in U+U collision. Right: The same for quadrangular flow vﬁ. The
symbols carry same meaning as Fig. 6.7. The left panel of the figure is from the original publication [128],
coauthored by the author.

(for the Pearson correlation) U+U collision with narrower centrality bins and we have checked
that the corrections for multiplicity fluctuations to the correlation coefficients are small. The
same holds true for the higher order symmetric cumulants!. Moreover, the correction for
the multiplicity fluctuations is partially achieved in the third scenario where the fluctuations
in entropy deposition in the initial state are switched off, resulting in significantly smaller
multiplicity fluctuations. Therefore, in this section we only present results for the uncorrected
Pearson correlation coefficients and symmetric cumulants for U+U collisions.

Fig. 6.8 shows the results for the correlation coefficients p([pr],v3) (eft) and p([pr],v3)
(right). As mentioned earlier, deformation has negligible effect on the triangular flow. Therefore
for p([pr], v%) the results are similar (consistent within errors) for the spherical and deformed
nuclei collisions. However, the correlations encounter overall decrease in magnitude without
initial entropy fluctuations. For the quadrangular flow, p([pr],v7), on the other hand, shows a
noticeable difference between the two cases around 2 — 6% centrality, although not very large.
This could be due to the non-linear mixing of v% with v4 and the difference arises due to the
effect of deformation on the elliptic flow.

Fig. 6.9 shows the third order normalized symmetric cumulant between [pr], v% and v% on
the left and between [pr], v% and vﬁ on the right. Both of the symmetric cumulants are very
small in comparison to the Pearson correlation coefficients, because they pick genuine higher
order correlations between the observables. For NSC([ pT],v%,v%), the correlation is smaller
(more negative) for deformed nuclei collisions than for the spherical case and removing the
entropy fluctuations increases the correlation between them. However, the difference between
the three cases is quite small. On the other hand, for NSC([pr],v3,v3), the cumulant is mostly
negative for all the three cases and the deformed case has larger correlation (less negative) than
the spherical nuclei collisions, highlighting the fact that v3 is not influenced by the deformation,

with little influence on v4 due to non-linear mode.

! Although for the symmetric cumulants we use wider bins for accessing higher statistics
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Fig. 6.9 Third order normalized symmetric cumulant between [pr], v3 and v (left) and [pr], v and v}
(right) as a function of centrality with two centrality bins in central collisions of U+U at 193 GeV. The
symbols have similar meaning as Fig. 6.7. The left panel of the figure is from the original publication [128],
coauthored by the author.
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Fig. 6.10 Left: Third order normalized symmetric cumulant between mean transverse momentum,
multiplicity and elliptic flow coefficient as a function of centrality in central collisions of U+U at 193
GeV (left). Right: Same but for the triangular flow coefficients. The symbols carry similar meaning as
Fig. 6.9. The left panel of the figure is from the original publication [128], coauthored by the author.

Although the elliptic flow in central collision of deformed nuclei is dominated by the
geometry arising from the nuclear deformation, the collective observables in such collisions
are in general significantly impacted by the fluctuations in initial entropy and its azimuthal
asymmetries, as seen before. Fluctuations of initial entropy dictate the fluctuations of final
state multiplicities. Therefore, it would be interesting to study symmetric cumulants involving
not only the mean transverse momentum and harmonic flow, but also the multiplicity in the
event. Such observables have potential to pick up the effect of initial state entropy fluctuations
more prominently. It is important to note that the results for the symmetric cumulants involving
multiplicity as one of the observables could significantly depend on the definition of the centrality
bin. In order to reduce such bias from centrality cuts, these observables could be measured
experimentally using centrality bins defined on basis of other observables such as the total

transverse energy deposited in the forward calorimeter (E7) as discussed earlier.
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Fig. 6.11 Fourth order normalized symmetric cumulant between mean transverse momentum, multiplicity,
elliptic and triangular flow coefficient as a function of centrality in U+U at 193 GeV. Symbols are similar
as Fig. 6.10. The figure is from the original publication [128], coauthored by the author.

The third order normalized symmetric cumulants NSC(pr,N,v3) and NSC(pr,N,v3) are
shown in Fig. 6.10. As expected, NSC(pr,N,v3) shows a remarkable sensitivity to the fluctua-
tions of entropy deposition from the participant nucleons as one moves towards more central
collision. In particular, the fluctuations in entropy increase the magnitude (more negative) of
NSC(pr,N, v%) The deformation does not have a significant impact, both the spherical and
deformed cases are consistent with each other in the centrality range considered. A similar
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Fig. 6.12 Third order scaled symmetric cumulant between [pr], v% and v% in U+U collision at 193
GeV. Symbols carry similar meaning as in Fig. 6.9. The figure is from the original publication [128],
coauthored by the author.

effect is observed for NSC(pr,N, v%) but with mild difference when fluctuations in entropy are
turned off, the difference is significant for the centrality 5—-10%. Such a reverse scenario is
observed because v3 is primarily dominated by fluctuations and switching them off affect both
N and v3. The fourth order cumulant NSC(pr,N, v%, V%), shown in Fig. 6.11, is positive for the
cases involving entropy fluctuations in the initial states for both spherical and deformed nuclei
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6.2 Fluctuations and correlations for deformed nuclei collision

collisions. With entropy fluctuations switched off, the cumulant decreases? remarkably and is
compatible with zero for the centrality range studied. Study of these cumulants showcases the
importance of multiplicity fluctuation and its cross-correlation with other collective observables
in the central collisions of deformed nuclei.

In order to complete the picture and maintain consistency with Chapter-5, in Fig. 6.12, we
present the third order scaled symmetric cumulants for mean transverse momentum, elliptic

and triangular flow in U+U collisions. The scaled symmetric cumulant SSC([pr],v3,v3) shows

2
29

fact that it has larger order of magnitude for the correlation, because of the changed normalization

similar behavior as NSC([pr],v v%) and does not provide much new information apart from the

in the denominator. Moreover, its study does not require additional information on the average

transverse momentum of the particles which is sometimes not known a priori.

ZPlease note that the absolute magnitudes of the cumulants involving multiplicity always decrease when there is
no fluctuation in entropy deposition in the initial state.
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Chapter 7
Summary and outlook

Finally, it brings us to the last chapter of this thesis, where we summarize the important findings
and leave our concluding remarks for the research carried out. We also highlight further research
possibilities on the similar topics, which lied beyond the current scope. We briefly discuss
our future goals, prospective research directions and new potential problems that might be
interesting to investigate in the coming years.

The main goal of this thesis is to study the properties and the collective dynamics of the
QGP medium created at the collision of two heavy nuclei at ultrarelativistic energies. The most
distinctive and exotic feature of the heavy-ion collision is the collective anisotropic flow of the
final state particles, originating from the geometry of its initial state. One of the most exclusive
features of this collective flow is its event-by-event fluctuations mainly stemming from the
event-by-event fluctuations in the initial state. Our primary aim is to focus on the fluctuations
and correlations of those collective observables such as mean transverse momentum per particle
[pr], harmonic flow coefficients v, etc. Relativistic hydrodynamics serves as an excellent
theoretical tool to study the QGP medium, its initial state properties and unique collective
signatures in the final state. This viscous hydrodynamic framework comprising a number of
intermediate stages can be utilised in simulations or model, to study those collective observables
and make robust predictions. Most interesting features of those observables originate from the
initial state of the collision and their event-by-event fluctuations. Below we summarize the most

important findings of our research and the conclusions coming out of them :

* The event-by-event fluctuations of the harmonic flow coefficients result in decorrelation
between flow vectors in different transverse momentum bins. This decorrelation can be
understood by studying the factorization-breaking coefficients between the flow vectors
in two bins. In order to address experimental limitations due to low statistics in higher
pr-bins, we use one of the flow vectors as momentum averaged [87]. The flow vector
decorrelation is partly due to flow magnitude and partly due to flow angle decorrelation,
the experimental measurement of which requires the construction of the factorization-

breaking coefficients between the squares of the flow [125]. Our model results for Pb+Pb
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collision at 5.02 TeV, qualitatively reproduce the ALICE data. The observed mismatch
between our model results and the data arise from the potential presence of the non-flow
correlations which can be substantially minimized by taking the transverse momentum
bins separated by large pseudorapidity gap. We also present predictions for similar
momentum dependent mixed-flow correlations which can be used to study non-linearity
in the dynamics of the system and can provide useful constraints on the non-linear modes
in the initial state, when confirmed in experiments. Factorization-breaking coefficients

can serve as robust probes of the fluctuations of flow.

* Fluctuations of mean transverse momentum per particle in ultracentral Pb+Pb collisions
display unique peculiar patterns, encoding important physical significance. The sudden
steep decrease of Var(pr|N,;) in ATLAS data in the ultracentral region, can be explained
by modelling the correlation between [pr] and N, at fixed impact parameter through
a two dimensional correlated Gaussian distribution [126]. Our model results show that
in the ultracentral limit, the contribution of the impact parameter fluctuations or the
volume fluctuations gradually goes to zero causing the sharp decline. Our model fit to
the data returns a strong correlation between [ pr] and N, at fixed b, which appears to be
a natural consequence of thermalization of the QGP system, a fundamental assumption
in its hydrodynamic description. Additionally, we present robust predictions for the
skewness and kutosis [127], characterizing the non-Gaussian features of [ pr ]-fluctuation,
based on a Gaussian-fluctuation model of impact parameter. The skewness and kurtosis
show interesting patterns in the ultracentral regime around the knee of the multiplicity
distribution, which arise mainly due to impact parameter fluctuations. As hinted by
the measurements from the ALICE collaborations, our predictions can be verified by
the upcoming measurement of the ATLAS collaboration in similar bins of centrality
estimators. Our results unveil crucial physical aspects of the QGP medium, and highlight

the importance of impact parameter and its fluctuations in heavy-ion collision.

« Correlation between [pr] and v can serve as a fine tool to probe the correlation present
in the initial state of the collision between eccentricities, transverse size, entropy etc. We
present results for the Pearson correlation coefficient between [ pr] and v2 by comparing
it with the data and the linear predictor from the initial state [128]. To measure higher
order correlations, we propose normalized and scaled symmetric cumulants between mean
transverse momentum, harmonic flow and multiplicity, measuring genuine correlations
between these observables and putting additional layer of constraints on the initial state
properties. Similar momentum dependent Pearson correlation coefficients can be defined,
which do not depend on the specific pr-cut dependence and show sensitivity to the
granularity in the initial state [129]. We propose alternate constructions of such pr-
dependent correlation coefficients, which are experimentally favourable. Covariance

between [ pr] and pr-dependent harmonic flow can be studied directly, providing a robust
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probe to the granularity. Such correlations and covariances between mean transverse
momentum and harmonic flow coefficients capture the inter-correlation between the shape
and the size of the QGP fireball, while putting additional constraints on the initial state

properties.

* Although nuclear structure is primarily studied in low energy nuclear physics, high
energy heavy-ion collision can provide an excellent platform to map the deformed nuclear
structure through similar collective observables. In particular, we show that deformation
has a direct impact on the transverse momentum and harmonic flow coefficients in central
collision of uranium nuclei at 193 GeV at RHIC. We show that the factorization breaking
coefficients for the elliptic flow [130] and the Pearson correlation coefficient between
[pr] and V% can provide robust probes of the quadrupole deformation parameter 3, of the

uranium (233U) nucleus. We also present momentum dependent mixed flow correlations
2

and propose new different normalized symmetric cumulants constructed with [pr], vi

and N, which provide additional novel constraints on the deformation of 238U [128].
Our results show that the collective flow and its fluctuations in central collisions provide
a unique opportunity to investigate nuclear deformation through high energy nuclear
collisions.

Future directions

The research carried out in this thesis paves a path for further development and novel research
opportunities in future, in each sector. Moreover, the problems encountered in this work have
motivated us to formulate new potentially interesting projects which we would like to explore in
future. Below we discuss the scopes for further development in the related areas along with our
future plans :

* We have studied the deformation of uranium nucleus through correlations and fluctuations-
probing observables, which are relevant at RHIC energies. However, there exist other
deformed nuclei such as 129Xe, which are collided at the LHC at 5.44 TeV [120-123,
101, 102]. The xenon nucleus would be interesting to explore because, in addition to the
quadrupole deformation (f or 3,), it also exhibits axial asymmetry in its structure, which is
identified by triaxiality parameter () [110, 111]. The particular triaxial structure appears
when all the three axes of the nucleus are of different length (0 < ¥ < 60°) (Fig. (7.1)).

Such structures affect the nuclear mass distribution [110],

Po
r_R(97¢) ] ’

p(r,0,9)=
1

+exp| (7.1)

with, R((6,9)=Ro{l+B[cosyY2(0,9)+sinyY2,(6,¢)]} .
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Due to three possible different structures, the overlap area in central Xe+Xe collisions
would assume three possible shapes, inducing the possibility of larger shape fluctuations

at fixed multiplicities. Therefore it would be interesting to study similar observables such
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Fig. 7.1 Pictorial representation of the structure of xenon-129 nucleus with three possible configurations
shown from top to bottom on the left: prolate, triaxial and oblete. Different configuration results in
different shapes of the overlap region in central collisions. Figure taken from [110].

as factorization-breaking coefficients, Pearson correlation coefficients (already has been
found to be sensitive to y [110]), normalized and scaled symmetric cumulants between
[pr], v2 and N, etc. in Xe+Xe collision at 5.44 TeV, and can be compared to the results
for Pb+Pb collisions, which are easily accessible at the LHC. Such quantitative and
qualitative comparisons can shed light on the structure of Xe nuclei, providing sensitive

constraints on its deformation parameter and triaxialiaty through high energy collisions.

Moreover, recent studies suggest a significant hexadecapole deformation (f4) for the
uranium nuclei [118, 352] that can be constrained by the collective observabeles: flow
cumulants, non-linear correlations etc. In future, we would be also interested to explore the
hexadecapole deformation 34 of 2381, with the correlations, higher order cumulants and

factorization breaking coefficients which contain huge potential to put robust constraints

on fy.

In the present work, we have focused on the transverse momentum fluctuations in ultra-
central Pb+Pb collision at the LHC. However, similar study for [ p7 |-fluctuations can be
performed in p+Pb collisions which also show significant collective phenomena at the
LHC [356-361, 305, 362-364]. Being a much smaller system as compared to Pb+Pb,
multiplicity fluctuations are expected to be significantly large in the ultracentral collisions
(highest multiplicity). Therefore the fluctuations of [pr] at fixed multiplicity are also
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expected to be large, highlighting the importance of intrinsic or quantum fluctuations.
Moreover the role of impact parameter would be interesting above the knee of the mul-
tiplicity distribution in p+Pb collision, which covers a large multiplicity range [365].
Therefore, investigation of [ pr] fluctuations in ultracentral p+Pb collision and its direct
comparison to Pb+Pb would be very interesting, which could unravel the dynamics of
quantum fluctuations and its system-size dependence. A comparison to p+p collision

would shed further lights on the issue and can be used as baselines for such studies.

Additionally, we would like to study collectivity in p+Pb collisions using new observables
(e.g. factorization-breaking coefficients!) that have not been studied yet. In particular,
the initial state properties and their correlations can be mapped to the final sate by con-
structing flow cumulants, correlations and symmetric cumulants between mean transverse

momentum and harmonic flow coefficients.

* Furthermore, in future, we plan to study small collision systems such as O+O at both
RHIC and LHC energies. The STAR collaboration has recently presented measurement
on O+0O collisions at RHIC energy (200 GeV) [366]. O+O collisions at the LHC (7 TeV)
are planned for Run3 [367-369], with data expected soon. The study of O+O collisions is
interesting because it can address several issues such as the structure of 1O nucleus at
the high energy scale, the limit of applicability of hydrodynamics for such small system,
a direct comparison of the collective observables to Pb+Pb collision as O+O serves as a
similar symmetric collision systems but with different centre of mass energy and much
smaller size of the fireball etc. According to the low energy experiments, °0O nucleus
exhibit a tetrahedral structure with alpha-clusters at its edges [370, 221] shown in Fig. (7.2).
As aresult there exist surging theoretical interest to image the structure of 1°O nucleus and
study its unique collective signatures in high-energy O+O collision [371, 370, 221, 372-
375]. The measurements from the STAR collaboration highlight significant contributions
from sub-nucleonic fluctuations and nucleon-nucleon correlation at the initial state of O+O
collision. We plan to study O+O collision at both energies by using different approaches
for obtaining the initial state density distributions such as fitting Woods-Saxon distribution
to the nuclear density obtained from low energy ab-initio NLEFT, VMC, EQMD or
PGCM calculations [370, 221, 373, 374], applying novel alpha-cluster+sub-nucleonic
structure within initial condition model [221] (e.g. TRENTO), implementing non-zero
octupole deformation (f33) [373] to account for nuclear deformation etc. We would also
like to identify the onset time for hydrodynamics in such small systems which is usually
larger due to large inverse Reynold’s number and Kundsen number [221]. Investigation of
applicability of hydrodynamics in O+O collision would be interesting in general, which

could be applicable for other small system collision. In O+O collision we would also

LOf course the statistics for such observable in small systems would be a big challenge.
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Summary and outlook
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Fig. 7.2 Pictorial depiction of the a-clustered structure of oxygen-16 nucleus. Figure taken from [376]

like to map the final state observables to initial state properties through multi-particle

correlations and cumulants.

In addition to the above mentioned prospective projects, we would also like to explore other
small systems such as p+Au, d+Au and He+Au at RHIC energies. In particular, the study of
factorization-breaking coefficients would be interesting in such systems probing the fluctuations
of harmonic flow at a much smaller scale with comparable system-sizes. This could help us to
have a clear insight on the origin of flow-decorrelation in different kinematic bins.

High energy heavy-ion collision has entered its third decade with the current Run3 program
at the LHC. ultrarelativistic heavy ion collision has emerged as an established field of research
by answering some of the most fundamental questions of physics over the past thirty years.
From the first Au+Au collision at RHIC to the latest Run3 measurement of Pb+Pb at the LHC,
the study of collectivity has helped us to understand many fundamental properties of the Quark-
Gluon-Plasma with hydrodynamic description serving as its fundamental basis. However, in
spite of the rapid progress in the field , availability of large data sets and abundance of collision
systems, there remain some major fundamental issues which need to be addressed. Some
of these include the limitation of hydrodynamic picture and its boundaries in small collision
systems, origin of collective flow in small systems, nuclear structure and its accessibility in
future collider e.g. at the Electron-Ion-Collider (EIC), Future Circular Collider (FCC) etc. The
study of small system collisions at the current and future runs at the LHC (e.g. p+Pb, O+0O,
p+0O, Ne+Ne, Ne+Pb etc.) would help us to remarkably push the limit of our understanding of
the QGP medium and hence the questison ...
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Appendix A

Fluctuations of harmonic flow

A.1 Toy model for transverse momentum dependent flow

decorrelation

The relation between flow vector, magnitude and angle decorrelation in Eq. (3.68) can be proved
based on a simple toy model [246]. To account for the momentum dependent fluctuations, which
are small, let us consider the transverse momentum dependent flow vector V,(p) as a small

deviation from the integrated flow,

Va(p) = C(p)Vu+8(p), (A1)

where, C(p) is a scalar and 8(p) is a small vector deviation, both of which depend on the
transverse momentum, denoted here by p. Then the event-by-event transverse momentum
dependent fluctuations of V,,(p) is governed by both the scalar C(p) and the vector &(p) where
the latter is solely responsible for the flow angle fluctuations.

Next we take scalar product of Eq. (A.1) with V,, and then take average over events :

(Vi Va(p)") = C(P) ViV ) + (V- 8(p)") - (A.2)
Now comes our main model assumption :
(Va-6(p)") =0, (A3)

which is based on the fact that transverse momentum dependent fluctuations are small and
randomly oriented so that its correlation with the integrated flow can be taken to be zero. With
this from Eq. (A.2), we have ,

|
|

_ <Vn‘7n(p)*> _ ( n’ n(p)*>
C(p) - <VnVn*> - ’ (A4)
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Fluctuations of harmonic flow

where v2 = |V,|2 .

A.1.1 Flow vector decorrelation in second order

The factorization-breaking coefficient between flow vector squared is given by Eq. (3.59),

rua(p) = Ao (A.5)
Vv (vi(p))
Using Eq. (A.1) the numerator becomes up to second order in d(p),
(Ve Vi (p)*) =C(p)*{vn) » (A.6)

where we have used (V,(p)-8(p)*) =0 and (V,(p)?-62(p)*) =0. Similarly, in the denominator,

(va(P)) =Vi2(p)-V,r (p)* =C(p)*(vi) +4C(p)*(va8 (p)?) (A.7)

where 8(p)?=8(p)8(p)*. With this Eq. (A.5) becomes,

rn2(p) = 1 7z = 1-20(p) (A.8)
)
where, ) )
Au(p) = % (A.9)

is the decorrelation factor and it is small, quantifying the amount of decorrelation between

transverse momentum dependent flow vector and momentum averaged flow vector.

A.1.2 Flow magnitude decorrelation

Factorization-breaking coefficient between flow magnitude squared is given by,

S PP
2y - WalfVi (P)F) (A.10)
R TSy

The denominator remain same as before. The numerator can be expanded as,

(V177 ()R) = (AC(p)2) + (128 ()?) = c<p>2<v;*>(1 +An<p>). A1)
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A.1 Toy model for transverse momentum dependent flow decorrelation

Then Eq. (A.10) becomes,
Pi(p) = (1+80(p))(1-284(p)) = 1 = An(p) (A12)
Thus Eqgs. (A.8) and (A.12) satisfies the relation,
L=rua(p) =2[1=r(p)], (A13)

as given in Eq. (3.61).

A.1.3 Flow angle decorrelation

The experimental estimate of the flow angle decorrelation is obtained by taking ratio of the flow
vector and flow magnitude factorization-breaking coefficients and provides a measure of the
actual angle decorrelation,

2.\ * 2 4 2W(Y, —
(Val? [V (p)I?) (va)
Then using the previous equations one gets,
1
Fa(p) = ———= = 1-4u(p). (A.15)

1+A.(p)

Thus from a simple toy model of transverse momentum dependent flow vectors with random
small fluctuations, one can prove the relation presented in Eq. (3.68),

[1=rua(p)] = (1= D]+ [1= Fy(p)] (A.16)

which is also reflected in the results presented in Chapter-3.
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Appendix B

Transverse momentum fluctuations

B.1 Simulations with hydrodynamics and HLJING

The setup of our hydrodynamic calculation in Chapter-4 is identical to that of Chapter-3. We
use a boost-invariant version of the hydrodynamic code MUSIC [216] with the default freeze-
out temperature 7y = 135 MeV. We assume a constant shear viscosity to entropy density ratio
1n/s =0.12, and the bulk viscosity is set to zero. The initial entropy distributions are taken from
the TRENTO model [194], where the parameters are fixed as follows. The most important
parameter is the parameter p which defines the dependence of the density on the thickness
functions of incoming nuclei, which is set to p = 0, corresponding to a geometric mean, which
is the default choice. The parameter defining the strength of multiplicity fluctuations is set
to k = 2.5 (the default being k = 1). With this choice, the relative multiplicity fluctuations is
compatible (within statistical errors) with ATLAS data in Table 4.1. The nucleon-nucleon cross
section is set to ony = 7.0 fm? (instead of the default oyy = 6.4 fm?).

The normalization of the entropy density from the TRENTO model is adjusted so as to
reproduce the charged multiplicity measured by ALICE in Pb+Pb collisions at 5.02 TeV [377].
Despite this normalization, the average mulplicity is N,;, = 6660 + 30, much larger than that seen
by ATLAS (Table 4.1). The main reason is that some of the particles escape detection, even
within the specified angular and pr range, and the data are not corrected for the reconstruction
efficiency. In addition, we expect deviations between the model and data for two reasons.
First, hydrodynamic models typically underestimate the pion yield at low pr [378, 379]. Since
the calculation is adjusted to reproduce the total charged multiplicity, which is dominated by
pions, this implies in turn that it should overestimate the yield for pr > 0.5 GeV/c, which is the
range where it is measured by ATLAS. Second, our hydrodynamic calculation assumes that the
momentum distribution is independent of rapidity. In reality, it is maximum near mid-rapidity,
in the region covered by the ALICE acceptance. This should also lead to slightly overestimating
the multiplicity seen by ATLAS, whose inner detector covers a broader range in rapidity.
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Transverse momentum fluctuations

The width of pr fluctuations from our hydrodynamic calculation is 6,,(0) =131 MeV/c.
Note that they are dynamical fluctuations only. The reason is that we do not sample particles
according to a Monte Carlo algorithm, but simply calculate the expectation value of [pr] at
freeze-out. Therefore, the width of [ pr] fluctuations from the hydrodynamic calculation can
in principle be compared directly with that measured experimentally. Our value is somewhat
higher than the value 6,,(0) = 9.357 MeV/c inferred from ATLAS data (see Fig. 4.1). The
fact that hydrodynamics overestimates [ pr ] fluctuations is an old problem [304], which can be
remedied by carefully tuning the fluctuations of the initial density profile [305, 12, 28]. It is the
reason why we choose to fit the magnitude of [pr] fluctuations to data, rather than obtain it
from a hydrodynamic calculation.

The Pearson correlation coefficient between N, and [ pr ] from our hydrodynamic calculation
is rn,, ~0.674 which is in excellent agreement with the value ry,, = 0.676 returned by the fit
to ATLAS data (Fig. 2 (c) of the paper). Simulations with HIJING shown in Fig. (4.2) of the
paper follow the same setup as in Ref. [308]. The average multiplicity is N, = 5149, somewhat
lower than in the hydrodynamic calculation, and the average value of p7, denoted by pr, is
941 MeV/c, also lower than in the hydrodynamic simulation (pr = 1074 MeV/c).

B.2 Fitting the variance of [ pr ] fluctuations

ATLAS provides us with two data sets for the centrality dependence of the variance, depending
on whether centrality is determined with N, or E7. We first carry out a standard y? fit for each
of these sets, where the error is the quadratic sum of the statistical and systematic errors on the
data points. The three fit parameters are 6, (0) (the standard deviation of [pr] for b=0), a
(which defines the decrease of the variance as a function of impact parameter), and the Pearson
correlation coefficient r between [ pr | and the centrality estimator for fixed . Consistency of
our model requires that 6, (0) and o, whose definition does not involve the centrality estimator,
are identical for N, and E7 based data for a given pr selection. Values of ¢, (0) are identical
within less than 1%, but values of « differ by 6%, with E7-based data favoring a larger . We
then fix the values of 0, (0) and « to the average values of N, and Er-based results, and redo
the fits by fitting solely the Pearson correlation coefficient r for each of the two data sets. Due
to the small tension between the values of «, our fit slightly overestimates the variance for the
lowest values of N, and slightly underestimates it for the lowest values of E7. This effect
is of little relevance to our study which focuses on ultra-central collisions, and we have not
investigated its origin.

The values of « are close to 1.2, which implies that the variation of dynamical fluctuations
with impact parameter is faster than that of statistical fluctuations, for which o =1. The
parameter G, (0) is close to 10 MeV/c, while the average value of pr is close to 1 GeV/c. This
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corresponds to a relative dynamical fluctuations of order 1% in central collisions. The values of
the Pearson correlation coefficient end up being similar, between 0.6 and 0.7, for both data sets.

The results shown are obtained by assuming that the variance of the charged multiplicity is
proportional to the mean, that is, Var(N.|c,) /Nex(cp) is constant. As explained in Sec. 4.1.3,
we have also tested two alternative scenarios, assuming either that Var(N|cp) is constant or
that the ratio Var(N,|cp) /N (cp)? is constant. We have checked that the fit to the data is as

good. The values of fit parameters vary only by 3% for o, and even less for 6, (0) and r.

B.3 Centrality dependence of multiplicity fluctuations

The probability distribution of the multiplicity at fixed impact parameter b is expected to
be approximately Gaussian [67] and can be characterized by its mean N, (c,) and standard
deviation oy, (¢;), which both depend on b. The mean can be reconstructed using the simple
following rule. If a fraction c;, of events have a multiplicity larger than N, then N ~ N, (cp,) [66].
This simple rule, which is applied to ATLAS data in Fig. B.1 (a), works well except for

multiplicities around and above the knee. On the other hand, the centrality dependence of oy,
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Fig. B.1 Left: Variation of charged multiplicity N, with centrality in Pb+Pb collisions at | /syy =5.02 TeV
measured by ATLAS [102] and ALICE [377]. For ATLAS, the centrality is defined from the cumulative
distribution of N, and then divided by a calibration factor 1.153 [60], which corrects for the fact that
for the largest centrality fractions, some of the recorded events are fake. The ALICE results have been
re-scaled by a factor 1.73 to correct for the different acceptance and efficiency of the detector. The circles
display the centrality dependence of the mean initial energy for the TRENTo parametrizations used by
the Duke [27] and JETSCAPE analyses [28]. The centrality is defined as h? / Opb, Where opy, = 767 fm?
is the total inelastic cross section. Right: Variation of the standard deviation of N, with centrality.

is not known, and we use state-of-the-art hydrodynamic calculations by the Duke group [27]
and by the JETSCAPE collaboration [28] to evaluate it. However, we want to avoid running
massive hydrodynamic calculations, and we therefore estimate the multiplicity fluctuations
from the initial conditions of these calculations. We assume that for every collision event, the

multiplicity is proportional to the initial energy. Both Duke and JETSCAPE analyses employ
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the TRENTo parametrization [194] for the initial energy density, but with slightly different
values of the parameters. We run these TRENTo initial conditions for several fixed values of b
(specifically, b=0, 3.5, 5, 6,7, 8, 8.5,9.25, 10, 11, 12 fm). For each b, we generate 103 events
with both Duke and JETSCAPE parameters, and we compute the initial energy of each event.
We rescale this energy by a constant factor so that it matches the ATLAS result for the charged
multiplicity at b =0 [126]. The variation of the mean N, with centrality is displayed in Fig. B.1
(a). Experimental data are also shown. One sees that ALICE and ATLAS data are in excellent
agreement once properly rescaled. The calculation using the Duke parametrization agrees very

well with experiment. Agreement is not quite as good, but still reasonable, for the JETSCAPE

parametrization.
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Fig. B.2 Parametric plot of the mean and variance of N, as a function of 5. Both models have been
calibrated in such a way that they match data at 5 = 0. Solid lines are fits using y = yx+ (1 - 7)x%,
where y = G]%Ch (b)/G]%,M(O) and x = Ny, (¢p) /N (0), with y=2.83 (Duke) and y = 1.90 JETSCAPE). The
calculation in Sec. 4.1 was done with y =1 (variance proportional to mean).

We then calculate the standard deviation of N, Oy, . for each value of b. Results are
displayed in Fig. B.1 (b). The standard deviation can only be measured at b =0 [325] from
the tail of the distribution of N, therefore, there is only one data point on this plot. One
sees that both model calculations are in reasonable agreement with this data point, but slightly
overestimate it. We use model calculations only to predict the b-dependence of oy, not the
value at b = 0 which is measured precisely. We therefore rescale oy, from the model calculation
by a constant factor so that it matches the experimental value at b = 0. The resulting predictions
for b > 0 are displayed in Fig. B.2. We plot the variance GI%’C;, as a function of the mean. If N, is
the sum of k identical, uncorrelated distributions, where k depends on b, both the mean and the
variance are proportional to k, therefore, they are proportional to one another. This behavior is
only observed for large values of b. Both model calculations predict that the variance increases

more slowly as b decreases. The Duke calculation even predicts that it decreases for the smallest
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value of b. The two solid lines, which are polynomial fits to our calculations, are used as two
limiting cases which define the error bands in Fig. 4.8 and Fig. 4.9.
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