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Abstract (English version)

The document brings together two related research objectives in the context of appli-

cations in High Energy Physics. The first topic concerns the Vertex Locator (VELO), a

vertex detector at the LHCb experiment at CERN. Since 2018, the LHCb experiment has

been in the phase of a major upgrade - Upgrade I, where the technology of the selected

detectors in the LHCb spectrometer is adjusted to the increased instantaneous luminosity.

The spectrometer will have to handle about five times as many concurrent collisions as

before and operate at an increased readout frequency from 1.1 MHz to 40 MHz. The

upgraded VELO takes advantage of the VeloPix ASIC - a pixel readout chip, where each

pixel features its own electronic readout channel. The ASICs of the highest occupancy will

be only 5.1 mm off the axis of the LHC beams. The dissertation presents the calibration

of VELO, as well as the decoders, monitoring, and data simulation incorporated into

the software platform Vetra. It further proposes and discusses a few applications of the

software for certain studies of pixel detectors in general.

The second part is a search for novel tools based on Machine Learning (ML) in particle

decays and mass spectrum reconstruction. Smart algorithms have had many successes

in recent years, such as image generation or intricate decision-making. Although the

number of emerging techniques is remarkable, their application in other than native

fields often lags behind the new inventions. An overview of modern methods and their

applications is outlined in the thesis. In particular, the use of Deep Neural and Generative

Adversarial Networks (DNN, GAN) in the problem of generating physics data samples

is demonstrated. The potential applications of deep models for mass spectrum fitting is

shown, as well as heuristic optimization methods used in the process. Such methods can

show higher efficiency in estimation than conventional, like maximum likelihood. Since

imperfect measurements made by complex detectors affect the reconstruction process,

the ML-based approach could bring new solutions to the problem and complement the

statistical methods used in modelling so far.
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Abstract (Polish version)

Praca łączy dwa tematy badawcze powiązane z sobą w kontekście zastosowań w Fizyce

Wysokich Energii. Pierwszy temat dotyczy detektora wierzchołka VELO (Vertex Locator) w

eksperymencie LHCb w CERN. Od 2018 roku eksperyment LHCb przechodzi modernizację,

podczas której spektrometr LHCb dostosowywany jest do zwiększonej świetlności LHC.

Spektrometr ma obsługiwać około 5-krotnie więcej zderzeń cząstek w tym samym czasie oraz

pracować ze zwiększoną częstotliwością odczytu z 1.1 MHz do 40 MHz. Zmodernizowany

detektor wierzchołka wykorzysta w detekcji cząstek naładowanych pikselowy czip VeloPix

ASIC, w którym każdy piksel posiada własny, elektroniczny układ odczytu. Matryce o

najwyższej okupancji znajdą się jedynie 5.1 mm od osi wiązek LHC. W pracy przedstawiona

jest kalibracja detektora wierzchołka, a także monitoring i symulacja danych, które zostały

wbudowane w platformę Vetra. Przedstawione są algorytmy skanowania matryc VeloPix,

a także kilka ogólnych zastosowań platformy do prac nad detektorami pikselowymi.

W drugiej części praca poszukuje nowatorskich narzędzi opartych o techniki uczenia

maszynowego (Machine Learning) w rekonstrukcji rozpadów cząstek i widma masy. Al-

gorytmy sztucznej inteligencji odniosły w ostatnich latach wiele sukcesów, takich jak

generowanie obrazów lub podejmowanie złożonych decyzji. Zastosowanie takich technik

w innych dziedzinach nauki cechuje się jednak pewną bezwładnością. Problem ten przed-

stawiony jest w niniejszej rozprawie, gdzie dokonany jest przegląd najnowszych metod

uczenia maszynowego oraz ich potencjalne zastosowanie. Praca pokazuje użycie głębokich

sieci neuronowych (Deep Neural Network) i generatywnych sieci wrogich (Generative Ad-

versarial Network) do problemu generowania danych fizycznych. Pokazane jest potencjalne

użycie głębokich modeli do problemu dopasowania widma masy, a także wykorzystanie

heurystycznych metod optymalizacji. Algorytmy oparte o metody inteligentne potrafią

wykazać większą sprawność w estymacji niż metody konwencjonalne, np. największej

wiarygodności. Ponieważ w rekonstrukcji rozpadów dużą rolę odgrywa niedoskonałość po-

miarowa detektorów, podejście oparte o techniki uczenia maszynowego mogłoby wspomóc

metody statystyczne obecnie używane przy modelowaniu.
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Chapter 1

Introduction

Investigating the CP (Charge-Parity) violation is one of the leading research directions in

modern High Energy Physics (HEP). Due to the difficulty of observing such phenomena

directly, the only chance for verifying current predictions is to recreate the conditions

occurring in the Young Universe using particle accelerators providing high-energy parton

collisions and frontier detection solutions. CERN (European Center for Nuclear Research)

hosts a program dedicated entirely to the research of the processes of CP violation under

the name LHCb (Large Hadron Collider beauty). The experiment started in 2010, and

during its operation at LHC, it collected physics data over periods known as Runs 1

and 2 until December 2018. Since then, the experiment has been in a major upgrade

phase (dubbed Upgrade I), in which the technology of the selected detectors in the LHCb

spectrometer is changed to adjust them to the increased luminosity, pile-up and to the

improved readout. The dissertation is mainly devoted to the Vertex Locator (the vertex

detector in the LHCb spectrometer) and focuses on the software for Upgrade I, presenting

the calibration and monitoring platform Vetra that was designed and implemented by

the Author of this thesis. It further discusses a few selected comprehend studies on pixel

detectors that take advantage of the platform, which are clustering, Time-over-Threshold

studies, and chip analog optimization. As the complementary research objective, the thesis

first presents a wide range of Computational Intelligence and Machine Learning (ML)

methods and gives ideas and concepts for their potential applications in physics analysis

and mass spectrum reconstruction, on the example of B0 → D−
s π+ decay. A very detailed

survey of the latest ML applications in HEP precedes the proposed application concepts.

The thesis is organized as follows. Chapter 2 makes a survey of selected Machine

Learning methods, including Generative Adversarial Networks, and outlines their state-

of-the-art. Chapter 3 is a comprehensive description of the LHCb experiment, Upgrade
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Introduction

I in general, and the Vertex Locator. Chapter 4 presents the software for the upgraded

Vertex Locator; it begins from a technical description of the LHCb software environment

and further proceeds to the software that was created by the Author, accountable for data

processing, decoding, pixel equalization, calibration and detector monitoring. Chapter 5

presents a few studies on the pixel detectors; clustering, Time-over-Threshold, and analog

optimization. Chapter 6 surveys the recent applications of Machine Learning in HEP and

LHCb, explores potential fields that could take advantage of such methods, and finally

proposes a few concepts based on the latest from Machine Learning, providing preliminary

studies on the example of B0 meson decay. Chapter 7 is a brief summary where the

footprint of the dissertation is discussed.
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Chapter 2

Computational Intelligence

Computational Intelligence, a sub-field of Artificial Intelligence (AI), is one of the most

popular and burgeoning fields of Computer Science, as it gains far-reaching practical

applications in real life [8]. ML methods find a diverse adoption in a high spectrum

of science, as they consistently prove to be more efficient than standard mathematical

approaches, such as those based on statistical inference used for modelling so far. The

recent growth of the methods is so extensive that the whole field was arbitrarily divided

into many research areas, and the number of research directions grows every year. Though

the majority of the studies focus on putting small improvements to the existing models, new

methods are discovered as the whole field is getting more attention. This Chapter describes

the most significant branches of ML, which are classification, intelligent optimization,

and neural networks, and gives a generic overview of their state-of-the-art at the moment

the thesis is being written (Jun-Sep 2022). The methods are selected with a scope of

their usage in HEP, particularly the ones that are referred to later in Chapter 6, where

the applications of ML in the LHCb experiment are discussed in detail. This Chapter is

divided as follows; Section 2.1 gives a hands-on experience regarding classification, Section

2.3 outlines optimization algorithms including metaheuristics, Section 2.2 explains neural

and deep models, Section 2.4 continues so with Generative Adversarial Networks as an

example of modern generative models, and finally, Section 2.5 makes a survey on deep

model learning via optimization algorithms.

2.1 Classification

Classification is the process of recognition and categorization, e.g. an object into a class.

This common data analysis problem can be solved using various approaches, where those

15



Computational Intelligence

performing best are based on ML methods [9]. A method, arguably, lying between ML

and a purely probabilistic approach is Naive Bayes [10], where the objects are classified

using Bayesian cognition [11, 12]. Classification belongs to a group of Supervised Learning

(classes should be given a priori [13]). The most common classifiers are Decision Tree

(DT) [14], k-Nearest Neighbors algorithm (kNN) (1951, Fix et al. [15]), Fisher’s Linear

Discriminant (1936, Fisher [16]) and Linear Discriminant Analysis (LDA) [17] with further

improvements [18, 19], Support-Vector Machine (SVM) (1995, Cortes et al. [20]) and a

range of hybrids [21,22]. A neural network can be used as classifier as well (see Section

2.2).

DT is a method of classification and regression [23] widely used in Data Science.

The logic behind the approach is to support the decision-making process by considering

likelihoods, risks and potential rewards. DTs are built of nodes and branches (rules and

options), which follow the logical reasoning explicitly [24]. Each node applies a rule

according to which the local decision is made. Rules do not necessarily have to be related

to the object, which plays an advantage over the other classification methods. Conditions

employed in decision-making can be binomial or polynomial but always discrete, which

differs DT from Fuzzy Logic [25]. The first decision is made in the root node, and the

process continues climbing downwards to the bottom of the tree. The training includes

choosing the right rule at the root and the hierarchy of rules for the burst nodes. A tree

can grow and add nodes until a growth-stop condition is satisfied, e.g. a limit for the total

depth of the tree or a certain level of prediction accuracy, which is measured by uncertainty

or entropy indicators [26, 27]. To measure the classification impurity, a Gini index [28] (or

Gini impurity) is used commonly, which indicates the probability of a feature classified

incorrectly when selected randomly. Trees can process the problem in a brute-force way

when trained deep enough. They can support any decision-making process, e.g. a minimax

strategy [29], provided the consecutive layers of branches are the moves of opposite agents.

The numerical complexity of the tree is a function of the depth and the number of nodes in

each branch. Regardless of whether DTs are used for classification or regression, they train

fast compared to models based on neural nets and are usually chosen when the training

dataset is too small to build a competent deep model. They are vulnerable to overfitting [30]

(especially when appended nodes face different function complexity) and generally feature

high variance - low bias attributes1 [31–33]. To decrease the tree complexity, a branch-

pruning method can be applied, such that it gets rid of the branches that are less significant
1A variance-bias trade-off is a common classification dilemma. High bias oversimplifies the classification

but is more predictable for data the model has not seen before (low variance), and vice versa.
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Figure 2.1: kNN classifier for k = 1 (left) and k = 100 (right). With higher values of k
the model tends to the higher bias.

in the decision-making process [34]. Many pruning methods are available, e.g. reduced-error

pruning [35], cost-complexity pruning [36] or alpha-beta pruning [37], which are used

depending on the problem [38, 39]. Common metrics to improve DT performance are

bootstrapping [40] - a resampling method with replacement (which means an element

can appear multiple times in a sample) used for hypothesis testing on the pulled samples

from approximating distribution [41,42] (which can be used during learning), bagging -

a bootstrap aggregation [43] to create weak learners via bootstrapping [44], and other

ensemble methods [45]. More advanced models use a sequential combination of many

relatively weak and inaccurate predictors (usually decision stumps), which is dubbed

boosting or gradient-boosting if the training relies on gradient minimization [46–48]. Most

popular gradient-boosted models [49] are XGBoost [50], CatBoost [51] for categorization,

and AdaBoost with adaptive boosting [52,53]. DTs show a strong presence in HEP field [54],

which is further described in Chapter 6.

The other well-performing classification algorithm is k-Nearest Neighbors (kNN) [55].

When classifying an object, the algorithm searches for the k closest neighbors around the

data point [56] and postulates that it belongs to the same class as the majority of the

neighbors, or to which the highest number of neighbors were classified if the task is a

non-binary classification [57]. Although the idea might look quite simple for it to be used

in large datasets, it performs very well even in multivariate problems. The value of k may

vary and can be adjusted by a grid search or other optimizing algorithm [58] for the highest

possible efficiency. There are several kinds of distance definitions one can use in kNN,

for instance, binomial scaled, Minkowski [59], or ordinary Euclidean. kNN is relatively
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Figure 2.2: A Decision Tree of depth d = 2 (left) and d = 10 (right).

simple to use and has found multiple applications due to its good performance [60]. A

kNN classifier is illustrated in Fig. 2.1 for the random dataset, where the difference in k

parameter is highlighted. A low value of k (k = 1) leads to low bias and high variance of the

model, while its high value (k = 100) to high bias and low variance [61]. For comparison,

a DT classifier for the same dataset is shown in Fig. 2.2, with a small depth of the tree

(d = 2) and a big depth (d = 10). Note that no objects from the training dataset are

misclassified when DT is overtrained. The Python code in the form of Jupyter notebook

(web application for sharing computational Python documents [62]) to create the plots

mentioned above can be found in github repository of the Author [63] (sklearn library was

used to model the DT [64]).

2.2 Neural and deep models

Neural networks [65] are computer systems for data processing inspired by the nature of a

neural system and are used for classification, regression, approximation and prediction.

The processing mechanism originates from a nerve cell neuron [66], a cell that functions

as a binary classifier [67]. Its computational relative, perceptron [68], activates when the

real-valued input passes a certain threshold of the activation function and if so, yields the

real value of this function. The shape of the activation function is not predetermined and

can vary depending on which one is more relevant to the considered problem [69]. The

Heaviside step function is the simplest possible but allows the neuron to only distinguish

between two linearly separated classes. The most common activation functions are ReLu

(Rectified Linear Unit) and LeakyReLu (Leaky Rectified Linear Unit) [70], or others of this
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Figure 2.3: A gradient descent visualized in a loss function landscape. [77]

type [71]. Those allow the networks for more complex class separation, although a single

non-linearity allows only one flex in the class separating line. Another commonly used is

sigmoid (S-curve), which is non-linear throughout and allows more complex separation

between two classes [72]. A disadvantage of this function is its vanishing derivative when

approaching infinity and, thus, the vanishing difference between higher input real values.

This can be detrimental for the class separation when the perceptron training relies on

gradient calculations and generally requires scaling of the input data.

The standard training of the perceptron (or the whole network of neurons) evaluates

the model on the loss function [73] and computes the gradient of this evaluation as a

function of the parameters contributing to its value inside the model in a procedure called

backpropagation (which computes the error propagation). The gradient naturally points

to a direction of the highest ascent of the loss function, therefore to decrease the loss, a

fraction of the gradient is subtracted from each parameter in the model. The fraction is

defined by a learning rate [74]. The learning rate is adjustable and can change during the

learning process [75, 76]. The procedure results in a Gradient Descent (GD) of the loss,

where the model is fitted better to the training dataset in each gradient subtraction step.

Fig. 2.3 illustrates the GD of a simple loss function landscape of two parameters. There

is a variety of possible loss functions that can be used [78–80], but the most popular are

Mean-Square Error (MSE) for approximation and Binary Cross-Entropy (BCE) [81] for

binary classification. The loss function can reflect the policy when the neural network is

trained via reinforcement2 [82]. When the loss function has regions of local flatness, its

gradient can vanish [83, 84], which in turn can prevent the network from learning properly.
2Reinforcement learning can be applied when no training data is available, but the model can interact

with the environment. The model trained via reinforcement learns to accomplish a task through repeated
trial. The interrelation between actions and received rewards is then defined by a policy.
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Figure 2.4: A neural network with 3 hidden layers. [89]

The opposite effect is called exploding gradient [85, 86] and occurs when the learning rate

is too large or when the loss function is sharply corrugated. There are plenty of solutions

how to investigate and prevent negative gradient effects, such as [87, 88] to mention but a

few.

An exemplary scheme of a neural network with a few inner layers (hidden layers) is

illustrated in Fig. 2.4. The term deep is used for a neural network with at least one hidden

layer inside. A mathematical explanation of the latent space (a vector space of hidden

layer parameters that are not directly interpretable) properties during the training and

their impact on the neural network efficiency are not forthright and became the entire

field research [90].

The network architecture [91, 92], the type of connection between neurons [93], the

training method [94–97] and gradient propagation [98, 99] can be adjusted depending

on the application. Among the popular and modern models, the most noteworthy are

Convolutional Neural Networks (CNN) [100], commonly used for computer vision, and

Recurrent Neural Networks (RNN) [101], for text generation and speech recognition. The

latter got recently vested with gated architectures, e.g. Hochreiter et al. LSTM (Long

Short Term Memory) [102] and Cho et al. GRU (Gated Recurrent Unit) [103], with many

successes in text generation. The most popular algorithms to train the network are ordinary

Gradient Descent (GD) [104], Stochastic Gradient Descent (SGD) [105] when training on

batches3 and ADAM, improved SGD with gradient weighting [106].
3When the dataset is large, evaluation of the loss function gets CPU-costly. The loss function can be

instead evaluated on random batches from the dataset, hence stochastic.
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2.3 Intelligent optimization

Optimization is a mathematical problem of finding a suite of parameters that minimize a

given cost function or fitness function [107]. Optimization tasks of higher dimensionality

usually cannot be solved by GD-based methods, as they are often highly multimodal and

the algorithm gets stuck in a local minimum immediately [108]. Such problems can hardly

be solved using brute force or greedy strategy, as it would require high, often unacceptable

computational cost [109]. Intelligent optimization deals with such objectives using methods

that are much less costly than a greedy approach.

The most popular are Genetic Algorithms (GA) [110], which refer to the natural

selection of species. A whole concept relies on this analogy and consists of selection, cross-

over and mutation inspired by nature. Selection resolves premature convergence in the

population [111], cross-over tends to approach the objective function [112], while mutation

is used to prevent the algorithm from being trapped in local minima [113], although might

possibly be more impactful at times [114]. Various cross-over [115,116], selection [117] and

mutation approaches [118–120] can be found in literature. Genetic Algorithms are quite old

compared to other ML methods (they were developed in 1960s and 1970s by Holland [121]),

and over the years of their existence, many algorithm variants were explored [122]. In

particular, Genetic Algorithms formed a ground for nature-inspired metaheuristics4 [124].

Those were intensely studied in recent years [125] proving good performance [126, 127],

although sometimes criticized for using metaphors instead of mathematical explanations

(especially Sorensen [128] and [129–131]). Among the popular metaheuristics are, for

instance, the swarm optimization [132], the firefly algorithm [133], the flower pollination

algorithm [134] (FPA), the simulated annealing [135], or the ant colony optimization [136].

The methods were refined multiple times, e.g. Lukasik and myself proposed the idea of

cutting the local randomizing factors in favor of organized population movement in the

flower pollination algorithm [6].

Differential Evolutionary (DE) algorithms (1970, Storn et al. [137]) were founded on

GA basis [138] and have been actively developed in many directions [139–142]. They

demonstrate excellent performance at a variety of problems of multi-objective optimization

[143,144]. Various mutation concepts were applied to DE models [145], making the mutation

role more impactful on the exploration process [146,147]. One of the best variant of DE,

which won a few IEEE CEC competitions (the most popular optimization algorithms

competition) [148] is SHADE (2013, Tanabe et al. [149]), a self-adaptive DE, further
4Metaheuristic is a paradigm aimed to find guidelines for a solution to the optimization problem [123].
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Figure 2.5: The generic scheme of GAN.

improved to LSHADE [150], available in github [151].

2.4 Generative Adversarial Networks

Generative Adversarial Networks - GANs (2014, Goodfellow et al. [152]) are lately consid-

ered one of the most compelling generative models. They have found multiple applications,

from computer vision [153], image processing [154], image background extraction [155],

semantic segmentation [156], feature generation, natural language processing (NLP) [157],

image-to-image translation [158], and multiple others [159].

GAN compounds of two models, one generative and one discriminative. These are

usually deep neural networks of corresponding architecture. The models are trained against

each other, such that the generator tries to fool the discriminator to make it unable to

tell whether the data come from the generator or from the existing dataset. At the same

time, the discriminator trains as a classifier to predict the origin of each data sample. A

generic scheme of GAN is sketched in Fig. 2.5. Expressed mathematically, the generator

G and the discriminator D follow a minimax game to find the optimal path to minimize

their adversarial loss. In the original model [152], the loss function for G was formulated

as (2.1):

Lgen = min[log(D(x)) + log(1−D(G(n)))], (2.1)

where x stands for the real data, and G(n) for the generated data on the noise vector

n. This formula uses fixed discriminated prediction to express the G loss. D follows the

minimax strategy when calculating the gradient, which was expressed by Goodfellow as
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Figure 2.6: Fake samples generated by BigGAN (Brock et al. [178]).

(2.2):

min
G

max
D

V (D,G) = E(Xpdata(x)[log(D(x))]) + E(Ypy(y)[log(1−D(G(y)))]), (2.2)

where D(X) is the estimate of the probability that a true data sample would be found

to be true, D(G(y)) is the estimate of the probability that a false sample would be deemed

false, EX and EY are expected values over the whole dataset, and V (D,G) is a combined

loss function in which D and G strive to find the equilibrium point.

Since 2014, many improvements have been proposed to the vanilla model, at times

completely revising its architecture or capabilities. In 2017 Arjovsky et al. [160] proposed an

innovative way to compute the adversarial loss, commonly known as Wasserstein loss [161],

based on Wasserstein metric5 [162], introducing WGAN, which turned out to be more

efficient in a number of cases. Since a recast of the loss function can revise the latent space

to behave differently, many alternate models introduce gradient manipulation, e.g. gradient

penalty [163]. Some research ideas resulted in models changing the GAN paradigm, such as

Zhu et al. CycleGAN for image-to-image translation [164], Radford et al. DCGAN (Deep

Convolutional GAN) combining CNN architecture with GAN [165], or Hjelm et al. BGAN

(Boundary-seeking GAN) [166], which computes generator weights via policy gradient [167].

In 2017 Berthelot et al. proposed BEGAN (Boundary Equilibrium GAN) [168] with loss

equilibrium enforcement paired with the Wasserstein distance. Isola et al. (2016) [169]

released famous pix2pix software for image-to-image translation (online version demo

in [170]) using Conditional GAN (2014, Mirza and Osindero [171]). A summary of the

recent advances and ideas of GAN models can be found in [172,173].

Many improvements rely on concepts that were discovered in other ML fields, such
5In short, the Wasserstein distance is the cost of turning one distribution into another (number of

moves times Euclidean distance) in the Optimal Transport Problem. When applied to GAN, it measures
the distance between the distributions of real and generated datasets.
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as self-attention [174] (arguably one of the best discoveries of 2017 in ML), resulting in

self-attention GAN by Zhang and Goodfellow et al. [175] (Goodfellow was also the author

of the original model). Because the latent space attributes lack unambiguous mathematical

reasoning, it finds a reflection on the research directions [176]. The same relates to the

image synthesis process [177]. Fig. 2.6 shows the example images generated by a customized

GAN. As a matter of fact, most of the recent advances in the field were achieved through

customized models, e.g. generation of the human faces from textual description, Sabae et

al. StyleGAN2 in this specific case [179].

2.5 Learning by way of optimization

Optionally one could look at the deep model training as an optimization problem. The

fitness function is nearly impossible to define, but if existed, it might have an indefinite

number of local minima, trapping and restricting GD from moving in any direction [180]. In

fact, Morse and Stanley [181] suggested that GD in deep neural networks can significantly

suffer from such restrictions. On the other hand, adding an escape mechanism for the

gradient to GD is usually costly in terms of CPU/GPU usage and misuses the learning

process [182].

Acquiring heuristic training to the neural networks was investigated quite early [183]

as an alternative to backpropagation [184, 185]. Since that time, many hybrid concepts

have been proposed [186] and used for real-life applications, e.g. prediction in Time

Series [187,188]. The conclusion was that even though the heuristic training is unlikely to

overcome backpropagation [189], the hybrids can be surprisingly effective [190,191], or train

faster than policy gradient methods in reinforcement learning [192,193]. Applying any GA

or DE methods to the deep models is known as neuroevolution [194,195]. Models of this kind

were successful at designing, or more in context, evolving the model architecture [196–198],

classifiers [199,200] and CNNs [201,202]. Martin et al. [203] devised EvoDeep with lateral

hyper-parameters to train the deep model, while Sun et al. [204] optimized the weights

using Neural Architecture Search.

In 2019, Wang et al. proposed Evolutionary GAN [205], where the architecture of the

generator evolves to counteract the discriminator habits, with further major improvements

to the model [206,207]. The GAN model oriented to multi-objective optimization (opti-

mization of more than one objective function [208]) brought promising results [209]. He et

al. [210] reversed that approach and used GAN in multi-objective optimization. Morskyi
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and myself proposed GAN with an evolutionary footprint with GPU-efficient mutations [5],

which help the model to learn more smoothly and achieve the results quicker in terms

of optimization complexity, although not quicker in terms of CPU operations. There are

plenty of similar enhancements one could find in the generic survey [211], as the field has

been tremendously growing over the past few years.
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Chapter 3

The LHCb experiment

The LHCb (Large Hadron Collider beauty) is one of the leading experiments operating at

LHC, a ring-shaped accelerator situated near Geneva. The main goal of the experiment

is to investigate a combined CP symmetry violation in a sector of beauty and charm

meson and baryon decays [212] and to study rare decays of those towards discovering New

Physics phenomena. For the eight years of the experiment (2010-2018), LHC Run 1 and

2 [213], the LHCb collaboration [214] led to a number of discoveries, e.g. the observation

of a complex pentaquark state [215] or the confirmation of theoretically predicted CP

symmetry breaking in the selected decays of charm mesons [216]. In December 2018 Run

2 finished, and the LHCb experiment moved into a long-time modernization phase (Long

Shutdown 1, LS1) [217] before Run 3, planned firstly to begin in 2020, later postponed to

2022 owing to the Covid-19 pandemic. This Upgrade I adjusts various components of the

LHCb spectrometer to the increased instantaneous luminosity, with a physical goal of new

possibilities to discover signs of New Physics (Beyond the Standard Model Physics [218]),

with plans going as far ahead as to the Upgrade II [219] planned for around 2030 for

High-Luminosity LHC (HL-LHC) era [220,221].

The LHC is designed to provide proton-proton collisions of the centre-of-mass energy

of 14 TeV [222]. The accelerated particles move in opposite directions in two separate

LHC rings. The beams are crossed in a few interaction points providing collisions to the

complex detectors of LHC experiments. The LHC flagship experiments are ATLAS [223],

ALICE [224], CMS [225] and LHCb. Their approximate location on the LHC ring is depicted

in Fig. 3.1. While ALICE is almost entirely devoted to ion-ion collisions, the research

programs of ATLAS and CMS are more comprehensive and used to search for Beyond

the Standard Model Physics [227]. Among the smaller LHC experiments, LHCf [228],

TOTEM [229], MoEDAL-MAPP [230], and FASER [231] can be mentioned. A summary
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Figure 3.1: The experimental site facility with four foremost experiments marked. [226]

of the research goals of all experiments mentioned above can be found in [232].

3.1 The LHCb spectrometer

The spectrometer of LHCb has a one-arm geometry and constitutes of many complex

detectors [233]. Its geometry is justified by the fact that the pairs of b quark and antiquark,

while produced, always go to the same cone, as both are boosted in the same direction by

the momentum of the interacting partons. The LHCb acceptance coverage in pseudorapidity

enfolds the region of 1.8 < η < 4.9 (pseudorapidity is defined as η = −ln[tan(θ/2)], and θ

is the polar angle of the track with respect to the beam).

Figure 3.2: The LHCb spectrometer geometry. [233]
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The LHCb detectors with their relative position are illustrated in Fig. 3.2. A single

dipole magnet, referred to as LHCb Magnet [234] (shown in Fig. 3.3) is used to measure

the momentum of the charged particles. A magnetic field of the device bends particle

trajectories, allowing the transverse momentum to be estimated by measuring the sagitta

of the reconstructed track. The momentum estimation is possible only for tracks that were

registered in tracking detectors in front of and behind the magnet. The magnet does not

interact with photons nor particles with no charge.

Figure 3.3: LHCb Magnet (left) [235] and the spectrometer profile view [236].

Until LS1, the spectrometer used to have three tracking detectors, which were Vertex

Locator (VELO), Tracker Turicensis (TT), and three Tracking Stations (T1, T2, T3),

which were further categorized as Inner Tracker [237] and Outer Tracker [238]. The Inner

Tracker and Tracker Turicensis are often referred to as LHCb Silicon Tracker [239,240].

Vertex Locator (Fig. 3.4) closely surrounds the beam interaction region and measures

tracks of charged particles [242]. Even though the distance between the beams and the

closest stations of VELO is very small (around 8.1 mm, which is decreased to 5.1 mm after

LS1), the particles that do not decay until reaching the detector material are considered

long-lived [243] (e.g. kaons or pions). Since there is no possibility of observing tracks of B

mesons (or other short-lived particles), they have to be measured indirectly. A pattern of

tracks in the vertex detector is used to reconstruct a vertex of the decay (the secondary

vertex) and a vertex of the collision (the primary vertex). When the products of a decay

are picked and measured completely, it is possible to reconstruct a full decay tree. The

process of reconstruction is handled by the triggers and the offline reconstruction software.

VELO is assembled of two halves (which are shown in Fig. 3.5) that are able to move

apart for the survey and when the beam stabilizes, as the particles from the beam halo

can damage the sensitive parts of the detector.

There are 21 stations equipped with 2 modules, each distributed along the beam (consult
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Figure 3.4: The scheme and geometry of the Vertex Locator. [241]

Figure 3.5: The R, Φ modules in closed position (left) and one side of the Vertex Locator
(right). [244]

Fig. 3.4). Additional 2 pile-up stations in the backward direction to the spectrometer

are installed to support the event triggering. Each module features 2 n-on-n type silicon

microstrip sensors assembled on either side [245]. A sensor of R-type disposes the strips

perpendicularly to the centre and measures the radial coordinate of the travelling charged

particle in the polar system. Complementary, Φ sensor measures the polar angle by having

the strips laid out radially off the centre. The minimum pitch of 37 µm is achieved in the

innermost region of the sensors. The geometry of the modules is visualized in Fig. 3.4. A

readout chip for VELO and Silicon Tracker is the Beetle ASIC [246,247], which provides

both analog and digital readout [248]. The analog readout is used in VELO, while the

digital in Silicon Tracker only [249,250].
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RICH (Ring Imaging Cherenkov) [251] is a system of two Cherenkov detectors, RICH1

and RICH2, separated by LHCb Magnet, standing a part of charged hadronic particles

identification system through measuring the Cherenkov radiation of charged particles

crossing their gas radiator [252]. When a charged particle passes the entrance of the system

(the radiators), and the velocity of that particle exceeds the speed of light in the medium,

Cherenkov photons are emitted. The emission angle is a function of the particle velocity

and the refractive index of the material, which is used for identification (see Fig. 3.6).

RICH1 (in front of the magnet) covers the momentum range of 2 - 60 GeV/c, while RICH2

the range of 15 - 100 GeV/c. The LHCb Cherenkov detectors provide unique particle

identification capabilities compared to other LHC detectors.

Figure 3.6: Reconstructed Cherenkov angle in RICH1. [253]

The LHCb calorimeter system [254] is composed of a scintillating pad detector (SPD),

a preshower (PS), an electromagnetic calorimeter (ECAL), and a hadronic calorimeter

(HCAL) [255]. The main purpose of the system is to identify hadrons, photons and

electrons (SPD and PS are used to tag charged particles), and to measure their energy.

HCAL provides the trigger on the presence of hadrons with high transverse momentum (a

signature of B meson decays) and takes account of around 70% fast trigger decisions [256].

ECAL (shown in Fig. 3.7) precisely reconstructs the kinematical parameters of neutral

particles [258].

The furthest downstream with respect to the interaction point lies a system of Muon

Stations [259] (M1 - M5 in Fig. 3.2), which targets the muon detection when they travel

through the gaseous proportional chambers [260]. The muon system plays an essential

role in providing fast information to the triggers. It is capable of performing stand-alone

tracking, assuming that all particles detected came from the interaction point, which in
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Figure 3.7: The LHCb electromagnetic calorimeter ECAL. [257]

turn allows for a coarse estimation of their momentum.

The trigger system is essentially divided into two parts, the hardware part named L0

(Level-0) Trigger and the software HLT (High-Level Trigger) [261]. The system decides if

the physics event is interesting or not and whether to save it or to discard. The L0 trigger

makes a decision taking into account information from calorimeters, Muon System and two

VELO pile-up stations (see [242]). The L0 trigger operates at 40 MHz rate, the nominal

LHC frequency, and yields at the maximum rate of 1.1 MHz. The reduction is performed

on the information provided mostly by calorimeters and Muon System. Once the event is

accepted, the other detectors are read out at that specific bunch crossing number. The

TELL1 readout processing boards [262] send the data to Event Filter Farm, which is a

CPU farm. The architecture of this system is explained in Fig. 3.8, which differentiates

Run 1 and 2 taking cognizance of the changes that were made between those periods due

to the experience and computational memory improvements [264]. The first stage of the

software trigger HLT1 aims to reduce the incoming data rate such that the second stage,

HLT2, has enough time to fully reconstruct the selected events. Run 1 trigger featured

a buffer which could store data from L0 to put the decision off in time to the moment

when HLT is idle. This software architecture changed in 2015 [265, 266]. A buffer between

L0 and HLT1 was removed as HLT1 improved efficiency via far more superior software,

and HLT1 and HLT2 no longer work at the same time (HLT2 became asynchronous with

respect to the beam crossing). Instead, the data brought off the HLT1 are saved to a disk

and processed by HLT2 with all CPUs at the time when the detector takes no data. The

trigger yields the reconstructed tracks with the identification of the particles assigned

where possible. The process of further analysis holds a generic name Offline Analysis
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Figure 3.8: LHCb trigger architecture for Run 1 (left) and 2 (right). [263]

and includes e.g. sprucing and stripping, using pre-selection algorithms based mostly on

topological and kinematical cuts. The software environment of LHCb is described later in

Chapter 4.

3.2 The Upgrade I

The modernization period of LS1 is known as Upgrade I. The goal of the upgrade is to

adjust the detector to the full 40 MHz readout (from 1.1 MHz trigger used before). In

order to increase the signal yield for hadronic channels, which until 2018 lacked in sample

size to match the theory uncertainties, the trigger system is rearranged and the hardware

trigger removed completely [267,268], as outlined in Fig. 3.9. The new triggerless1 readout

will operate at five times higher instantaneous luminosity and deal with particle fluence

exceeding 1015 neqcm−2 (neq - neutron equivalent). The higher granularity of tracking

detectors enhances their planar resolution. The number of pile-up events (concurrent

collisions) will reach an average number of 7.6 [269] per bunch crossing. It is required to

replace the obsolete readout systems of many LHCb components, in particular, TELL1
1This property of the entire upgrade trigger system is driven by the new vertex detector that features

triggerless pixel sensors.
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Figure 3.9: The Upgrade I LHCb trigger architecture. [263]

boards to TELL40 [270,271], which will operate at 40 MHz frequency (a specification of

new TELL40 boards is given in [272]).

The Upgrade I tracking system is replaced in a whole in terms of the Run 1 and 2

hardware. VELO undergoes a massive upgrade of the technology (strips to pixels), readout

and electronics, which adjusts the detector to cope with the 40 MHz readout. The Upgrade

I for VELO is explained in a separate Section 3.3. The Silicon Tracker and Outer Tracker

are removed in favor of the Upstream Tracker (UT) [273] and Scintillating Fibre Tracker

(SciFi) [274], which are entirely new LHCb sub-detectors. Placed behind VELO, at the

exact same spot as TT before (shown in Fig. 3.10), UT consists of four measuring stations

with silicon micro-strip sensors. The stations are laid out in the same manner as the

removed Tracker Turicensis [237].

Two upstream planes of UT are split into 16 staves, and two downstream ones into 18

staves. Each stave is tiled with silicon wafers of about 10 cm × 10 cm square shape. A pitch

of the sensors varies from 190 µm to 90 µm in the outer and inner region, respectively [4].

The schematic view of the planes is shown in Fig. 3.11. The electronic module to read out

UT strips is SALT (Silicon ASIC for LHCb Tracking) [277], which further connects to

TELL40 boards.
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Figure 3.10: The Upgrade I LHCb spectrometer geometry. [275]

Figure 3.11: The Upstream Tracker planes geometry, illustrated downstream. [276]

The SciFi Tracker replaces the Tracking Stations. The tracker comprehends 12 stereo-

layers divided into 12 modules, where each module is further divided into 8 fibre mats

with 6 stacked layers of 250 µm scintillating fibre [278]. Each plane will be mounted

on a C-frame that is visualized in Fig. 3.12 once fully assembled. The scintillation light

appearing in fibres is detected and measured by Silicon Photomultiplier (SiPM) [280] with

accompanying readout chip Pacific ASIC [281].
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Figure 3.12: SciFi C-frame visualized when fully assembled. [279]

RICH detectors take advantage of the LS1 preparation time for the installation of

the new photodetectors and electronics, improvements of the mechanics and other minor

changes [282]. Calorimeters and Muon System confront mostly minor adjustments [283,284].

3.3 Upgrade I for Vertex Locator

The original LHCb micro-strip vertex detector will be replaced with a pixel detector able

to operate at luminosities of around 2× 1033 cm−2s−1. Although the role of VELO in the

spectrometer remains similar, so does the general profile of the detector (see Fig. 3.13),

the technology behind the detection mechanism is changed significantly [285]. The new

geometry of VELO is shown in Fig. 3.14, where the R and Φ modules are replaced by pixel

Figure 3.13: Upgrade I Vertex Locator visualization. [285]
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matrices. Besides the enhanced planar resolution, Upgrade I VELO raises the nominal

full-detector readout frequency from 1.1 Mhz to 40 MHz. The innermost sensors will be

located as close as 5.1 mm to the LHC beams. This change, combined with the increased

Figure 3.14: Upgrade I Vertex Locator geometry. [285]

luminosity, gives a radical rise in the occupancy, which will reach 900 Mhits/s for the

hottest ASICs [286]. When expressed in the data rate units, the ASIC would produce

15 Gbit/s of raw data. The upper limit on the radiation dose foreseen for the upgraded

VELO is 400 MRad. Fig. 3.15 illustrates how many pile-up events the new detector has to

cope with in a function of luminosity and collision rate. A contribution of more than 6

pile-up events makes it difficult for the experiment to tackle and would not be possible

with the old triggers.

An increase in instantaneous luminosity is also associated with intensifying the efforts

to counteract radiation damage in the detector. The expected fluence of hadronic radiation

in upgraded VELO in just one year would match the total fluence of its predecessor.

Radiation damage was a significant factor already during Run 2 [287–289], especially at

the final stage of the detector operation. Rapid adverse effects in VELO sensors led to

a dangerous situation where the leakage currents would exceed the thermal run-away

threshold [290,291] and potentially make the sensors not operational any longer [1]. The

fluence studies for new VELO supported by GEANT4 [292] and FLUKA [293] estimated

the radiation to be highly nonuniform, as depicted in Fig. 3.16. The innermost sensors will

suffer from irradiation much more than the sensors in the periphery region. The expected

radiation damage for the upgraded vertex detector is presented in Fig. 3.16, as a function
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Figure 3.15: Interaction rate and average number of pile-up events (left) and average
number of interactions in a function of luminosity (right). [285]

of the distance to the z-axis (consult Fig. 3.10), an axis along the LHC beam direction.

Figure 3.16: Anticipated integrated radiation dose per 1 fb−1 expressed in MeV neq/cm2.
The radius is the distance of the sensor element to the beam. [285]

Another element changing in the upgraded VELO is a Radio-Frequency Foil (RF Foil)

[294]. The RF Foil separates the primary LHC vacuum from the VELO secondary vacuum,

leading away the beam image currents and the weak-field induced by the beam [295]. It

also shields the assemblies from electromagnetic radiation. The foil is shaped to fit the

modules, as presented in Fig. 3.17. The foil for Upgrade I is only 500 µm thick to limit

the material for the particles to travel through before appearing in the detector. The foil

was milled from a single aluminium block at Nikhef [296] and further chemically etched
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Figure 3.17: Visualization of the RF foil with VELO modules fitting inside.

to reach 250 µm thickness in the most central region. The foil was shifted to CERN and

installed in the detector with a video publicly available at [297]. The milling process and

the foil after installation are presented in Fig. 3.18.

Figure 3.18: Foil at the milling (left) and once installed in the detector (right).

The cooling mechanism for VELO modules is embedded into the panel substrates for

the sensors in the form of microchannels [298]. This solution was found to combine strong

cooling capabilities using two-phase CO2 with a very low material budget. The CO2 from

the cooling plant goes through the inlets and circulates in 120 µm × 200 µm microchannels

(the substrate is 500 µm thick) and provides cooling to sensor chips and electronics [299].

The microchannels are routed inside the substrate in such a way that the temperature

gradients of the whole panel are possibly the lowest. The cooling mechanism concept and

panel substrate are shown in Fig. 3.19.

The readout chip for upgraded VELO is the VeloPix ASIC [300]. Its design is based on

the widely known MediPix chip family [301] and is a direct successor of the TimePix [302]

and the TimePix3 [303] chips. The VeloPix is built in a 130 nm CMOS (Complementary

Metal-Oxide Semiconductor) technology and features the trigger-less zero-suppressed
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Figure 3.19: The cooling mechanism concept (left) [276] and a panel substrate during
production (right).

binary readout. While only the photon counting mode was available in Medipix, a Time-

over-Threshold (ToT) mode was added and embedded into the Velopix ASIC. One sensor

combines three pixel matrices, each consisting of 256x256 square pixels of 55 µm pitch.

Each pixel is handled by its individual readout channel, which gives over 41 million channels

in total for the entire detector, around 200 times more than in the previous version of

the detector. Single ASIC can transmit the data with a rate of 5.13 Gbit/s [304] through

the optical fibres of the GWT (Gigabyte Wireline Transmitter) [305], a data transmission

protocol being a simplified version of Gigabit Bidirectional Transmitter (GBT) [306,307],

an optical link designed for the LHC detector upgrades [308]. The total data stream from

the whole detector can reach a transcendent volume of 12.1 Tb/s. The data rate from the

ASICs is highly inhomogeneous in a function of the ASIC distance to the beam, which is

pictured in Fig. 3.20.

A module provides mechanical support for 4 VeloPix sensors (also called triplets),

which gives 12 squared matrices, 256x256 pixels each, in total. The module is mounted on

the aluminium foot and comprises panel substrates, front-end hybrids, GBTx hybrid [310]

(a chip for processing control signals) and ASICs. A visualization of a single VeloPix triplet

at the final stage of development in Fig. 3.21, while a fully assembled module is shown in

Fig. 3.22 with the components explained. More details on the hybrids and electronics in

upgraded VELO can be found in [311]. The nomenclature of the ASICs is ModxVPyz,

where x,y,z are the module number, the tile (sensor) number and the ASIC number,

respectively.

The VeloPix chip groups the pixels into logical structures Super-Pixels (SP) in the

form of 2x4 pixel rectangles. Once a pixel in SP is hit, the SP word is created with a map
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Figure 3.20: Simulated data rate in Gbit/s across 12 tiles in a single module. [309]

Figure 3.21: The VeloPix ASIC at the final stage of development.

of hits within SP, an address of the SP, and a 10-bit Time-of-Arrival (ToA). The SP word

is then driven across the column along the other SPs to the End of Column (EoC) by

the readout bus. The SP packet arrives at the data fabric nodes and later to the router,

where the data are forwarded to the GWT links and Low-Frequency (LF) serializer and

eventually brought off the chip. The complete readout logic is presented in Fig. 3.23, and

explained in detail in [312].

The pixel front-end is presented in Fig. 3.24. The analog readout consists of a charge-

sensitive preamplifier with a 3 fF feedback capacitance and the leakage current compensa-

tion component. A 4 fF capacitor is connected to the preamplifier to allow the usage of

Test Pulse (TP).
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Figure 3.22: A fully assembled Upgrade I VELO module.

The preamplifier is constructed with the Krummenacher feedback architecture [313]

for electron collection and was optimized to work with 50 fF load capacitance. The

output of the preamplifier is linked to the 40 MHz discriminator that compares the given

global threshold value (a signal threshold) to the analog signal from the preamplifier. The

discriminator takes into account a 4-bit Trim DAC configurable of the threshold shift. The

Trim DAC is used for calibration purposes to account for variations in individual pixel

properties, where it equalizes the effective signal threshold across the matrix to the closest

possible value. For instance, if a trim for the given pixel was set to be 1 (’0001’), its value

of around 10 mV is added to the signal in the discriminator. The process is explained

further in Section 4.3. The digitized signal goes through a masking gate. The masking

gate is used later in calibration to exclude bad or damaged pixels, as one noisy pixel can

fill up to a fourth of the maximal bandwidth of the SP column readout bus. The digital

front-end features a ToT threshold component used to discard the signals that do not last

enough time expressed in ToT units (i.e. electronic clock units). A 6-bit ToT processor of

LFSR (Linear Feedback Shift Register [314]) allows to measure ToT of the signal up to 63

clock counts, that is 1575 ns for a 40 MHz clock. If a valid event is sent to the SP readout,

it creates a bit word using the FIFO method (first in, first out) with ToA information

added. ToA is expressed in a 9-bit BX ID unit (BX ID - bunch crossing identification).
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Figure 3.23: The Velopix Super-Pixel (SP) logic readout after front-end stage. [312]

The whole front-end readout described above is presented in Fig. 3.24. Bias voltages in the

front-end are generated by the analog periphery to match the user-defined DAC (Digital

to Analog) settings.

The DAQ (Data Acquisition) system is an intermediate element between the VeloPix

readout and CPU clusters. GWT links transmit the data to the Optical-and-Power Board

(or Opto-and-Power Board, OPB) [315], a board that controls signal transducers and

bias voltages for the ASICs. TELL40 boards later condition the signal before sending it
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Figure 3.24: A scheme of a single pixel front-end readout channel. [312]

to the CPU farm, adding timing information in data packets named Supervisor ODIN

(SODIN) [316]. More details on this mechanism can be found in [317] and in [318] in a

wider context, as the system is common for all LHCb detectors.

Figure 3.25: The GWT data frame with an SP word explained.

The GWT protocol encapsulates the hits coming off four different SPs into one data

frame driven further out of the chip. If more than four SPs in a column register a hit, the
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signals queued further in the readout bus are discarded, and the information about the

hits is lost. Although this limit seems sufficient for standard data taking, it makes any

pixel scanning procedure hard to design. The format of the GWT data frame is presented

in Fig. 3.25. Four different SP packets follow the main header, and each packet consists of

a 13-bit SP address (an ASIC ID, column and row coordinates), a 9-bit timestamp of ToA

(BX ID) and an SP word, which is an 8-bit hitmap encoding the lighted pixels in the SP.

The ECS (Experimental Control System) communication protocol can be used for

testing and scanning the VeloPix matrices. This 6-bit analog readout registers either the

number of hits for each pixel or ToT of the last registered hit in the given shutter. The

advantage of ECS is that all pixels can be read out at the same time, which is time-efficient

for any pixel scanning procedure. However, the application of ECS is restrained due to its

susceptibility to noise, especially that associated with opening the shutter. The majority of

control scans and part of the calibration process make use of ECS to shorten the scanning

time, leaving the primary GWT protocol mainly for physical data taking purposes [3].

Figure 3.26: The slice test module setup at the VELO lab at CERN.

For the commissioning of the modules and the readout, the development setup was

built at CERN for the slice tests, which included a full assembled module resembling the

final VELO environment. The module was installed in a vacuum tank with CO2 cooling

connected to the model substrate. The setup incorporated full readout electronics, a cooling

plant, high-voltage and the voltage interlock system. Nearby, a smaller setup was built for

testing the software and OPBs. The setup was made up of 4 VeloPix triplets enveloped by

aluminium shield and therefore was named Aluminium Sandwich (see Fig. 3.27).
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Figure 3.27: Aluminium Sandwich (left) and its readout OPB (right).

A few testbeam series (2015-2018) at the SPS (Super Proton Synchrotron) testbeam

at CERN Prevessin gave the opportunity to test the irradiated sensors under the beam.

The studies took advantage of TimePix3 Telescope [319, 320] to measure a range of

sensor properties and performance. The telescope was built mainly for high-resolution

tracking [321] and R&D (Research and Development) of vertex detectors [322]. It combines

8 planes with sensors bump-bonded to TimePix3 ASICs. The planes can move and adjust

the pitch with respect to each other. A Device Under Test (DUT) is mounted in the middle

of the planes. Many studies are available with this setup [323]. The project scheme of the

telescope is shown in Fig. 3.28. After a new pixel detector readout chip TimePix4 [324] was

released in 2021, featuring an excellent timing resolution of sub-200 ps [325], the timing

resolution of the telescope can be further improved.

Before the slice tests and the aluminium sandwich mentioned above were arranged,

a developing stage setup for the early versions of the VeloPix was assembled at CERN

and a few cooperating facilities, including Krakow. The setup used a SPIDR system to

program and read out the VeloPix. The SPIDR (Speedy Pixel Detector Readout) [326] is a

readout system for Timepix family ASICs developed by the researchers from Nikhef [327],

with its functionality further enhanced on the Velopix ASIC, which was possible due to its

general-purpose readout mechanism. The SPIDR supports 1 and 10 Gbit Ethernet, which

drives the ECS readout. The data can be passed through the FPGA to the computer with

the drivers and firmware installed. SPIDR uses the Xilinx VC707 evaluation board [328]

as FPGA (Field Programmable Gate Array). The setup is suitable for studies on ASIC

readout and the software, delivering a ground for stress tests of the scanning procedures.
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Figure 3.28: A scheme of TimePix3 Telescope at SPS at CERN. [319]

Figure 3.29: The VeloPix and SPIDR setup in Krakow.

The fully assembled setup in Krakow is shown in Fig. 3.29. It is worth noting that the

Krakow test setup was completed and operated by the Author. It was used in development

studies of the software components of the detector daily operation software.

The final modules of VELO were constructed at Nikhef and the University of Liverpool

mostly during the Covid-19 pandemic (2019-2021), mounted on frames of A and C side
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Figure 3.30: The Upgrade I VELO C-side assembled.

(two VELO halves), shifted to CERN and installed in LHCb cavern, on 2nd March 2022

and 11th May 2022, for C and A side respectively (see Fig. 3.30 for C-side).
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Chapter 4

Software for Upgrade I VELO

The operation software is a critical element of the detector system and takes part in almost

all aspects of its functionality. It is responsible for handling the chip readout, decoding and

analyzing the data, building the events, and finally calibrating and monitoring the detector.

The following Chapter describes the operation software, putting a focus on the calibration

and monitoring, which are parts of the Upgrade I commissioning to serve in LHCb for

the next Runs. The Chapter is organized as follows. The LHCb software environment and

Vetra, a platform for detector calibration, are explained in Section 4.1. The decoders are

discussed in Section 4.2. The detector calibration is explained in Section 4.3 and covers

both hardware and software aspects of the process. The detector monitoring is discussed

in Section 4.4, the signal scans in 4.5 and finally, the data emulation, in Section 4.6. The

Vetra platform and all its components presented below were designed, implemented and

tested both in the lab and in the operational environment by the Author of this thesis.

The text in this Section is, in some places, very technical and specific to the LHCb vertex

detector. It is not only a report from the research activities but also a source of information

for the experts that will operate the detector throughout Runs 3 and 4. It was written

during the commissioning period of the upgraded detector.

4.1 The LHCb ecosystem

A major architecture built within LHCb to organize software of all kind is Gaudi [329]

application server, a C++ ecosystem with Python elements acting as pipeline glue1,

for high-level settings. Gaudi is geared to work with big data and has many built-in
1Python as a glue language is a jargon notion meaning that it can be used to bring different libraries,

written in different languages, to work together.
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functionalities that allow fast and optimized processing of such. The processing elements

pertain to the LHCb hardware mechanism and organize data into events. The event is

a basic structure containing instantiated detector objects that participated in the event

detection or processing. A single event is then a collection of objects (produced particles)

and active detector elements that respond within the time window of a single bunch

crossing. The EventSelector service reads the data of the Python level such that the

raw data banks can be further extracted by the C++ preprocessor. Gaudi encompasses

multiple services for both physics analysis and detector studies and stands a part of LHCb

Sofware Continuous Integration System [330]. A configuration file defines sequences of the

algorithms, while the options file specifies the low-level options. LHCbConfigurableUser

defines high-level settings and serves as a handbook for documentation. Gaudi allows

specifying the LHCbApp (a class defining basic information about the data to analyze)

conditions, EventSelector options, output configuration and optional histogram persistency.

A Gaudi kernel (a commanding unit) is created when a user runs the application, and the

algorithms are later executed in the C++ framework. The classes mentioned above are

documented in detail in [331].

Among quite a few Gaudi applications in LHCb, the most recognized are; Brunel for

decay reconstruction [332] (becoming obsolete in incoming Run 3 due to the removal of

hardware trigger), Boole for digitization [333], DaVinci for physics analysis [334], Moore

for HLT application [335, 336], and Gauss for physics event generation and detector

simulation [337, 338]. The extended description of how those applications interact with

each other can be found in [339].

All elements of the detector software created as a part of this thesis were deployed

in one large Gaudi application, a software platform Vetra [4]. Vetra originates from the

application of the exact same name from Run 2. Vetra in the past was a data processing

project which emulated the readout electronics and TELL1 trigger processing boards [340],

and was used for the detector simulation [341]. The original Vetra was able to simulate

the entire readout logic, including the Beetles. Related front-end project Lovell [342]

served machine learning analysis for pedestal2 trending using Vetra as a back-end. The

whole software was instantiated on LHCb-nightlies [343], a platform for automatic system

building and testing. At the end of Run 2, Dendek founded an individual branch of the

testbeam application Tb-UT to handle Upstream Tracker tests [344]. The project was

further enhanced by Rachwal et al. by encompassing the other LHCb tracking detectors
2Pedestal in the previous Vertex Locator was a baseline of the front-end buffer in each channel.
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and making it a universal tool for the testbeam studies TbGaudi [345].

Vetra in Upgrade I is intended to combine the software system for Vertex Locator

and some functionalities of the Upstream Tracker monitoring software [4, 346]. In fact,

these parts were developed independently and are only maintained within the same name

without actual merging of the systems (the Author is responsible for the Vertex Locator

part). Since the design of the project and the infrastructure was rearranged, Vetra for

Vertex Locator was built from scratch (the new project only retained its name, all of the

components were designed anew). The platform is used for decoding, calibration, data

quality monitoring, pixel performance studies, analog readout optimization and emulation

of the calibrated detector. The platform is able to run on user-defined recipes, which build

a sequence from the block elements. This segmented structure makes Vetra flexible for

processing any type of analysis on the data stream from the detector. Vetra for Upstream

Tracker [347] was developed by Dendek and Krupa et al. and includes the RAW data

decoding and the readout electronics monitoring. Vetra is available on GitLab [348] as the

LHCb official software.

A specific code architecture Gaudi::Functional [349] is used, which is a thread-safe

framework with optimized transient file processing (transient files are kept in the memory

over the whole application execution). The platform is adapted to C++11 standard and

multithread operation. Gaudi::Functional features class inheritance from the templates

with a specific relationship to the transient data; there are several algorithms that differ

depending on input and output connections with the transient objects. Algorithms with

no inputs inherit from Producer base class, algorithms with one input and one output

from Transformer, with multiple outputs from MultiTransformer, and algorithms with no

output from Consumer.

Vetra is equipped with ML tools for fast and time-efficient fitting, data validation

and developing trend analysis. The platform is built on the lb-stack-setup, the LHCb

software stack [350], allowing it to install and import algorithms from the other applications

distributed in LHCb ecosystem. A stack is created during the installation process, which

mounts the software dependencies as specified by the user. Some of the essential LHCb

dependencies and kernel files are installed irregardless as they are needed for the proper

functioning of Gaudi. Vetra shares software dependencies with Lbcom [351], Gauss, Boole

and Moore Gaudi projects.

A connection with the other LHCb software elements can be established straightforward.

Vetra closely cooperates with STORCK (Data Storage and Tracking) system, an online
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SQL (Structured Query Language) database service for detector-related data [352,353].

Vetra connection with Siemens WinCC Open Architecture (WinCC OA) [354], used for

managing the communication with the detector [355], is discussed further in this Section.

The output of Vetra is used to build and upload calibration recipes for the detector, which

are critical elements for daily operation. In short, the recipe is a binary file guiding the

WinCC OA in deploying the calibration and contains all calibration and hardware settings

necessary for the detector to run. It defines the condition of the detector and has a vital

impact on the data quality. Vetra can connect to the software for the local commissioning

monitoring Titania [353] and online monitoring Monet [356]. Vetra also takes part in

VELO closing procedure [357] and possibly in clustering and vertexing in the future, as

those functioning in Moore consume unnecessary much CPU time [358].

4.2 The decoding

Four different decoders are available in Vetra to use and customize. VPDecoderDIM decodes

a DIM (Distributed Information Management [359]) format. DIM is a communication

system for distributed environments [360]. Its integration with the LHCb data streaming

can be found in [361] and to PVSS (a system of Supervisory Control and Data Acquisition

[362]) in [363]. DIM is used to communicate between data acquisition machines and the

detector, and further between the WinCC OA system and the DIM servers running in

the LHCb network3. VPDecoderFRG decodes the FRG (FRG - Fragment) data frames.

The FRG frames are raw data of GWT (Gigabyte Wireline Transmitter) bypass [364], a

communication path between the SP (Super-Pixel) readout and the CPU farm, which

bypasses the GWT links. VPDecoderMDF decodes the MDF binary raw banks (MDF -

Mast Data File). MDF is a special LHCb format for event-structured data in a Gaudi sense

(see example in [365]), where the term event corresponds to one physics event produced

in a single bunch crossing. MDF is the default format used for data processing in trigger

during regular data taking. VPDecoderCSV reads the standard compressed CSV files.

A decoder should stand as the first element in a sequence unless the data are already

decoded. A bunch of predefined sequences were implemented in Vetra to provide template

solutions. Each predefined sequence has its own options file. Unfortunately unavailable

outside the CERN network, a technical details on running the template decoding sequences

can be found in Vetra TWiki internal documentation [366].
3The LHCb network, or the online network, is a network for software, data acquisition systems and

monitoring of all spectrometer components.
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Table 4.1: A DIM header in the commissioning format, with assumed a threshold scan
type for the config header.

Subheader Total [b] Quantity Size [b]
Significator 2 0xCBCB 2
Data 6 Module 1

Tile 1
ASIC 1
ASIC unique 2
Trim 1

Generic 30 Type 1
Date 8
Operator 13
e-log entry 4
Runs 4

Config 40 No. of step 4
Step 4
Shutter length 4
Min threshold 4
Max threshold 4
Reserved 20

The DIM decoder processes the stream of the DIM writer, a communication system

which listens to the individual detector modules, and which is placed externally to the

WinCC OA environment. It catches and processes the data coming from the ECS (Ex-

perimental Control System) detector readout through Slow Control (Slow Control is

implemented in GBT chipset [367]). The DIM writer produces a 6-byte format of LFSR

(see Section 3.3), which requires a six-to-eight bitwise mapping to decode. VPDecoderDIM

is a Gaudi Producer, and alike to the other decoders, it is suited to open the Vetra

sequence. It produces frames of 256x256 numbers corresponding to the 256x256 pixel

map of the VeloPix ASIC. When a sequence initializes, VPHeader object is instantiated

to read out the 78-byte binary header with data and scan information added earlier in

the DIM writer. The format of the data stream was designed by the Author to meet the

system requirements, and the header of this data stream is presented in Tab. 4.1 (or [368]).

The header is constructed in the WinCC VeloPix library and prefixed to the data stream

that is later sent to the DIM writer. The header consists of a significator 0xCB0xCB and

combines three specific parts. The data header combines basic information about the chip,

following the nomenclature convention in [369]. The generic header describes the purpose

of the data stream, e.g. the type of the scan. The config header is scan-specific and contains

the scan details. The DIM decoder uses VPHeader to read the scan specification and to

convert the binary header to the human-readable version. This version is later prefixed to
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the decoded data when saved as CSV format. The specification read out from the header

is intended to guide Vetra when analyzing the data, although it is possible to redefine the

specification in the options file.

VPDecoderMDF processes the MDF stream coming either from the GWT or the

simulation software (MDF is the standard output of the High-Level Trigger). Because of the

format complexity, VPDecoderMDF is the most advanced decoder in Vetra. EventSelector

builds RawEvents, which are structure objects of the detector events (detector banks),

extracting the data from MDF. A support for MDF readout is provided by IOHelper

(Input/Output Helper), a Gaudi internal service4. Vetra searches for the VELO-type banks

once RawEvent is stripped, and together with the SODIN bank, they are instantiated in

TES (Transient Event Store, a transient data memory space in Gaudi - see [370]) in the

form of VPDigits objects. Objects in TES are accessible in any further sequence elements.

The structures saved to TES for each RawEvent are a 48-bytes header (the event-specific

header), a SODIN bank and up to 208 VELO banks, corresponding to 208 sensors in the

detector, stacked bitwise on top of each other.

Each raw event is tagged by a bunch crossing identification of the trigger (BX ID)

and granted an event identification number (EventID). The bank is either a TELL40 or

SODIN entity, with the source marked by a 16-bit ID (SourceID). The SourceID is used

to differentiate which part of the detector the data fragment comes from. The raw event

header is a 48-bytes block with the basic information about the event and its content,

such as the checksum of the size for the sanity check (used to check whether the banks

are fully extracted from MDF). The ODIN fragment is a 48-byte structure with Timing

and Fast Control (TFC) [371] properties of the triggered event. The bank contains a few

important parameters for the calibration. The bank is a stack of 5-byte header and ten

4-byte unsigned integers, giving a total of 48 bytes. The first three integers are the run

number, the event number, and the step number, where the latter is used when scanning

the sensor to express the step of the scan. The integer of the step number shares two

bits for the error type used for SODIN diagnostics. Further bytes are GPS time (Global

Positioning System time), TCK (Trigger Configuration Key), partition ID, a word for

custom properties and the BX ID that counts from 0 to 3563, to wrap around the full

LHC orbit [372]. The eighth integer is the orbit ID, that resets its value to 0 each time a

new run is started. The last two words represent the EventID. More details of the SODIN

format and mechanism for Run 3 (the specification was changed in Upgrade I) can be
4IOHelper handles the optional file compression if the MDF data are large.

53



Software for Upgrade I VELO

found in [373].

The data banks resemble the structure of the ODIN but feature their own detector

words. The VELO bank is built of the header specifying a sensor identification and 4-byte

SP words, each corresponding to the SP that registered a hit in the BX ID specified in

the ODIN fragment. Following this logic, if three SPs in a sensor encounter hits, three SP

words are added to the bank. This mechanism is the same during the detector operation,

where the SP words make up the physics data that are sent out by the detector. If a sensor

encounters no hit, a bank is not created. The ODIN fragment is not skipped unless there

are no other banks tagged with the same BX ID.

Figure 4.1: The Super-Pixel word in the VELO bank data fragment.

A structure of the SP word is shown in Fig. 4.1. The first eight LSBs (Least Significant

Bits) represent the SP hitmap, defining specific pixels that were activated within the SP.

The SP row number varies from 0 to 63 (along the longer edge of the SP) and SP column

from 0 to 383 (shorter edge of the SP). The 9-bit SP column counts the columns per tile

and not per ASIC (each tile bonds three readout chips). Sensor ID is a two-bit number

(virtually 0b00, 0b01 or 0b10). The ICF (Isolated Cluster Flag) indicates whether the SP

packet is isolated (the packet is isolated if neither from the closest SP neighborhood is

activated). This flag was intended to support the clustering in CPU, but in the current

version of the system it is not used in the process. Because a VELO bank is created if

at least one pixel is activated in a certain event, its minimal size is bounded to 12 bytes

(8 from the bank header and 4 from a single SP word). The exemplary structure of the

simplest VELO bank with one SP word added is shown in 4.2.

Figure 4.2: The SP word in decimal form (after order segmentation from Fig. 4.3).

Once the decoder parsed the events, the ODINs are separated and sorted according

to the timing specification. The decoder iterates over the banks and builds objects that

represent individual pixels (VPDigits). They are forwarded to the subsequent algorithm
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that the decoder was associated with in the configuration file (or in a template sequence).

With a decoder as the opening piece, any sequence can be created on demand, in a

transparent and flexible manner, depending on what kind of analysis (or monitoring) is to

be carried.

Figure 4.3: The endianness of the SP word, originated in the firmware LE (top) translated
to BE (bottom), marked by Z (for BE unsigned integer).

A stand-alone reader and decoder for MDF is available in Vetra repository [348]. The

binary events are written in Little Endian (LE) order, so each consecutive byte within the

4-byte unsigned integer is inverted. For compatibility reasons Vetra changes the endianness

to Big Endian (BE) order instead, and so does the stand-alone decoder. Because some

entities are shared between the bytes, the decoding needs to replace the bits (see Fig. 4.3).

The MDF decoder, if used in Vetra, forms a sequence as shown in Fig. 4.4. The

high-level configuration (communicated with the options file) defines the sequence and

runs the Gaudi services. Transient Event Store handles the raw data as instructed by

EventSelector (it does not load a whole event stack at once to smoothly process large

MDFs).

Figure 4.4: A sequence template for any analysis requiring MDF decoding.

The FRG format is a raw data format of GWT frames, where four SPs are written in

a 128-byte word. This format of GWT data (see Section 3.3, Fig. 3.25) is used for special

analysis of pixel sensor performance and firmware testing [374]. To each 128 bytes of SP,
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another 128-byte word is added with information about the hit counters (hence the format

is also called GWT Counters). The structure is somewhat similar to the VELO bank in

Gaudi raw data format, but neither ICF, nor padding and SourceID are saved into the

data banks. The specification of GWT counters is documented thoroughly in [375]. A

sequence element in Vetra that decodes GWT counters data is VPDecoderFRG.

Because the Vetra internal decoders are a vital part of the LHCb ecosystem (note

that ODINs, MDFs and RawEvent are common entities in software for the entire LHCb

spectrometer), the decoders can be used externally to the platform. A sequence builder

is accessible from the options files, with no need to change the configuration settings.

VPDecoderMDF uses VPChannelID (the entity to represent the pixel readout channel,

originated from the LHCb project [376]) to keep the channel representation compatible

with other software projects distributed in LHCb. A block structure of Vetra sequencer

makes it possible to import a specific algorithm outside Vetra and to link it in a foreign

environment. Moreover, Vetra can be linked by any Gaudi project when asked the compiler

to do so. The configuration settings define the internal architecture of the processing

mechanism (e.g. manipulation of EventSelector), which guides the Gaudi application

manager and, if needed, can be adjusted to the specific usage. The template sequence are

hard-coded in the configuration file and can be called from the options file. Most of the

sequences anticipated to be used frequently were predefined by the Author, such that the

mechanism of running the software remains relatively simple to the average user.

4.3 The VeloPix calibration

The most critical task standing ahead of the high-level software is the detector calibration.

The reason of the VeloPix calibration is that properties of the electronics readout channels

are not entirely uniform. The pedestal, which is the centre of the noise fluctuations, varies

for every channel. The height of the pedestal is expressed in Threshold DAC units, a

front-end voltage DAC. In brand-new ASICs, it usually varies from 1000 to 1300 DAC.

The pedestal spread and the centre value get higher for irradiated ASICs, in general. The

preamplifier is sampled by the discriminator, which compares the sample to the signal

threshold, a global setting of the ASIC. The effective signal threshold varies in each channel

and is proportional to the range between the pedestal and the global signal threshold. In

order to equalize the effective thresholds across the ASIC, the equalization procedure has

to be applied. The procedure aims to adjust Trim DAC in each channel individually, such
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Figure 4.5: The pedestal map for minimal (left) and maximal (right) Trim DAC.

that the pedestal non-uniformity is compensated at the discriminator level. The procedure

consists of a few steps. First, it estimates the pedestal values by shifting the global signal

threshold and probing the noise. When the discriminator accepts the event, the global

threshold is in the range of the noise fluctuations around the pedestal. Because the noise

fluctuation is approximately normally distributed, the pedestal for each pixel is taken

as the mean of that distribution. Next, the procedure applies the same threshold scan

but with the trims set to their maximal values. The second scan is necessary as one can

not predict the exact scale factor between the Trim DAC and the Threshold DAC in the

channel. On average, 1 Trim DAC corresponds to 30 Threshold DAC, but this value varies

significantly. After the scans are taken, the value in the middle of both distributions is

chosen as the equalization aim for the pedestals, and Trim DACs are computed for the

pedestals to match the aimed value. A deviation of the equalized distribution is correlated

with a resolution of Trim DAC, which corresponds, on average, to the amplitude of a signal

arising when the charge of 375 electrons is injected into the channel. When pixels are

equalized, a global signal threshold is found in such a way that it matches the amplitude

of the signal arising from 1000 electrons. The whole procedure can be visualized in the

form of three pedestal distributions; first from the initial threshold scan, second from

the threshold scan with maximal trims applied, and third from the estimated equalized

pedestals. The exemplary pedestal maps taken at the slice test (Mod1VP32 ASIC) are

plotted in Fig. 4.5, and the scan plot produced in Vetra with the equalized pedestals and

Threshold DACs converted to voltage in Fig. 4.6.

A threshold scan is taken with a step of 5 Threshold DAC, which is enough to
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Figure 4.6: An outlook of pedestal equalization in Vetra for all pixels in a single ASIC.

reconstruct the standard deviation of the noise fluctuations. The major contributors to

the noise are the shot noise and the thermal noise, and the latter is a non-linear function

of temperature [377]. Because the noise rate is proportional to the irradiation, it is one

of the metrics to assess the condition of the readout and to roughly estimate the leakage

current in the analog front-end. When a noise rate is high, a channel is masked in the

masking gate (a default condition >9 Threshold DAC). Furthermore, a channel is masked

if the equalization procedure fails or the equalized pedestal does not fall in a given margin

around the aimed value (15 Threshold DAC, half of the average trim resolution). Finally,

a mask is applied if the Trim DAC to Threshold DAC scale factor is unusually high or low

(>40 or <20 Threshold DAC). Those masking categories are A, B, C and D, respectively.

The threshold scan in Vetra is processed by VPThresholdScanECS sequence for DIM,

CSV and FRG raw data formats, and VPThresholdScanGWT for MDF data format.

VPThresholdScanECS instance switches the default EventSelector event service off and

handles the data in the form of arrays of unsigned 8-bit type. The sequence initializes

the decoder, executes the scan analysis and saves the output to the files of CSV-type.

The CSV files feature a readable version of the header. The data are optionally saved in

ROOT format using AIDA (Abstract Interfaces for Data Analysis) interface [378] and the

histogram persistency in Gaudi. VPThresholdScanGWT uses EventSelector to build and

inspect the events. The ODIN fragments are read out before the actual analysis takes place.

When the bank iteration loop is over, Vetra analyzes the data and produces noise rate
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and pedestal maps. The format of those outputs is consistent with VPThresholdScanECS

sequence. When only a certain area of the ASIC was scanned, Vetra automatically adjusts

the analysis target. Multiple threshold scans for multiple ASICs can be processed at the

same time. In particular, it is possible to run a single instance of Vetra for the equalization

procedure of the entire detector, i.e. 52 modules. However, for the time-efficiency, it is

recommended to split the modules in groups and run multiple instances of the Vetra

application. A fragment of an exemplary Vetra log file for the equalization procedure is

shown in Fig. 4.7. The objects VPASICTrimScan from the log are the threshold scan data

banks stored in TES.

Figure 4.7: The ending fragment of the log file of the equalization procedure performed
in Vetra.

Because two threshold scans are needed for the equalization (with minimal and maximal

trims), the equalization sequence accepts the input data if two scans are provided. The

sequence for equalization is either VPEqualizationECS or VPEqualizationGWT, depending

on the given type of the raw data format. The equalization algorithm takes the analyzed

threshold scans and computes the optimal trimming, the masks and further estimates the

pedestals. The equalization sequence scheme in Vetra is depicted in Fig. 4.8.

Figure 4.8: A sequence structure of the equalization procedure in Vetra.

The actual calibration process in the detector is multi-folded. A tool for direct commu-

nication with the detector is WinCC OA, which handles the DAQ system, the hybrids

and the OPBs, and maintains the whole readout of the electronics modules through Slow

Control. A command to scan the thresholds in the ASIC is sent via the WinCC equalization
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panel. It allows for configuring the scan parameters, such as the Threshold DAC step and

range, and also for selecting the sensors for the scan. The panel is presented in Fig. 4.9 and

was redesigned multiple times by the detector group and with the assistance of the Author.

The WinCC navigation panel in a development version, for the miniDAQ [379] and the

front-end configuration is shown in Fig. 4.10. The standard calibration is taken using the

ECS readout. Once the scan is completed, WinCC constructs a header and asks the DIM

writer to build the banks. WinCC runs on a dedicated DAQ machine which shares a disk

space with the experiment online network. When the files are saved, their paths and the

metadata are pinned to WinCC datapoints (the WinCC-specific object types), so they

can be further used in the operational panels.

Figure 4.9: The developing WinCC equalization panel.

The datapoints are integrated with the DIM server (see Section 4.1), which allows them

to transfer the content within the online network (the LHCb control room network) and

optionally to the outside networks, but this solution is temporarily not used in the system.

A DIM server (written in Python in a whole [380]) operates on the online network and

listens to the DNS (Domain Name System) port of the machine which runs the WinCC

project, receiving the datapoints content every time it is changed in WinCC.

When the server receives the raw data locations (paths), it finds the files on a disk and

calls STORCK client (database client) to upload the files. The uploading is managed by

the bidirectional RESTful (Representational State Transfer) request. A mechanism of the

connection and database infrastructure is explained in [381] and in PhD dissertation of

Majewski [382].

When STORCK receives the raw calibration data, it flags the data instances as
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Figure 4.10: The developing WinCC navigation panel.

Figure 4.11: The data flow in the calibration software. The dotted line marks the
connection available in the development version only.

unprocessed and awaits a call to download. A download request is made either for the

unprocessed data or for the data taken at a given time (time of the beginning of the

calibration procedure acts as the unique key for each calibration dataset). The request is

issued by the same DIM server, which, after downloading is finished, runs Vetra on the

online cluster (CPU cluster of the online network). Optionally the request can be sent

from Vetra if the pipeline changes in the future. In a development version, a direct upload

request to STORCK and a wrapped system command to run Vetra are available in the

equalization panel. The disadvantage of this solution is that it could easily overload the
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limited CPU resources of the DAQ machines.

After Vetra finishes the analysis, the output data (e.g. the calibration constants) are

sent to STORCK and associated with the original raw data as its child data objects. The

request can be made either from the DIM server or from a sort of master manager, an

entity that can communicate directly with the STORCK client. The data flow between the

entities is illustrated in Fig. 4.11, noting that the final decision on the pipeline structure

will be made before the software commissioning in the second half of 2022. When STORCK

receives the processed data from Vetra, it removes the unprocessed flag from the raw

files. To apply the calibration, a recipe creator requests the calibration data of a specific

timestamp and further creates a recipe binary file for the detector. The recipe contains

the datapoints instruction to recreate the maps of Trim DACs and masks for each ASIC.

Eventually, the recipe creator sends the command to the WinCC OA project through DIM

and asks the WinCC instance to apply the recipe.

4.4 Monitoring

The calibration monitoring in Vetra includes plotting, pixel quality overview, data validity

checklist and a developing version of the trending tools. Monitoring scripts are mostly

Python-based and should be considered external to Gaudi and VELO-specific. Vetra

supports the plotting of pedestals, Trim DACs, masks and noise rates, which come in

the form of 256x256 pixel maps. The exemplary plots of noise rate for two ASICs, one

brand-new and one damaged, are shown in Fig. 4.12. The noise rate is considered normal

in the pixels marked as blue. Pixels appearing with no noise encountered issues in the

scanning process. For instance, a failure in the readout of two neighboring columns in the

damaged ASIC is clearly visible. The Trim DAC distribution for the same ASICs is shown

in Fig. 4.13. Each pixel with no noise rate measured is granted a Trim DAC value of 0.

It is possible to save the reconstructed hit distribution for a pixel or a group of pixels

when analyzing raw data from a threshold scan. This functionality is by default switched

off in calibration sequences, as the threshold scan only measures the normally distributed

noise, which is fully described by a mean and a standard deviation. However, when a scan

involves the signal, such plots are more valuable and can give an insight into the processed

signal, as outlined in Section 5.2.

The versatility of the algorithms in Vetra allows for building user-defined sequences, in

particular occasional scans, performed once during the detector commissioning, also called
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Figure 4.12: Noise rate for a brand-new (left) and a damaged ASIC (right).

Figure 4.13: Trim DACs equalizing a brand-new (left) and a damaged ASIC (right).

special runs. An exemplary special run is a temperature scan of the calibrated detector

(this scan is performed for selected modules once per year). It was studied whether the

temperature of the sensors affects the column readouts in the ASIC, and several successive

calibrations were taken with various intensities of the CO2 cooling. The scan showed some

irregularities in the noise rate distribution as a function of the column number, as shown in

Fig. 4.14. Another interesting effect discovered in this analysis was that the noise rate gets

higher when the temperature of the sensor drops down and no trims are applied. Fig. 4.14

visualizes this effect for two ASICs, Mod1VP02 and Mod1VP32, from the tested module

in the slice test setup. For comparison, the noise rate maps for minimal and maximal Trim

DAC values are shown in Fig. 4.15 for Mod1VP32. The higher values of the noise width

are clearly visible in the map corresponding to Trim DAC of 0. This observation changed
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Figure 4.14: The average noise rate as a function of column number for various tempera-
tures, for Mod1VP02 (left) and Mod1VP32 (right) in the slice test.

Figure 4.15: Noise rate measured for the Trim DAC of 0 (left) and 15 (right), for
Mod1VP32 in the slice test.

a view of how noise measurement algorithms should work, and the conclusion was to not

measure the noise when no trimming is used. Complete analysis scripts and monitoring for

this scan were added to Vetra and can be used to trend any possible changes as a function

of sensor’s temperature and particle fluence.

A trend monitor was developed to analyze the calibration data taken on different dates.

The trending tool can benefit the decision-making on whether the calibration has to be

repeated and a new recipe file created. A noise rate is a function of the leakage current,

and the outlook of its history is the easiest way to monitor the changes in sensors and
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front-end electronics. The trending monitor must trend each pixel individually, which is

reasoned by highly nonuniform fluence.

Vetra can host monitoring components for other parts of the detector system, e.g.

clustering or closing procedure. Monitoring tasks in WinCC panels are troublesome to

tackle due to the CPU curb of the DAQ machines and should only include the monitoring

of the electrical settings and temperature controls. While Vetra is responsible for the raw

data monitoring, the monitoring of physics data and the vertex reconstruction is handled

by Monet [383].

4.5 The signal scans

Threshold scans in the calibration procedure measure a mere noise to find channel pedestals.

For the study of signal processing, a threshold scan can be used to measure the amplitude

of Test Pulses (TP). In this way, one can mimic the signal processing throughout the

readout chain5. TP is configured by two DAC settings VTP_COARSE and VTP_FINE,

which are the DACs to setup the voltage at the input capacitor (see Fig. 3.24). The

capacitor injects a charge to the channel that is a product of the voltage step and the 4 nF

capacitance. The relationship between the input charge and the signal amplitude is driven

by the gain of the preamplifier and is studied further in Section 5.2, as an exemplary

use-case for the software implemented in Vetra.

To analyze a threshold scan taken with TPs, Vetra uses a similar sequence to the

equalization procedure, where VPEqualization is replaced by VPTestPulseScanECS, or

VPTestPulseScanGWT sequence, depending on the raw data type. One should note that a

6-bit processor of the ECS readout limits the maximal number of TPs seen in a single

shutter period to 63. To distinguish the noise region from the signal, it is recommended to

send less number of TPs, as the noise saturates the readout even in a very short shutter

period. There are no such limitations when using the GWT readout.

Studying the signal processing highly benefits from the ToT information available in

the ECS readout mode. The readout provides ToT for the last TP seen in the pixel with a

6-bit resolution. When more TPs are sent while the shutter is open, only the last one is

saved and sent off the chip. The readout arranges the ToT data in the same format as

the counting mode. There are multiple applications which take advantage of ToT readout,

e.g. CCE (Charge Collection Efficiency) studies [384,385], a pulse shape reconstruction
5The TPs are injected via a specialized module of the readout chip, so it cannot properly emulate the

response of the silicon sensor. However, it is enough to perform many vital tests of the chip.

65



Software for Upgrade I VELO

and the insight of the energy spectrum. Some of the applications are broadly discussed in

Section 5.1, e.g. studies from 2018 SPS testbeam.

Figure 4.16: A block structure of ToT processor sequence in Vetra.

It is possible to analyze a threshold scan taken with the ToT mode. The processing

sequence to handle this specific readout in Vetra is VPThresholdScanToT, which replaces

the standard VPThresholdScan. The sequence configuration can be adjusted to take into

account the scan setup, that is either a constant amplitude of TP or a spectrum if the scan

was taken using a radioactive source. The energy spectrum reconstruction is not trivial

and is rigorously discussed in Section 5.1. Vetra manages the ToT sequences and applies

sequence elements if further analysis is required, such as hit clustering. A default block

structure for a ToT sequence is presented in Fig. 4.16.

4.6 Data emulation

Vetra offers a wide range of sequences to emulate different functionalities of the readout

electronics. The reason for adding the emulation segment to Vetra was that testing the

data system on the emulated readout is sometimes essential for software and firmware

development. For instance, the segment was used to emulate the GWT stream from the

entire detector when only a single developing module was available for laboratory purposes.

The stream was used to probe the database bottlenecks when drafting the system pipeline

in the online network. The emulation also supported the development of the calibration

algorithms in Vetra.

It is possible to emulate both ECS and GWT readouts, although the latter was equipped

with much more advanced options. It can simulate the pixel readout mechanism and the

SP packet builder. It can further imitate the column readout and creation of the data

banks, including the ODIN fragments. The emulator is flexible enough to simulate complex

readout effects, such as discarding the SP packets when exceeding the fibre’s bandwidth. A

threshold scan is emulated on top of the emulator engine, which cooperates with the ODIN

encoding manager, VPEncoder. Produced files are of MDF type. The emulator engine is
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Figure 4.17: Simulated noise rate from the GWT readout.

used by algorithms that can imitate any scan of the ASIC. In particular, this scan can be a

threshold scan, and therefore, the equalization scan, so the emulation of the calibration is

possible. A threshold scan and equalization are managed by VPThresholdScanEmulator and

produce the calibration data consistent with the ones which come from the actual firmware.

A block structure of Vetra allows constructing a sequence composited of emulation blocks

and analysis blocks, such that the emulated data are analyzed yet in the same EventSelector

loop. An exemplary noise rate measured in a simulated threshold scan is shown in Fig.

4.17. The possibility of task merging is helpful when designing the software infrastructure

but was mainly intended for the convenience of the user.
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Chapter 5

Pixel detector studies

This Chapter presents the selected analyses that were possible to perform with the software

described in Chapter 4. Although the most substantial outcome of the software platform is

the detector calibration, a full range of applications is available in Vetra, and some of them

are explained in this Chapter. These include clustering described in Section 5.1, pixel gain

study in Section 5.2, and chip analog optimization in Section 5.3. All discussed analyses

were proposed and implemented by the Author of the thesis.

5.1 Time-over-Threshold analysis

This Section presents the analysis regarding the charge collection mechanism in silicon pixel

prototype sensors for Upgrade I Vertex Locator. The theory behind such detectors was

broadly documented in multiple sources, e.g. [318,386] and on the direct example of MediPix

[387]. When a charged particle travels through a sensor, the generated charge sensed by the

pixel analog readout derives from Shockley-Ramo theorem [388] and distributes according

to the Gauss-Landau (GL) model, a convolution of the detector response function and the

Landau curve. The latter describes the energy deposition in semiconductor by incident

particles, provided the thickness of the bulk is small enough [389], which boils down to the

fact that the probability of particle absorption is negligible. The Landau distribution does

not have an exact analytical formula but an indefinite integral and has to be computed

using numerical methods. As the detector response function is usually assumed to be a

Gaussian, to express the Gauss distribution convoluted with Landau, an indefinite integral

can be written (5.1):
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GL(x) = (G⊛ L)(x) =

∫ ∞

−∞
G(x′)L(x− x′)dx′ (5.1)

where G(x) and L(x) are (5.2)(5.3) (c - scale parameter) respectively:
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The Landau-Gauss convolution is then defined by (5.4):
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The multivariate integral in (5.4) hinders the way of getting the real value of the

expression and makes it inconvenient in terms of operational complexity. A high-resolution

map of the inner integral (5.4) in function of c and x was modelled and accommodated in

a special math library in Vetra. When the GL model is used, the engine manager loads

the library and takes advantage of the GL mapping, computing only the outer integral in

(5.4) using numerical methods, which shortens the execution time by about a factor of 10.

Because a gain of the preamplifier in relation to injected charge is linear, the ToT of

hits approaches a GL distribution in a sensor exposed to a particle beam of fixed energy.

Observing a pure GL is hardly possible due to readout imperfections. The ToT processor

in the chip’s front-end lacks the event buffer and pipeline of hit latency and is restrained

by a 6-bit LFSR resolution. The resolution saturates the processor when ToT of the signal

is higher than 63 counts. When a few hits appear in sample intervals in a single shutter

period, only the last hit is saved. Another issue is associated with a discrete mechanism of

detection. If an incident particle travels through the sensor, no guarantee is given that the

charge the particle induces is visible at one pixel only. When a hit occurs near the border

region, it can induce enough charge for the adjacent pixel to light up. If near the corner, it

can possibly activate all adjacent pixels. To find the total deposited charge, activated pixels

have to be associated into a cluster, and ToT collected and added up. A hit usually creates

a 1-pixel or 2-pixel cluster. A cluster of 3-pixel or 4-pixel size is likely to come from the

corner hits. Clusters bigger than those can appear either when the deposited energy was

high or when smaller clusters are coupled together. Fig. 5.1 visualizes the track intercept

(intra-pixel position) within a pixel on the example of TimePix chip, differentiating the
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size of the clusters. If the incident particle is a muon, it can travel in a not straight way

and leave a track of multiple pixels depositing its total energy [390]. When a charge of

less than 1000 e− is spilt over to the adjacent pixel, the signal fails to cross the signal

threshold and the signal is effectively suppressed. This loss of charge is troublesome to

model and is reflected on ToT distribution, usually recognized as a deficiency of events in

the Landau tail.

Figure 5.1: Intercept (intra-pixel position) of track positions within a pixel illustrating a
hit distribution for different cluster sizes for TimePix chip. [321]

Because no ToA can be measured by the ECS ToT readout, there is no way to pair the

clusters with the BX IDs within a single shutter period. In particular, if a hit conjoined a

pixel with its neighbor in a time interval, there is no prospect to tell whether the cluster

comes from two different events or is actually one event spread over. Furthermore, a new

hit can reinstate a ToT in one of the pixels of an already existing cluster. In general,

such overridden clusters make an appearance in a function of hit occupancy. In turn, the

occupancy increases as a function of the shutter time and beam luminosity. It also depends

on the height of the signal threshold, which is shown in Fig. 5.2, where a relatively low

(1500 DAC) next to a very high (2500 DAC) signal threshold is used. An exemplary view

of the hits from a single shutter is shown in Fig. 5.3. To lower the occupancy and increase

the cluster finding efficiency, one could lower the shutter time, but the disadvantage of

this is that opening and closing the shutter generates a noise which dominates the signal

in the region of shutter boundaries and effectively lowers the signal-to-noise ratio if the

shutter period is shortened.

Note that clustering of ToT events is not the same clustering that is done in trigger

software, Moore, for the track reconstruction from the default VELO GWT readout. The

ToT features a simple readout mechanism at the cost of deficiencies described above. It
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Figure 5.2: Time-over-Threshold frame for the signal threshold at 1500 DAC (left) and
2500 DAC (right).

Figure 5.3: A local central area of VeloPix matrix taken from Fig. 5.2.

is mainly used for chip development, calibration studies, radiation damage studies and

testbeam purposes. The most generic approach for clustering is to outline the activated

pixels that are adjacent to each other, either orthogonally and diagonally or orthogonally

only. Visualization of the concept is shown in Fig. 5.4. One challenge is to design the

outlining process in a CPU-efficient way. The brute-force algorithm requires a lot of

calculations, especially if they are based on recursion, as every time a pixel is added to

the cluster, its neighbors have to be checked as well. Moreover, the brute-force algorithm

fails when the hit occupancy is high and the crowded objects form large, non-separable

structures. A solution to address this problem in VeloPix chips proposed by Akiba and
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Figure 5.4: Two different approaches for the clusterization algorithm.

myself was to consider to apply ML for organized clustering. Clustering problem has a long

history in the field [391] with a range of approaches with state-of-the-art given in [392–394].

When the clusters are overlapped, a deblending method has to be used [395,396], which

builds the objects and estimates their amplitude. An algorithm used for clustering the

celestial maps (an example in Fig. 5.5 and [397]) was tested at 2018 SPS testbeam, but

could not recreate the GL distribution after reblending. Because no translation function

between the obtained distribution of ToT and the actual GL distribution was known, and

no large enough data sample was taken to demand highly efficient cluster computing, the

idea was abandoned. However, a conclusion was that testbeam experiments could take

advantage of that method when the ASIC gets higher granularity in the future.

Figure 5.5: Clustering the objects on the astronomical map. [397]

The chosen way of clustering determines further analysis. On the one side, the diagonally
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built clusters increase the odds that two clusters would be incorporated into one outline.

On the other side, the orthogonal criterion of neighborhood can get the cluster split apart.

Therefore, the reconstructed distribution of ToT is either underestimated or overestimated.

Both effects can be appropriately addressed and compensated in the analysis, however,

dealing with overestimated distribution is much simpler when it comes to algorithmic

computing. If a big cluster is split apart and classified as a bunch of smaller clusters,

the number of fake clusters can dominate the whole distribution and burden the further

modelling with a high variance. This, in turn, would lead to higher uncertainties of the

physics parameters. On the contrary, when some clusters are inaccurately merged with

the diagonal condition, the distribution can be simply modelled by two convoluted GL

distributions. Hence, it was decided that the approach of diagonal and orthogonal outlining

would be used in the analysis.

As mentioned above, a GL convoluted with itself can represent two clusters that were

incorporated into one structure. The expression 5.5 defines the convolution:

(GL⊛GL)(x) =

∫ ∞

−∞
GL(x′)GL(x− x′)dx′ (5.5)

where GL(x) is given in (5.4).

This enhancement to the model is naturally needed only for clusters of larger size

than 1 pixel. For clusters with a size of 2 pixels, the relationship between a number of

correctly reconstructed clusters described by the standard GL(x) and a number of two

1-pixel clusters combined represented by (GL⊛GL)(x) depends on hit occupancy. A small

contribution of three combined 1-pixel clusters can appear in a set of 3-pixel clusters. In

this case, a triple convolution can be added to the model 5.6:

(GL⊛GL⊛GL)(x) = (GL⊛
∫ ∞

−∞
GL(x′)GL(x− x′)dx′)(x) (5.6)

Following this logic, a quadruple GL convolution would represent four merged 1-pixel

clusters. Nevertheless, the contribution of such events is usually very low and can be

neglected, in particular that the consecutive peaking appears further and further in a

receding tail of the primary GL.

A property of the analog front-end for a discharge of preamplifier is a Krummenacher

current Ikrum. Ikrum is defined by Ikrum DAC, a voltage DAC multiplexed from the

analog periphery and shared between two channels. In ToT readout, the Hit & Shutter

Processor samples the signal at the edge of the discriminated clock and measures ToT of
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the signal. In fact, the value of ToT is a function of the Ikrum and the input charge. Ikrum

defines a slope of the falling edge of the signal pulse, and increased Ikrum shortens the

falling time. Because Ikrum can compensate the leakage currents expected in irradiated

ASICs, it is beneficial to know the exact relationship between Ikrum and signal total length,

which was the reason for implementing the study in Vetra. Higher Ikrum reduces the time

for a channel to return to baseline after processing a signal, shortening the time after

which the next signal is seen as separate (so-called dead time). A downside of higher Ikrum

is that when a signal is of low amplitude, it is possible to have it arise and fall between

the consecutive clocks, not being sampled at all. Moreover, Ikrum slightly contributes to

the dissipated power in ASIC and, as a result, increases the temperature of the front-end

hybrid. So the final selection of the Ikrum is complex and may have a major impact on

the detector efficiency and data quality.

A processing sequence developed for the ToT frames analysis in Vetra is VPToTAnal-

yser, which uses VPClustering for clustering and VPModelFitter for the model fitting.

VPClustering is a simple outlining script that combines the pixels into composite objects

with clustering criteria given in a function argument. VPModelFitter is more advanced and

employs a metaheuristic for the model fitting. The modelling of multiple convolutions is

tough for the usual optimization algorithms as each new convolution adds a computing time

and new parameters to the model. In GL, those are the amplitude, the scale parameter,

the width, and the mean in (5.4) (note that some of the parameters are shared between

GL and its convolutions). The fitting algorithm was actually designed and implemented

by the Author of this thesis [6] and relies on local convergence factors in nature-inspired

flower pollination. Although there is no way to assure a global minimum of the fit function

is found, the convergence proved to be stable and to approach the true distribution very

well, even though having to deal with imperfect GL distributions. Given all the material

needed for the analysis, Vetra can be used in the testbeam environment, and the exemplary

analysis of 2018 SPS testbeam is presented below.

During the testbeam, 100 frames of ToT for a few different Ikrums were collected

with the VeloPix ASIC as DUT in TimePix3 Telescope. Each frame is processed by the

clustering algorithm in Vetra, which provides a number of clusters for a total distribution.

Clusters from successive frames are added and saved into files with respect to the clustering

approach and the size of the clusters. Another file is created with fit parameters of the

model that was specified in the options file for Vetra. Finally, an image is created with a

graph of the fit visualization.
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Figure 5.6: A distribution of ToT for 16 Ikrum DAC and clusters of the size of 1 pixel
that suffered from 6-bit readout saturation.

Figure 5.7: A distribution of ToT for 32 Ikrum DAC and clusters of the size of 1 pixel
that suffered charge spreading.

To present the readout-specific properties reflected in ToT distribution, the curve for

1-pixel clusters for 16 Ikrum DAC is presented in Fig. 5.6. The peak comes from the

saturated events of ToT higher than 63 counts. One way to find a fit is to manually limit

the fitting range, although the fit from the graph was actually obtained after evaluating
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Figure 5.8: A distribution of ToT for 32 Ikrum DAC and 2-pixel clusters.

Figure 5.9: A distribution of ToT for 32 Ikrum DAC and 3-pixel clusters.

the fit function on every histogram bin. Even though a high MSE from 18% of the points

is biasing the fit model, the fit approaches the distribution, which is a solid stress test

proving the algorithm robust. A similar distribution but for 32 Ikrum DAC is shown in Fig.

5.7. ToT distributed around lower values and the saturation peak disappeared because of

the increased Ikrum. One way to describe the shift of the distribution is the MPV (Most

Probable Value), which is the value of ToT at the peak. The MPV has no representation
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Figure 5.10: A distribution of ToT for 32 Ikrum DAC and all clusters.

in the GL formula but can be easily computed1. The distribution for 1-pixel clusters for

32 Ikrum DAC exposes the underestimated Landau tail, which is the artefact after charge

sharing, where the hits of high deposited energy are more likely to spread residual charge

to adjacent pixels (the spread is not higher than 1000 e− per neighbor, as it would trigger

the adjacent readout and create 2-pixel clusters). Because of the low impact the effect was

no further modelled, but after the relationship between the hit interception and residual

charge sharing is known, it could be added as a scale factor varying in function of ToT.

A difference in clustering approach can be seen in Fig. 5.8 for 2-pixel clusters, in Fig. 5.9

for 3-pixel clusters, and in Fig. 5.10 for all clusters. In general, the orthogonal-only approach

results in higher participation of low ToT events and, consequently, lower participation of

high ToT events. As inferred at the beginning of this Section, both distributions should

either overestimate or underestimate the deposited energy, depending on the region of

ToT. In Fig. 5.8, a visible peak is shaped around doubled MPV of the primary GL,

which is a coupled cluster peak of GL convoluted with itself. The selected approach for

clustering accepts diagonal connections in favor of simplified overall modelling. A blue-line

distribution in Fig. 5.10 can be modelled using a consecutive GL convolutions (5.4), (5.5)

and (5.6). The fitted model is presented in Fig. 5.11 for 32 Ikrum DAC, and in Fig. 5.12 for

64 Ikrum DAC. A bulge around the doubled MPV is recognized as the ToT distribution
1The MPV can be computed from a derivative of (5.4) or more simply via inspecting the reconstructed

fit, which was done in this case.
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Figure 5.11: A composition model for clusters of any size, for 32 Ikrum DAC.

Figure 5.12: A composition model for clusters of any size, for 64 Ikrum DAC.
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of clusters combining two hits. The amplitude of clusters composed of three hits is much

lower. Further components are omitted due to their residual contribution. The relative

ratio of amplitudes will vary as a function of hit occupancy.

Figure 5.13: A composition model for 2-pixel clusters, for 32 Ikrum DAC.

As mentioned earlier, a new hit can override a pixel in an already existing cluster.

The incidence of this effect depends strongly on the hit occupancy. In the mathematical

model proposed by Akiba, Coco, and myself, the amplitude of such a cluster is a total of a

random variable from GL distribution and a random variable from the same distribution

reduced by the extinct fraction of amplitude. The exact model depends on the cluster size.

For 2-pixel clusters, it is a convolution of GL and another GL convoluted with continuous

uniform distribution and can be expressed by the following formula (5.7):

(GL⊛GLC)(x) =

∫ ∞

−∞
GL(x′)GLC(x− x′)dx′ (5.7)

where GLC(x) is given by:

GLC(x = yz) =

∫ ∞

−∞
GL(z)C(x/z)

1

|z|
dz (5.8)

and C(y = x/z) is a continuous uniform distribution in (0, 1).
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Table 5.1: All reconstructed GL (for fairly reconstructed clusters only) parameters from
2018 testbeam in Vetra. Parameters nomenclature corresponds to (5.4).

Ikrum DAC Model MPV MSE c A µ σ
16 1 cl. 39.7 572.7 5.33 132.9 36.01 3.93
32 2 cl. diag. 24.89 222.7 1.29 299.7 24.59 2.98
32 all diag. 23.83 1033 2.79 679.1 22.13 2.20
32 1 cl. 22.30 1435 2.25 589.2 21.98 2.28
64 all diag. 14.20 510.1 1.38 1693 14.41 1.48
64 1 cl. 14.72 910.3 0.9 1705 14.31 1.67
96 1 cl. 10.84 2081 0.72 3155 11.07 1.40
128 1 cl. 9.31 2070 0.62 4271 9.28 1.15
160 1 cl. 8.32 1375 0.49 5118 8.22 1.04
192 1 cl. 7.62 2088 0.42 7441 7.45 0.93

Now, a complete model for 2-pixel clusters can be recreated, consisting of one GL (5.4),

GL first convolution (5.5), and the GL first convolution corrected for overridden clusters

(5.7). A visualized model for the testbeam data is presented in Fig. 5.13. Because the

number of 2-pixel clusters is much lower than 1-pixel clusters, the amplitude fluctuations

and signal-to-noise ratio are higher, causing MSE of the fit to be higher as well. The ratio

of (5.4) and (5.7) evinces the participation of overridden clusters in 2-pixel clusters pool

and is mathematically related to the average hit occupancy2.

Tab. 5.1 presents the fit parameters for all models that were possible to build with the

approach described above. These include 1-pixel cluster distribution for a few different

Ikrums that were scanned during the testbeam. Fit parameters for the distribution of all

clusters with the diagonal condition for Ikrum DAC 32 and 64 is presented as well. It is

technically possible to fit the model for higher Ikrums, although the narrow distribution

in such a complex model happens to lead to an undesirable high MSE. The fit for Ikrum

DAC of 16 is not possible to get due to saturation, similar to Fig. 5.6. On top of that, the

fit parameters for 2-pixel cluster distribution from Fig. 5.13 are included. The relationship

between Ikrum DAC and ToT is inversely proportional and can be modelled by a rational

function a/x+ b, where b is the discharge rate independent from the DAC setting [387].

The relationship is presented in a separate graph in Fig. 5.14 using MPV from Tab. 5.1,

and the resulting function is y = 567.4/x+ 5.249.

The MPV of GL under the SPS beam was earlier measured to correspond to 16.6ke−

channel input charge. The mean of the three reconstructed MPVs for 32 Ikrum DAC from

Tab. 5.1 is 23.68. A discharge time of the 3 fC feedback capacitance (see Fig. 3.24) is found

as 25 * 23.68 = 592 ns. The slope of the pulse shape is then 16.6 ke−/592 ns= 28.04 e−/ns
2The profile of hit occupancy at the SPS testbeam is not uniform and has a circular symmetry [345].
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Figure 5.14: A measured MPV in function of Ikrum DAC.

for 32 Ikrum DAC. Once the slope of the pulse is found, it is possible to nearly estimate

the pulse shape, assuming the rising time is linear and less than 25 ns, and ToT of the

pulse at the signal threshold level is measured.

5.2 Test Pulse scans

Discussed in Section 4.5 Test Pulse (TP) scan is used to estimate the gain of the analog

preamplifier, and to reconstruct ToT of the signal as a function of the input charge.

The analysis in both cases is applied to each channel individually. In order to measure

the amplitude of TP, it is scanned around the optimized pedestal by shifting the signal

threshold. When the readout is saturated, threshold DAC is recognized as lying in the

noise region. Outside that region, the number of injected TP is seen until the threshold

shift reaches the TP amplitude, after which TP cannot cross the signal threshold and no

TPs are seen anymore. The noise fluctuations slightly affect the amplitude of TP seen

in the readout, usually around 5-10 threshold DAC. Therefore the amplitude is found at

the level where 50% of injected TP failed to reach the signal threshold. Because TP is

sent by switching the VTP_COARSE and VTP_FINE (see Section 4.5) at the input

capacitor, TP has alternately positive and negative polarity. Those are usually symmetric

in respect to the pedestal with little fluctuations, although there were some evidence that

TP can be asymmetric when utmost trimming is used. Exemplary histograms of counts

as a function of shifted signal threshold are presented in Fig. 5.15. The noise is normally

distributed and capped to 63 the number of events (due to 6-bit ECS readout saturation).

Because it is not possible to get enough bins on the noise region edges to appropriately
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model the normal distribution, it is skipped in the fitting. TP is seen as a sigmoid function

(S-curve function) of three parameters, the amplitude (which is fixed to a number of TPs),

the steepness, and the shift. Fitting a function of effectively two parameters is relatively

simple but requires a fast algorithm, as it is to be done in each channel individually.

Figure 5.15: Exemplary TPs of different amplitude seen in two readout channels.

When a few TPs of different heights are studied, it is possible to estimate the amplitude

as a function of input charge. In order to assure that no asymmetry biases the calculations,

the amplitude of the pulse is averaged from positive and negative polarity. The input

charge of TP can be calculated as explained in Section 4.5. The processing sequences in

Figure 5.16: Amplitude of TP in a function of injected charge.
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Figure 5.17: A surrogate function fit for the TP scan for 32 Ikrum DAC.

Vetra for the gain analysis are VPGain and VPGainAnalyser. The latter produces data

that can be further monitored by VPGainMonitor. A template sequence for the full gain

measurement procedure is encapsulated in Vetra, and the option to select only a limited

number of pixels is available. The exemplary output for four different TPs is shown in

Fig. 5.16, where two of the points correspond to TPs from Fig. 5.15. A slope of the linear

model fitted to those points represents the differential gain of the pixel, in this case 0.0326

DAC/e−. The offset in the function is a result of non-linear behavior in the noise region,

where the differential gain is higher.

A bunch of studies can take advantage of the gain reconstruction procedure. The gain

is necessary for energy deposition studies, as it acts as a transformation function between

the charge and signal amplitude. The gain can serve as a channel property to monitor in

the function of irradiation. It is also helpful when equalization is done using TPs3.

While the above TP reconstruction relies on the counting mode of the readout, the

studies can be conducted using the Time-over-Threshold mode as well. The procedure

is different because the readout saves only the last TP seen in the shutter. To operate

on 50 TPs as before, it is necessary to open the shutter (which corresponds to triggering

the readout chain) 50 times. On the other hand, it is enough to scan the amplitude in a

function of input charge for only one signal threshold in ToT readout, as the width of the

signal, at the optimized pedestal, corresponds to its amplitude. The counting mode could
3Although the equalization procedure operates on noise, it is possible to equalize the pedestals operating

on TPs with the fixed amplitude.
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measure the whole range of Threshold DAC regardless of whether the noise participated

in measured events. Setting the signal threshold at the noise region is no longer possible

when switching to the ToT mode, as the yield of 1 ToT count in the noise region proximity

does not allow to distinguish whether it was caused by the signal or the noise that passed

the threshold at the edge of the clock. Therefore the signal threshold should be higher

than a pedestal by at least 5σnoise (5 times the noise standard deviation). Because the

width of the signal is likely lower at that level than at the pedestal, the measured ToT is

always underestimated in respect to the real signal width. This effect, in addition to the

gain non-linearity near the noise region, inflects the linear function of the input charge,

like it is shown in Fig. 5.17. The presented data were taken in the lab for one readout

channel and 32 Ikrum DAC. The resulting curve, called the surrogate model, representing

the relation between the collected charge and ToT counts, is common for pixel detectors

operating with ToT and was originally studied by Jakubek [398], and further applied in

MediPix and TimePix detector studies [399,400]. The surrogate model is given in (5.9),

where Q is the charge in electrons:

ToT = p0 + p1Q− C

Q− t
(5.9)

The meaning of the surrogate parameters is scarcely discussed in the literature, but the

studies in Vetra helped to draw some conclusions on their relationship with the signal and

readout setup. The parameters p0 and p1 define the linear relationship between the charge

and ToT high above the signal threshold region. Because a single unit of ToT corresponds

to 25 ns (a single clock cycle), one can use p1 to calculate the discharge current, which is

an alternative method to that described before in Section 5.1. The parameters C and t

are strongly related to the height of the signal threshold. The linear relationship correctly

suggests that the width of the signal should gradually approach 0, but a signal of low ToT

at its pedestal (usually 1 or 2) fails to pass the signal threshold and thus disappears when

discriminated. While t roughly estimates how much charge is needed for the signal to pass

the threshold, C is associated with the shape of the pulse at its peak. At the same time,

C and t try to model the gain non-linearity near the noise region. This non-linearity can

be observed on the same Fig. 5.17, where it manifests in the noticeable positive offset of

the linear model (p0 parameter). A concurrent modelling objective for t is the reason why

it can only roughly estimate the charge needed for the signal to reach the signal threshold.

When the offset parameter, p0, is scanned in the function of the Krummenacher current,

it strongly decreases in the region of lower Ikrum (<32 Ikrum DAC) to reach a plateau
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Figure 5.18: Surrogate parameters p0 and p1 in a function of Ikrum DAC.

for higher Ikrum (>50 Ikrum DAC), which is shown in Fig. 5.18. This is because the low

Ikrum increases the ToT of the pulse but does not elevate low-charge pulses to pass the

signal threshold, which escalates the gain imbalance. When p0 reaches the plateau, its

value represents the non-linearity of the analog front-end, which is independent from the

Ikrum. The same effect is seen when studying C parameter, which similar to p0 seems

fixed for higher Ikrums.

Because the surrogate parameters provide a lot of useful information on the state of

the readout channels, they can be used for studies of irradiated ASICs. Majewski [382]

provides an insight into how the parameters can change in the function of irradiation.

In particular, p0 and p1 can be used in an innovative way to monitor the gain and the

discharge current over the detector lifespan. It is highly recommended to glean the results

of such scans together with calibration-related data, as long as enough time is available to

run quite a time-consuming scanning procedure.

5.3 Analog optimization

Yet another application for Vetra is analog chip working point optimization. The aim of

that study is to keep the readout chip configured for the highest performance possible.

The analog part of the chip uses 12 biases from individual analog biasing lines from analog

periphery. The DAC configuration of those defines the working point of the analog front-

end, and essentially the whole analog stage of signal processing. The default configuration

was compromised between many criteria and is considered optimized in the standard

setup. However, there are some circumstances under which the default settings should be
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adjusted. In a scenario of increased leakage currents in irradiated ASICs, lowering the chip

temperature is expedient in maintaining the signal-to-noise ratio. This can be pursued by

reducing the dissipated power of the front-end electronics. The studies in Vetra proved that

reductions in DAC settings can provide significant temperature drop while sustaining the

readout performance, which is discussed further in this Section. Another scenario assumes

that high irradiation damage of the on-chip electronics changes some of its properties, and

therefore its initial working point might not be optimal anymore. In this case, the study

aims to reoptimize the DAC configuration of the ASIC and has been, by far, the most

complex procedure incorporated into Vetra.

The idea originated from the pulse shape optimization in the old Vertex Locator studied

by the Author et al. [1]. It was one of the attempts to understand the rapid irradiation

effects in the last months of detector utilization. The studies concerned a refined reduction

of biases in the chip to lower the power consumption and its temperature, while maintaining

the signal gain and signal-to-noise ratio.

A suite of a few new settings was picked to deliberately lower the most power-consuming

DACs, and was arranged partly based on the electronics recommendation and previous

observations of trends in DAC scans, and partly arbitrarily4. The new settings were

evaluated using the attributes of the pulse shapes. The pulse was the analog signal buffered

from the analog pipeline in the Beetle chip and could be recreated as the Beetles featured

the fully analog readout. Because the interval between consecutive triggers was 25 ns, the

solution used to reconstruct the pulse was to delay the electronic readout with respect

to either incident particle or Test Pulse, which meant to delay the clock of the TELL1

boards and the clock of the Beetles by the same amount and direction. After consecutive

delays of 1 ns, and reading out 6 consecutive triggers (that is 150 ns), the pulse shape

could be recreated. A few shapes from the studies are shown in Fig. 5.19, expressed in

signal-to-ratio units. The detailed reconstruction procedure and the corresponding DAC

settings can be found in [1].

Settings from the suite were later tested by the Author using the simulation of the

Beetle signal processing and assisted in the evaluation of the pulse quality. The pulse shape

was incorporated in the form of a deep neural network. The ratio of spill-over events5 was

estimated to decrease in some of the pulses. After investigation, a configuration which

traded the small decrease of signal-to-noise ratio (<2%) for the lowered power consumption
4The actual studies firstly involved 10 different configurations picked mostly arbitrarily, and a few

weeks later, 10 other configurations inferred from the first measurements and previous DAC scans.
5A spill-over is the pulse remainder in the next pipeline position, read out by consecutive trigger.
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Figure 5.19: DAC optimization of the pulse shape for Vertex Locator before the upgrade.

(3%) and lowered spill-over events ratio (30%) was chosen as the new recommended.

Following the encouraging results from the simulation, it was decided to test the best

setting in the real detector in November 2018. It turned out that updated settings reduce

the chip temperature by over 1◦C, even though they were not optimized and were the result

of exploring only a few trends in the multivariate analysis. Because the experiment was a

month close to the long shutdown, and the new configuration required time-consuming

tuning, the configuration was not used in the end, but the promising outcome from the

studies convicted that electronics reconfiguration can help to counteract the radiation

damage in the Upgrade I detector.

To apply similar studies in the upgraded detector, the procedure has to be adjusted to

the fully binary readout of the VeloPix. The direct reconstruction of the pulse is no longer

possible, and the methods from Section 5.1 and 5.2 are not precise enough to differentiate

subtle variety in the pulse shape. Instead, the settings are evaluated in terms of the analog

front-end attributes that are easier to measure, i.e. the signal-to-noise ratio, the power

consumption, the signal gain, and the timewalk6. The signal-to-noise ratio is calculated

as the amplitude of the signal divided by the standard deviation of the noise. The gain

is measured as described in Section 5.2. The power consumption of the ASICs can be

monitored via Slow Control. To study the timewalk, two TPs of low and high amplitude
6Timewalk appears when the latency between hit and registration by the discriminator varies in the

function of signal amplitude [401].
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Table 5.2: Selected DACs for optimization procedure.

Biasing line Name Description Default Default
[DAC]

Vin_casc Vcasc Cascode voltage for the input
transistor

600mV 199

Vbias_preamp Ipre Bias voltage for the input cur-
rent source

830nA (x3) 164

Vbias_preampcasc Vprecasc Bias voltage for the cascode of
the preamp current source

400mV 103

Vfbk Vfbk Feedback voltage of the pream-
plifier

500mV 143

Vbias_disc Idisc Current for discriminator bias 1.2µA 128
Vbias_ikrum Ikrum Bias current for Ikrum 25 nA 32

(1.1 ke− and 10.1 ke−) are sent to two different pixels, and their Time-of-Arrival (ToA)

is read out via Slow Control (it was read out by Low-Frequency when using SPIDR in

the preliminary optimization studies). When TPs are delayed by consecutive phases, it is

possible to find the region in which ToA is different for low and high TPs, and this way to

measure the timewalk. Vetra was equipped with algorithms processing the scans needed

for analog optimization, and a combination of those can be used to optimize the analog

front-end of the VeloPix ASIC.

From 12 biases of the analog front-end, 6 were selected as relevant for the analog

optimization procedure. They are listed in Tab. 5.2 and include biases for the preamplifier,

a bias for the feedback NMOS transistor (feedback resistance), a bias for the Ikrum and a

bias for three stages of the discriminator. Vbias_ikrum, which is a bias for Ikrum, brings

a heavy impact on signal shaping and was investigated in detail already in Section 5.1 and

5.1. Small changes of its value do not contribute much to the power consumption of the

ASIC, and its value will be most likely reserved for purposes other than analog optimization.

On the other hand, the preamplifier bias current Ipre is the most power-consuming bias in

the analog front-end. The biases chosen as irrelevant are TP steps fine and course, the

signal threshold, and DAC internal biases.

The studies used SPIDR for collecting the data and Vetra for the data analysis. To

examine the Ipre relationship with the front-end performance, four TPs corresponding to

1100 e−, 2100 e−, 3100 e− and 4100 e− charges, respectively, were injected into the readout

channels in a pattern of 1 per 16x16 pixels, and the analysis averaged the results from every

tested channel. The scan included 15 different values of Ipre varying from 5 to 210 DAC

units. At each point, a threshold scan was conducted for each of four TP amplitudes, which

also aimed to find the pedestals and the noise standard deviation. The result of such a scan
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Figure 5.20: Signal-to-noise ratio for different TP amplitudes in a function of
Vbias_preamp.

is shown in Fig. 5.20, where the TP amplitudes are given in the signal-to-noise ratio. The

curves are smooth and were found to be satisfactorily modelled by the arbitrarily selected

power function axb+ c. With increased Ipre, the SN (signal-to-noise) ratio increases as well,

but with a lower rate for higher values of Ipre. This is, in fact, derived from the decreasing

value of noise standard deviation, and not the increased amplitude of the signal. The

amplitude of the signal reaches a plateau for Ipre higher than 125 DAC units, which gives

a wide safety margin for lowering this bias in the optimization procedure. The pedestal

linearly grows in the tested range of Ipre, from on average 1450 to 1468 threshold DAC

units. The gain is independent of the Ipre except for the values of >170 DAC units, where

it grows very slightly. The power consumption of Vbias_preamp is high, and a change

from 5 to 210 DAC units increases the analog power consumption by around 100%, and

the total power consumption (including digital DACs) by around 40%. Because this power

consumption drop is remarkable, a temperature scan was conducted for the same range

of Vbias_preamp to measure its relationship with the temperature of the ASIC. During

the scan, the ASIC was taking data continuously for 22 hours, and the setting of Ipre of

210 DAC units gradually decreased every next two hours, until it reached 5 DAC units

at the end of the scan. This scan with Ipre decreasing in time was performed to not

overestimate the temperature difference from the fraction of the heat aggregating in time

in the busy ASIC. During the scan, the temperature of the chip, the chipset board PCB

(the intermediate element between the ASIC and FPGA), and FPGA were registered. The

results are shown in Fig. 5.21. The temperature of the chipset board and FPGA slightly

drop in the function of Ipre, but in fact, they slightly increase in time, most likely due to
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the temperature change in the laboratory. The temperature of the ASIC decreased in time

in function of lowering Ipre, and the total drop was around 1.5◦C. A timewalk scan in the

function of Ipre showed that the probability of the timewalk slightly increases when Ipre is

lowered, and it appears in 20% of the phases for 100 DAC (a phase of the sampling point

can be changed via Slow Control), which means there is a 20% chance of observing the

timewalk when receiving the signals of high amplitude interval for Ipre of 100 DAC. The

results show that lowering the Ipre can be valuable for power consumption optimization,

and the parameter can be safely lowered from the default value of 164 DAC to around 120

DAC, trading around 0.4 ◦C drop for a slightly decreased SN ratio and slightly increased

timewalk probability.

Figure 5.21: Temperature a the function of Vbias_preamp, spanned for 12 hours with
Vbias_preamp decreasing in time.

The next bias to study was Vbias_disc, which defines the bias current for the discrimi-

nator. The total power consumed by this DAC is around 3.5 times less that Vbias_preamp.

The scan was done in a similar setup to the previously mentioned and the results of TPs

expressed in SN ratio units in the function of Idisc are presented in Fig. 5.22. The curves

were not consistent for TPs of different amplitudes and no function was found to model

the curves. The gain of the signal significantly decreases when the default Idisc value is

lowered. Moreover, from the tested range of Idisc DAC (50 to 150), the pedestals increased

from 1250 to 1470 on average, which is a very high ascend. There seems to be no safety

margin for lowering Idisc without the big trade-offs, and therefore it is not recommended

to change it until necessary.

A similar scan applied to Vin_casc, which biases the input transistor in the preamplifier,
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Figure 5.22: Signal-to-noise ratio for different TP amplitudes in a function of Vbias_disc.

shows that potential reduction of the DAC is possible as its nominal value of 199 is far from

the point when the SN ratio reaches a plateau, but the bias turned out to not contribute

significantly to the power consumption of the ASIC. The gain, noise standard deviation

and the timewalk are uniform at the whole SN ratio plateau region.

Figure 5.23: Signal-to-noise ratio for different TP amplitudes in the function of Vin_casc.

Scanning the Vfbk, which is the bias for the front-end feedback transistor, is only

possible in close range of its default value (143 DAC), as the SN ratio drastically changes

even for small changes of the bias, as can be seen in Fig. 5.24. Modifying the bias in this

narrow range does not contribute to the power consumption significantly. Instead, no safety

margin is given and similar to Idisc, it is not recommended to change this parameter until

necessary or until one needs to study the signal behavior as a function of the feedback

resistance. The SN ratio can be modelled by a linear function, at least in the region
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Table 5.3: Fit parameters for DAC scans.

Name Model TP [e−] a b c
S/N (Vbias_preamp) axb + c 1100 -39.035 0.2181 39.041

2100 -43.646 0.2641 44.536
3100 -41.585 0.2657 46.586
4100 -55.072 0.3106 55.533

S/N (Vfbk) ax+ b 1100 1.541 -195.49
2100 1.957 -247.81 -
3100 1.684 -204.59 -
4100 2.012 -242.98 -

between 135 and 147 Vfbk DAC. The parameters of the fits from Fig. 5.24 and 5.20 are

grouped in Tab. 5.3.

Figure 5.24: Signal-to-noise ratio for different TP amplitudes in the function of Vfbk.

The studies show that the only effectual bias for power consumption optimization,

which has the acceptable trade-off when lowered and enough safety margin for the SN ratio

is Vbias_preamp. When the thesis is being written, Vertex Locator is not yet operating,

and it was not yet decided whether the value of this bias will be lowered from the beginning,

or kept default for some time of the detector operation. Nevertheless, it gives a potential

0.4◦C temperature reduction of the front-end hybrids and is noted as a solution to lower

the operational temperature of the ASICs when needed.
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Chapter 6

Machine Learning for LHCb

Although ML shows a solid and rapidly growing appearance in HEP, its applicability is

usually bounded to individual cases, sometimes only in the low-profile form or know-how.

Moreover, until a reliable ML method finds popularity in applications, it might become

obsolete in favor of other methods from the latest research. This is not entirely true in

some of the cases, as the gradient-boosted trees such as XGBoost are adopted massively

in their most refined form. Nevertheless, the usage of ML in HEP usually lags behind the

actual research in the field.

This Chapter aims to examine whether some of the newest approaches of ML have

the potential to far support statistical methods used today in particle modelling. The

models such as Generative Adversarial Networks (GANs), even though proved excellent

performance in many applications (see Section 2.4), are barely recognized in physics decay

analysis. The concepts and ideas proposed in this Chapter are the inventions of the Author

and the Supervisor, unless specified or referenced otherwise, and are mostly discussed

in Section 6.2. Applications of the proposed approach are presented in Section 6.3, and

both are preceded by the introduction and a survey of recent concepts in Section 6.1, with

emphasis on those appearing in LHCb.

6.1 Recent Applications

Detector physics and physics decay analysis can be conceptualized as two focal areas for

ML applications. The particle analysis typically concerns the multivariate classification

problem of selecting events for the candidates for the decay under study. Hence the

methods are usually well-validated classifiers. The most popular are BDTs (Boosted

Decision Trees), in which the rules learned by the algorithm are intuitive and can be
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reasoned by physics criteria (e.g. in the form of kinematical cuts). The experiments pursue

the latest technologies for the detectors to possibly maximize their performance, therefore

the methods used in the detector physics tend to be more exclusive.

This interrelation can be seen in the literature. The applications of ML in ATLAS and

LHCb are well documented [402], and show a potential to grow [403]. There are a few

usages of ML in jet physics analysis [404–406], e.g. in ATLAS [407], or CMS [408–410],

discussed timely at ML4Jets (Machine Learning for Jets) conference, which has so far held

three editions [411], latest in 2021. In 2014, Kaggle (a site of rich community in applicable

ML) hosted a competition to analyze the Higgs data [412] with an immense response of

1784 teams, eventually won by XGBoost, which promoted the method (as a follow-up,

Kaggle further hosted a competition on high efficient tracking [413], also part of IEEE

WCCI competition [414]). Noteworthy previews and explanations of the recent methods

used in LHC experiments can be found in MLHEP (Machine Learning for High Energy

Physics School) materials [415].

The space for computational intelligence in detector physics is particle identification

and track reconstruction, or more generally, pattern recognition [416]. The major challenge

for the models derived from computer vision is that the tracks of the particles are

usually submanifold structures (which means they are of lower dimensionality to the

medium) of high sparsity, while in computer vision the pixels are generally uniformly dense.

Some models tried to address this issue, e.g. Submanifold Sparse Convolution Network

[417, 418], or others [419]. Some methods were devoted explicitly to LHC applications

[420–422], or collider physics in general [423]. In LHCb, deep models were used in long

track reconstruction1 and for online event rejection [424]. For the potential use of ML to

speed up detector simulation, some ideas were discussed recently [425].

Another concern is that when the data instances or the features are correlated, a

deep model is more likely to overfit or create redundancies, which further roughen the

loss function landscape. One solution is to decorrelate the data (there is always a linear

transformation that turns the n-dimensional space into an uncorrelated base), which should

be done prior to the deep processing. Because the tracking data are often correlated in a

part-known fashion, one of the emergent solutions is to analyze the data as graphs [426]

using Graph Neural Networks, which help to extract and draw entangled information from

the provided dataset [427,428].

Generative Adversarial Networks are rarely used due to their relatively young age
1Long track, or downstream track, is a track seen in the whole spectrometer, from the vertex detector

to muon chambers.
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(formulated in 2014), their complexity and layered structure, and the low interpretability of

the adversarial training. It is the Author’s view that these models are incomparably more

difficult to arrange an effective training of, and sometimes a full investigation of the gradient

effects gets literally impossible, as generation from noise vectors makes them, contrary

to regular neural nets, stochastic in nature. In addition, the evaluation of the generative

model is tricky to define, and the adversarial loss evaluates the mutual performance of

the generator and discriminator, while the actual selection power only implicitly. One can

use metrics such as prediction accuracy or precision and recall [429], where precision is

the discriminator accuracy on the samples marked as true, and recall is the ratio of true

samples marked as true to all true samples. Another metric is ROC (Receiver Operating

Characteristic) [430, 431], a relationship of the recall and the ratio of false samples tagged

true to all samples predicted incorrectly for all possible decision thresholds (though used

rather in Autoencoders2 than GANs).

Generative models were used in the simulation of RICH detectors to reproduce the

particle type probability as a function of track parameters and detector occupancy [433].

Custom GANs were used for simulation of the calorimeters [434,435] and modelling the

cascades of electromagnetic and hadronic interactions in the absorbing material in ATLAS

[436]. Models based on graphs were applied to electromagnetic shower generation [437]

and in high-granularity calorimeters [438] in general. Wasserstein GAN was applied to fast

calorimeter simulation in terms of planned HL-LHC upgrades [439].

The LHCb Particle Identification (PID) system [440–442], and online track reconstruc-

tion [443] take advantage of a deep model named ProbNN [444], which yields a probability

value corresponding to a given particle hypothesis. A concept of simulating the whole

LHCb PID system is illustrated in Fig. 6.1. Because different reconstruction algorithms

are present in each detector, the actual PID is combined in ANNPID [445] (ANN - Arti-

ficial Neural Network). It takes input from tracking, RICH, the calorimeters and Muon

System [446]. Classifier algorithms such as AdaBoost, MatrixNet [447], and neural nets

were used to optimize the LHCb topological trigger, a trigger which selects vertices in

compatibility with those expected from the decay of a b-hadron [448] (LHCb captures

decay topologies after triggering on partially reconstructed b-hadron decays [268]).

Another potential ML usage worth mentioning is Data Acquisition. DAQ systems

require extremely low, sub-microsecond latency that would benefit from having deep
2Autoencoder [432] is an artificial neural network aimed to learn a representation (an encoder) of the

data in order to reduce their dimensionality while assuming the data tend to be locally correlated (e.g. a
pixel in the image is usually highly correlated with adjacent pixels).
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Figure 6.1: The LHCb Particle Identification system overview (left) and proposed deep
model application in [441] (right).

systems embedded into the hardware. Duarte et al. substantiated that the use of ML-based

triggers in low-latency FPGAs is feasible and proposed a few use-case applications [449].

The most established environments for ML development [450] are PyTorch (released

in Sep 2016, Facebook research [451]) and Keras (Mar 2015, Google Brain [452]), with

Tensorflow back-end (a library for high-speed graph processing [453]), both implemented

in Python language. While Keras is more robust and trains the models using Tensorflow

machine code [454] (it also features tools delivered by Tensorflow [455,456]) or Theano [457]

(a library for numerical computations with an ability to run on GPU), PyTorch is more

flexible and easier at debugging, purposed for research (especially PyTorch Lightning [458]),

optimized for array processing and strongly accelerates on GPU [459], in particular with

CUDA (Compute Unified Device Architecture), a computing framework developed by

NVIDIA, where the tasks can be parallelized across many GPUs asynchronously to

optimize compute-intensive processing. PyTorch uses tensors as general data abstraction

and relocates the array computing to GPU [460].

A fairly advanced tool for ML development is TMVA (Toolkit for Multivariate Data

Analysis) [461, 462]. It originated as a stand-on application [463], moved in 2013 to

ROOT3, where it was embedded as a platform for machine learning [470, 471]. ROOT

provides basic supervised learning methods, for instance, the multi-layer perceptron,

which is a feedforward neural network4. ROOT provides maximum likelihood fitting using

MINUIT [472] as an optimizer, and Roofit [473], a library built on ROOT for modelling

the distributions of events in physics analysis, where the modelling is done by unbinned

maximum likelihood methods [474]. TMVA enhances the methods available in ROOT and

provides, among others, gradient-boosted Decision Trees, SVM, kNN, function discriminant
3ROOT [464] is an open-source C++-like programming framework used widely in HEP [465–469].
4A term feedforward is used when the stream of information is oriented in only one direction, i.e. the

connections between neurons do not form cycles.
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analysis (FDA, [475]) and kernel density estimation (KDE, [476]). TMVA allows data

preprocessing, such as decorrelation or decomposition. TMVA is compatible with Python

and its data objects. It is possible to use TMVA in the Python interpreter directly using

PyROOT [477]. PyROOT is also used to import and read files of format native to ROOT

in Python.

6.2 Proposed concepts

This Section discusses some theoretical concepts of ML application for physics analysis

and mass spectrum reconstruction. The first presents deep modelling as a novel fitting

method. The objective of the fitting is to find a suite of parameters for the model that

describes the given dataset best. Although it is possible to find such parameters by purely

statistical methods, like the method of moments or maximum likelihood, the estimation

of the moments (or model parameters in case of maximum likelihood) usually does not

go hand in hand with optimizing the fit, i.e. minimizing the MSE between the fit and

the dataset. Using a fitting algorithm, based either on gradient descent or metaheuristic,

minimizes a loss function, which can be the MSE function, and leads to the best possible

fit. Such an approach results, however, in two bothersome aspects of the approximating

model. The first is that there is never a warranty that the algorithm converges into the

global extremum of the loss function, gets trapped in a local one, or perhaps does not

converge at all5 The second concern is that the dataset is very rarely a pure distribution

but often with the admixture of miscellaneous detector effects that weight the distribution

in a hard-to-determine, sometimes highly composite, fashion. If the fitting model does

not take into account any admixtures, it relies on a crude assumption that analyzing the

dataset with oversimplified model will still provide the best approximation of the actual

parameters. It is only when the distribution is no longer visually resembling the model

that there is an obvious need to change it, usually to an empirical one (such as the Crystal

Ball function [478] used for multi-purpose modelling).

To study how different fitting techniques approach to the distribution, a single Gaussian

of fixed parameters (amplitude, µ, σ) was sampled in random intervals as in Fig. 6.2.

Three different methods are used to fit the Gaussian model to the data points; the method

of moments (estimating µ by the mean and σ by the standard deviation estimator), a

metaheuristic fitting algorithm (more precisely, DE algorithm, see Section 2.3) and a simple
5When the loss function has regions of local flatness or learning rate is not low enough, the GD

algorithm is unlikely to converge, which manifests in different results each time the algorithm is run.
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Figure 6.2: Gaussian fit to the ideal Gauss distribution computed by three different
approaches.

Figure 6.3: Gaussian fit to deformed Gauss distribution computed by three different
approaches.

regression. The regression is the least squares regression that can be explicitly derived

using the natural logarithm of Gaussian (following the conception in [479]). The regression

provides exact model parameters. The DE-based fitting algorithm quickly converges in

the right parameters set. The method of moments only roughly estimates the model

parameters, which can be seen in Tab. 6.1.
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Table 6.1: Gaussian amplitude A, µ and σ obtained by three approaches.

Model Data µtrue µ σtrue σ Atrue A
Regression pure 25 25 5 5 100 100

with noise 25 24.799 5 7.5587 100 36.429
Moment Est. pure 25 25.966 5 5.1035 100 94.777

with noise 25 25.630 5 6.0064 100 83.061
Optimization pure 25 25 5 5 100 100

with noise 25 25.006 5 5.0028 100 99.893

The same fits were repeated for a dataset sampled from the same distribution with a

relatively small insertion of normally distributed noise (of σnoise = 5, whereas the Gaussian

amplitude is fixed to A = 100). The fits act quite differently; the main reason why the

regression fails this much (Fig. 6.3) is that the natural logarithm used in the method can

quickly approach large negative values when the height of some samples is reduced to

values close to 0 (this could be, however, avoided by adding additional conditions). The

method of moments performs progressively worse at minimizing the loss, even though

the modelled µ in this particular case is closer to its true value than in the previous case.

The fitting algorithm converges into a stable set of parameters that slightly differ from

those that were given to the random number generator. Because the DE-based algorithm

is one of the most advanced in the field and was proved to successfully optimize hybrid

functions of more than 100 parameters [480] (i.e. more than 100 degrees of freedom), it

can be assumed with high confidence that the set of parameters found is actually optimal.

Following this observation, the garbled distribution is no longer able to provide the original

parameters it has seen during creation; instead, the ratio of true and reconstructed σ was

5.6 ∗ 10−4. On the other hand, 5% noise contribution is followed by only 0.056% shift

of the approximated parameter. Postulating a composite model that could recreate the

parameters with higher precision is hardly possible, as the noise is purely stochastic and

symmetric, and such a model, if succeeded in this particular case, would be inaccurate for

another batch of data. However, when the noise contribution added to Gaussian would not

be symmetric, a model that could describe the distribution with higher precision should

exist.

The dataset can be modelled by a neural network, which approximates the shape of the

distribution without any constraints. It is expected for the deep model to give much lower

MSE (the exact value depends on the network complexity) than a Gaussian fit. However,

there is no facile way to extract or estimate distribution parameters, as the neural network

model is essentially a black-box model. A peak can correspond to the expected value, but
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there is no statistical measure to approximate the uncertainty of such estimation. Even

though fitting the shape via deep models is often very useful, it is only a superior way of

building models like Crystal Ball. Such a network is unquestionably a flexible and versatile

tool, but with no ability to calculate the parameters of the original distribution.

The solution proposed in the studies was to use a deep network approach for parameter

estimation based solely on the shape of the distribution curve. A model input layer taking

N points from each sample shape makes the model very complex, as the loss function

turns to N -dimensional. If the model is able to learn the relationship between the shape

and the parameters of the distribution, it could potentially support statistical methods

used in estimation. This approach is not entirely new and was originally conceptualized

by Bishop [481], who used the neural network to estimate the width and location of the

peak (i.e. mean) of the Gaussian-like spectral lines. The applied model was a multi-layer

perceptron, which was trained to estimate the parameters of one spectral line at a time.

Bishop articulated that such an approach does not require a big initial setup or guesswork,

thereby can be scaled up with the CPU speed or even engineered into hardware.

In continuation of Bishop’s research, the idea was to set up a deep model to simultane-

ously evaluate two Gaussian shapes and to ascertain whether the model could cope with

the overlaps, as well as higher fluctuations of the curves, as the studies reported by Bishop

did not delve into this aspect.

Figure 6.4: The loss function while descending the gradient in the shape learning model.
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Because of its flexibility and GPU acceleration, PyTorch was used for deep modelling

from this point onward. The code of part of the study discussed below is available in the

Author’s github in [482].

The chosen network is a deep feedforward network with 60× 30× 30× 6 architecture.

The input layer has 60 nodes as the function domain is split into 60 bins (covering C

∈ [0, 20) region), and the output layer gives 6 parameter estimates, which are A, µ, and σ

for each Gaussian. Training was run on 5000 generated samples, each consisting of two

possibly overlapping functions with parameters varying in the following ranges, 2 < µ < 6,

0.1 < σ < 2 for the first Gaussian, and 6 < µ < 10, 0.1 < σ < 2 for the second Gaussian,

both with fixed amplitudes (3rd and 6th outputs of the model were idle). The number

of epochs6 was fixed at 500. To fine-tune the learning rate, it was scanned with three

proposed values, for which the loss across GD was plotted as a function of epochs, which

is shown in Fig. 6.4. Since the loss function is likely to have many complex features (note

that the input vector combines 60 data points, hence the loss function is a 60-dimensional

complicated function), the loss fluctuates in a logarithmic scale and was smoothed by

Savitzky-Golay filter [483]. The lowest learning rate (marked green) makes only small leaps

in the loss function overall landscape7 and, arguably, is too tiny to swiftly escape when

attracted by local minima. On the other hand, a high learning rate is unable to converge

but moves in circles around the extremum. The learning rate of α = 10−4 is the quickest

to minimize the loss and was therefore chosen as optimal.

The results of shape learning are illustrated in Fig. 6.5, where the residuals of predicted

µ and σ are shown in the form of histograms using the testing dataset (the testing

and training datasets were generated separately). The distribution of (µtrue − µpredicted)

residual in principle falls in the (−3, 3) ∗ 10−2 region, likewise for (σtrue − σpredicted) in

(−0.7, 0.5) ∗ 10−2 region. The residual distribution for σ is asymmetrically skewed toward

negative values, indicating that the prediction somewhat overestimated the real parameters.

This is most likely an effect of peak overlapping, which always seems to stretch the size of

the distribution. Noteworthy is the fact that very low residuals are reached; the averaged

error was < 0.5%, even though the training and testing datasets contained even tightly

overlapped peaks. A serious disadvantage of this method is the absence of an explicit

way to determine estimation uncertainty. While the fitting algorithms based on the

maximum likelihood approach can estimate the uncertainty (e.g. Cramér–Rao bound on
6The epoch is a full loop of the training over the batches or individual data samples.
7The notion of landscape is an ML-specific jargon description of the loss function behaviour. It originates

from the attempts to create comprehensive visualization tools for representing the loss functions.
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Figure 6.5: Residuals of ground truth and prediction for µ (left) and σ (right).

the variance [484]), the neural network, even if performing better, cannot. The question of

whether it is advantageous to seek the best possible physics measurements in the absence

of uncertainty is broad and perhaps beyond the scope of this dissertation. A remedy to

this dilemma could be to progress the state of understanding of the deep network’s latent

space attributes, though as long as it remains enigmatic in mathematical reasoning, that

is unlikely to happen. Some of the Author’s ideas were to lay out a deep model that could,

in turn, estimate uncertainties based on statistical samplings, such as bootstrap, or to look

for certain trends in the latent space by mining and studying small pools of neurons to

search for a relationship between error propagation and physics uncertainty, and this will

most likely be the line of further research on this matter.

Having a trained model for statistical estimation, the follow-up idea was to investigate

whether deep modelling could be used in shape synthesis in such a way that the model

could tell what fundamental components the distribution could be decomposed into, and

so from what fundamental components it could originate. In accordance with algebra,

any function can be modelled as an infinite series of orthogonal polynomials (computer

models for such fittings are called Mixture Models [485]) or even Gaussians (Gaussian

Mixture Models, GMM [486]), where the probability density function is modelled by

using multiple Gaussian kernels [487], e.g. by RooKeysPdf in Roofit [488]. As a matter

of fact, the possible representations can also be infinitely many, but by imposing certain

constraints on the modelling, such as the limited number of fundamental components, a

number of expected components, their approximate shape or expected bounds on certain

parameters (e.g. amplitudes), a deep neural network could judge from the very shape
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of the distribution which composition suite is more likely. The model, if learned on the

custom-defined shapes, could estimate the contribution of each fundamental component

and, using the approach from previous paragraphs, estimate the parameters upon which

the distribution was defined. This problem refers directly to the optimal shape adjustment

in physics analysis, where one looks for the possible components in the physics data

distributions, scrupulously modelling the kinematical cuts and known detector effects

on MC (Monte Carlo) data. Because of the complexity of the decays, multiple cuts and

constraints, the contributions from misclassified decays are often not defined by analytic

formulas but by the shape that is proposed to fit the observed distribution the best. The

shape of mass distribution in non-trivial decays quickly gets complex after the consecutive

event selection criteria are applied. The analysis of such data is very complicated and

may involve a large number of nuisance parameters. Creating a sufficient background

model requires much effort and is usually a blend of several components. In standard

methods commonly used in such analysis, a large number of free parameters decreases the

chance that a fitting algorithm would converge to the optimal point. The multidimensional

parameter space may have many local minima, which in turn may correspond to a different

set of physics parameters, even though all of them provide a similar result in terms of the

minimization of MSE. When only a tiny data sample is available (e.g. in rare decays), it

furthermore increases the estimation instability. Eventually, results may not be reliable

enough to make a statistical enrichment to the exploration of the physics process.

The network recognizing the fundamental components was configured to have 60×60×
4 ∗Nout ×Nout layer architecture, where Nout is the number of all possible compositions

that can be built of fundamental components (the choice came from a simple grid scan

which found the configuration achieving the best results). Activation functions were chosen

to be LeakyReLu (see Chapter 2.2), and the input layer to extra scale the data to (−1, 1)

(so-called batch normalization). To make the output vector comply with the probability

interpretation of the density function, a softmax layer was appended as the last layer8.

The training is supervised by one-hot encoded labels of possible softmax outcomes, and

the performance is evaluated as the softmax accuracy (the outcome with the highest

probability is picked as the class guessed by the network).

The study included two fundamental components, a decreasing exponential function

(describing the combinatorial background) and Gaussian. It was assumed that 7 different

composite functions can be defined using these basic components, which are up to three
8Softmax [489] is a function transforming a vector or array into a discrete PDF (Probability Density

Function).
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Figure 6.6: A sample function composition used for training the deep model aimed to
recognize fundamental components.

Gaussians with the optional presence of the exponential function. The domain C ∈ [0, 10)

was split into 60 bins, and 2000 samples of each possible composition were generated.

Gaussians were generated without individual boundaries on parameters like before, and

instead, the parameters always varied in 2 < µ < 8 and 0.1 < σ < 2 (this means some

samples might have got heavily superimposed Gaussians). An exemplary sample, being a

composition of two Gaussians and one exponential function used for model training, is

shown in Fig. 6.6. Note that the peaks are not distinct, but the shape with asymmetric

edges of the combined peak can still guide the network toward the right classification.

After training, another 2000 samples from each possible combination were generated

to test the prediction accuracy. The results are presented in Table 6.2. The model is

surprisingly effective, even though it has to deal with overlapped functions. A single

Gaussian was classified most of the time correctly, but some of the samples ( 1.3%) were

chosen by the network as two Gaussians, and vice versa. This is the effect of confusing

the model by including tightly superimposed functions in the training data. The model

was later trained on many more possible compositions, and its accuracy dropped to

approximately 80% when distinguishing between seven and eight overlapped Gaussians.

When studying the shape of a mass spectrum distribution, one could use generative

modelling to reconstruct the shape from a suite of given parameters that have physics

interpretation (e.g. invariant mass). Since GANs (Generative Adversarial Networks) work

stochastically on noise vectors, they can be brought to the fore in generating MC samples.
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Table 6.2: Shape classification accuracy (top row are the classes).

Model G 2G 3G 3GE 2GE GE E
G 0.987 0.013 0 0 0 0 0
2G 0.022 0.951 0.027 0 0 0 0
3G 0.001 0.060 0.938 <0.001 0 0 0
3GE 0 0 0.002 0.943 0.054 0.001 0
2GE 0 0 0 0.041 0.955 0.004 0
GE 0 0 0 0 0.002 0.998 0
E 0 0 0 0 0 0 1

It is possible to incorporate the least squares function as the loss function in GANs [490]

(instead of binary cross-entropy), similarly to how the fitting algorithms would optimize

the loss function, minimizing the Pearson χ2 divergence (therefore it can also be used

in mass spectrum modelling). Eventually, Generator and Discriminator can become two

independent systems serving different purposes. The Generator can act as an alternative

to MC generators or to confidence interval calculation methods like jack-knife [491] or

bootstrap. It could also support or even replace the BDT approach (Boosted Decision

Tree) as a superior technique. After the physics selection, the resulting mass distribution

of the signal decay may still be considered contaminated with various background events,

which is, in turn, a place where the event discriminator could be adopted.

Figure 6.7: The image-to-image translation of the Sierra Nevada using CycleGAN [164].

Advanced GANs dedicated to image-to-image translation may find even more intriguing

applications. The detector apparatus and the detection deficiencies always leave a footprint

on collected physics data, which is further laboriously modelled using detector simulation

studies and MC data. If the image-to-image translation model was to be applied to this

task, it could learn how the detector interacts with physics data, and how to further

appropriately convert the data by extracting the detector impact functions. Image-to-
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image translation models, such as CycleGAN (see Section 2.4), were successful in a variety

of tasks, converting images of Google Maps to satellite maps, animals to other animals

(e.g. horses to zebras), summer to winter sceneries (see example in Fig. 6.7), or even

artworks to impressions of another artistic fashion or realistic photos. CycleGAN is able

to learn complex relations between pixels in high-resolution images that are challenging

to quantify in a mathematical way. The model attempts to find a translation function

by finding a latent representation of the image and then renders some layers of this

representation, leaving the rest intact. In this regard, if the first deep layer is responsible

for learning a general relationship between the physics parameters, the detector effects

could be modelled by the latent representation of subsequent hidden layers. It is true that

perceptual assessment of generated images machine learning papers present cannot be

used in physics analysis, and the application of such models in this field demands more

reliable and trustworthy methods in a statistical sense. Nonetheless, this matter deserves

continuing research, and a keen interest in the latest in machine learning can firmly push

forward the progress of analysis methods used in modelling so far.

6.3 Mass spectrum reconstruction of B0 → Dh

The studies presented in this Section are mostly preliminary and aim to explore possible

strategies for reconstructing the mass spectrum by improving methods generally used

in physics analysis today. Some of the proposed concepts from the previous Section are

applied to MC data. The methods are evaluated on B0 → Dh decay (B0 → D−
s π+).

The generative modelling study commenced with the analysis of B+ → K+K−K+

and B− → K−K+K− decays (the idea for this channel came from LHCb Open Data in

2020) which was studied by Kacprzak, Szumlak, and myself [492]. A few variants of GAN

were used to learn the generation of MC data from RapidSim (an engine for fast MC

data generation of heavy-quark hadron decays [493], adjusted for LHCb geometry). They

were the original GAN, BGAN (Boundary-Seeking GAN) [166], DualGAN (2017, Yi et al.,

using unsupervised learning for data multiplication and image-to-image translation [494]),

and WGAN (GAN with Wasserstein loss [160] and convolutional layers [165]). The model’s

implementation was inspired by a collection of PyTorch code of GAN variants in [495]

written by Lindernoren. At a glance, neither of the variants showed close capabilities

to even a simple MC generator, and the implication was that adversarial systems are

not well-suited for modelling complex mathematical statements, but rather tend to learn
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general features over small patches of the data. Because many researchers have raised the

matter of using GANs in physics analysis in the past two years, the study was reexamined

recently to capture the shortcomings of generative systems and to come up with some

thoughts and ideas for possible adoption based on the Author’s experience.

Figure 6.8: A reconstructed mass of B0 from B0 → D−
s π+ with FP-optimized fit, where

possibly the lowest MSE is reached by the algorithm.

To study the mass spectrum reconstruction of B0 in B0 → D−
s π+, a dataset of

104 samples was generated in RapidSim, simulating the LHCb simplified geometry. The

mass of B0 and the energy of the decay can be fully reconstructed from D−
s and π+

kinematical variables (momentum). The resulting mass spectrum is then a function of

six parameters and gets a Gaussian shape. The actual B0 mass is 5.27963±0.0002 GeV

according to 2022 PDG [496]. To study the reconstruction efficiency, ten different methods

were chosen and used for the mass spectrum fit. The model requires only three parameters

(A, µ, σ) and is evaluated on 90 bins of the distribution histogram. The MLE (Maximum

Likelihood Estimation), in this case equivalent to the method of moments, was chosen as

a benchmark for other methods. The Stochastic Gradient Descent (SGD) was taken as a

naive optimization algorithm (greedy strategy). Genetic Algorithm (GA) and Differential

Evolution (DE) were used in the standard setup (mutation as bit flipping, 5% per bit in 32-

bit floating representation). A metaheuristic BFPA (Biotic Flower Pollination Algorithm)

by Lukasik and myself (see Section 2.3) with a code in the Author’s github repository

in [497] was used with the hyperparameters earlier optimized in the BFPA paper [6].
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Table 6.3: Model paramaters of B0 mass spectrum fit for a suite of reconstruction
methods.

Estimation method A µ σ CPU time* [s]
MLE (Max. likelihood) 771.6 5.2792 0.0161 <0.1
Original FPA, Yang [134] 765.8 5.2803 0.0157 11.5
BFPA, Lukasik and myself [6] 765.8 5.2803 0.0157 7.2
Stochastic GD 763 5.2826 0.0160 2.1
GA 765.2 5.2815 0.0155 11.3
DE 765.8 5.2803 0.0157 12
LSHADE [150] 765.8 5.2803 0.0157 5.8
DNN 759.2 5.2759 0.0166 <0.1**
DNN, Bishop’s approach [481] 780.1 5.2807 0.0162 0.1**
CNN 783.4 5.2731 0.0168 <0.1**

* Intel(R) Core(TM) i5-3470 3.20 GHz, no multi-threading
** Once trained (GPU powered)

To compare BFPA with the original FPA by Yang [134], it was used as well. The best

non-hybrid DE-based optimization algorithm LSHADE [150] (Section 2.3) was used. Last

three methods are deep models, a common approximating DNN (Deep Neural Network),

DNN in Bishop understanding for the shape learning, and finally, a CNN model, triple

convoluted (three convolution layers reducing the dimensionality of the whole patch in steps

90→30→15→3 before the first deep layer9), with the latent space shape corresponding to

DNNs (architecture details are given in the previous Section). The mass spectrum shape

and an exemplary fit obtained by FPA are shown in Fig. 6.8.

Fit parameters A, µ, σ were obtained from all models in order to compare their

performance. Each model excluding ordinary DNN yields the parameters explicitly. The

parameters in DNN are computed using MLE of the approximated shape, which means

the mean of the learned shape is the estimated Gaussian µ. The reconstructed parameters

are grouped in Table 6.3, given together with the CPU time of the algorithm execution.

The execution was stopped while the algorithm could not reach a better solution anymore

or converged in one certain point (which means the loss reached a plateau region). MLE

gives a very close to correct result of 5.2792 GeV (0.0004 GeV deviation) and is actually

the most accurate from the suite. FPA, BFPA, DE and LSHADE reached a solution of

5.2803 GeV, which is most likely the global minimum of the MSE loss function, with

a little bit more deviation to MLE and approaching the B0 mass from the upper side.

While Bishop’s DNN reached 5.2807 GeV, the other methods are less accurate. MLE is

the quickest to evaluate the mass with almost no CPU time cost. LSHADE required less
9The idea for reducing 90-dimensional input to 3-dimensional was that the distribution can be actually

expressed by only 3 parameters, as it was assumed to be Gaussian.
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number of evaluation than other optimization methods, and its processing time is the

lowest. All three tested deep models do not require much time to estimate the parameters

once fully trained, but performed worse than MLE and optimization algorithms. It is

worth noting, however, that the networks operated on a complex 90-dimensional space of

the input vector. An interesting observation is that the standard deviation estimator σ is a

little bit lower for the optimized fit (0.0157 GeV for FPA, BFPA, DE and LSHADE) that

MLE provides (0.0161 GeV). On the other hand, this might suggest that when the LHCb

geometry simulation is included, the Gaussian model is not perfect in modelling the data

and underestimates the distribution tails like in Fig. 6.8. Even though MLE was derived

for the Gaussian model, in this specific case it is equivalent to the method of moments,

which is less accurate, but always valid. If the Gaussian model is no longer correct, MLE

estimator turns into a still correct method of moments estimator. This advantage is not

present in models based on optimization algorithms. Neural networks can always tune to

the given dataset, and even minimize MSE to zero by overtraining when latent space is

big enough to reproduce all the data features including even the noise fluctuations. This

lowered MSE does not seem to lead, however, to improved parameters, at least compared

to MLE. Because of the lack of theory for parameter uncertainty in deep models, the

number of nodes in the network cannot be freely increased due to the risk of overtraining.

If there was a connection between approximated model and the parameters resulting from

MLE, and, in particular, their uncertainties, one could pick the deep network with a such

number of nodes, that the MSE and uncertainty would be minimized at the same time.

A perspective of discovering such a relationship is lucrative, as it could revolutionize the

statistical calculations, poorly supported by ML methods by far. Moreover, there are some

clues that such a relationship exists, as the neural network, regardless of its size, is always

a continuous function f(x), and thus the transition function g(x) that transforms f(x)

into the considered analytical model (a Gaussian in this specific case) should always exist.

If the expression of µ was transformed by the inverse transformation g−1(x), it would yield

its latent space representation in the deep model. In a similar way, the uncertainty of µ

could be obtained, or eventually computed by measuring the error propagation between

the latent space representation of the given parameter. This is certainly a matter worth

further research and will be pursued by the Author in the future.

To study the generative system’s capability to recreate physics events, the same data

sample of B0 → D−
s π+ was used in the learning process of GAN. Because GAN requires

a sophisticated hyper-parameter configuration for the training to keep Generator G and
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Table 6.4: Optimized hyper-parameters of GAN.

Hyper-parameter Settings
Latent noise vector 10
G architecture 10 x 300 x 600 x 6
G activation functions 2 x LeakyReLu α = 0.2, 1 x Tanh
G outputs B0, π+ momentum
Optimizer ADAM, β1 = 0.5
D architecture 6 x 600 x 300 x 2
D activation functions 3 x LeakyReLu α = 0.2
Learning rate 1.6 ∗ 10−4

Batch size 500
Optimizer steps N/500 (N=104) * epoch
Max. epoch 500

Discriminator D at the constant learning pace10, the setup was tested multiple times such

that the optimal learning phase can be achieved. The hyper-parameters of the model used

in the study after optimization are listed in Tab. 6.4. The dimensionality of the latent noise

vector is chosen to be 6, as it guarantees for the network to learn the physics functions only

with a linear transformation of the uncorrelated base, as there can be some correlations

in 6 variables of momentum (the lower or higher number of random noise dimensionality

would no longer keep a linear transformation).

The architectures of G and D are similar, where G returns 6 variables of momentum,

while D the class of the sample. The activation functions in G are two LeakyReLu (the

negative slope coefficient α = 0.2, positive slope 0.5). A hyperbolic tangent as the last

intermediate activation function is applied to carry the non-linearity physics function of

momentum generation, while the aim for the inmost LeakyReLu functions is to guide

the network to recreate the linear transformation between variables. This assumption for

the roles should be satisfied when the loss function is actually minimized in the learning

process. Batch normalization is applied to keep the real variables close to non-linearity

points in LeakyReLu functions and to prevent a vanishing gradient in the hyperbolic

tangent layer. ADAM was used as optimizer (β1 = 0.5, an internal ADAM property, the

exponential decay rate in gradient weighting). The batch size was chosen to be 500, and

because the total of epochs was 500 as well, the number of gradient descent steps (thus

the number of evaluations) was 104.

The learning rate α was carefully scanned by changing its values between 5 ∗ 10−5 and

5 ∗ 10−3, where the best possible value was found to be α = 1.6 ∗ 10−4. The adversarial
10When D trains faster than G, the G’s optimizer makes bigger and more generic steps to minimize

the increasing loss (it turns into exploration phase), while D wastes time for a local search (exploitation
phase) for the untrained G, thus the performance spike of D is only elusive.
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Figure 6.9: Generator loss, Discriminator loss, and Discriminator prediction accuracy for
the learning rate α = 1.6 ∗ 10−4 during the training of GAN.

loss for G and D, together with D prediction accuracy (accuracy is defined as the number

of correct guesses to all guesses) for the learning rate of α = 1.6 ∗ 10−4 is shown in Fig.

6.9. With this learning rate, a perfect training scenario is achieved; prediction accuracy

approaches 0.5 on the upper side as the training continues, which means G is steadily

improving in generating samples that are indistinguishable from the real ones, challenging

D incrementally. It is important to stop the training before the prediction accuracy gets

close to 0.5, as G starts to notice that D is yielding random guesses, and the feedback

mechanism to compute adversarial loss for G is no longer profitable. Note that sheer

prediction accuracy is not enough to tell whether the model is trained properly, as long as

the accuracy is averaged on real and fake samples. The loss of D and its accuracy is always

in the counter-trend. To ensure G and D train at virtually the same pace, their adversarial

losses should both approach 0.75 in the longer term. Sustaining such a textbook learning

process in physics reconstruction is a remarkable accomplishment, as GANs hardly achieve

this condition even in image synthesis, a field native to these models.

For an outlook of selected other configurations of the hyper-parameter space, see Fig.

6.10. For a relatively high learning rate α1 = 8∗10−4 and the interior architecture 300×600

in both G and D (more precisely, it is always reversed in D; 600× 300 in this case), the

training is highly unstable, and G struggles to provide samples credible enough. When

the same learning rate is maintained but the number of nodes in the inner layers of the
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Figure 6.10: Examples of scans taken for hyper-parameter space optimization. Learning
rate α1 = 8 ∗ 10−4 and the inner architecture 300× 600 (upper left, note that the range
of Y axis is increased compared to others), α1 = 8 ∗ 10−4 and 400 × 800 (upper right),
α2 = 4 ∗ 10−4 and 300× 600 (bottom left), and α2 = 4 ∗ 10−4 and 400× 800 (bottom right).
Savitzky-Golay filter is used to smooth the tidal curves.

networks is increased to 400× 800, both G and D will start to experience high adversarial

losses. For lower training rate α2 = 4 ∗ 10−4 but still higher than optimal (the optimal was

α = 1.6 ∗ 10−4), the losses are not getting decreased as much as in the optimal scenario

in previous Fig. 6.9. The conclusion is that the learning rate should always be matched

to the specific architecture of the system, and thus be the last element to optimize. This

substantial role in the learning rate makes it more significant to oversee compared to
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regular neural networks, as its suboptimal values can even make GAN not train at all.

Figure 6.11: The model sliced at 100, 200, 300 and 500 epochs (fully trained).

A stepwise glimpse of how the model learns recreating the distribution in the latent

space is shown in Fig. 6.11, where the generated distributions of X momentum of D−
s

are illustrated for training slices at 100, 200, 300 and 500 epoch number. The model

consistently minimizes the adversarial loss (note that the MSE is no longer used) and

would have continued to improve the reconstructed distribution had it not been stopped

due to the risk of converging accuracy and unreliable feedback from the discriminator.

Nevertheless, the model severely struggles in recreating the mathematical dependencies

between subsequent real values, and cannot straightly recreate the mass distribution that
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Figure 6.12: A reconstructed mass of B0 computed as the mean and the MPV of the
spectrum obtained from the generated momenta distributions.

is a function of the momentum of D−
s and a few other variables, which can be seen in Fig.

6.12. In other words, the model is able to learn the distribution shape, but cannot properly

recreate the hidden correlation ties between the input real values. This can be either caused

by the lack of MSE minimization or the high complexity of the mathematical correlation.

A clue that a wrong choice of the loss function can be the reason might be seen when

the binary cross-entropy of discriminated samples is replaced by the Wasserstein distance,

which significantly improves the model in learning the correlations. Though the model is

not able to recreate the mass anyhow, it begins to nicely recreate the total energy of the

products, which is given by a similar but less complex function (the actual invariant mass

can be expressed as m =
√

(E2 − p2), where E is the total energy). The calculated total

energy of the decay products from the generated distributions of momenta is visualized in

Fig. 6.13. This nice improvement shows that GAN (in this case, GAN with Wasserstein

loss) can be successful at the task if heavily adjusted. A lot of other ideas to deal with this

problem were invented and investigated by the Author and independently by the other

members of the Krakow LHCb group, partly discussed in [7].

One of the solutions proposed by Szumlak was to equip the loss function with a

component that reflects the mathematical expressions used to compute the invariant mass.

The solution proposed by the Author was to add input nodes to the generator which would

take the computed invariant mass from the real values given to the other nodes at the same
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Figure 6.13: The reconstructed total energy of B0 → D−
s π+ products obtained from the

generated momenta distributions.

sample. This way GAN gains a support expression that helps in recreating the correlations

between the generated kinematical variables. An example of the generated samples of

invariant mass of B0 is shown in Fig. 6.14, for two different stages of the training, after

250 and 500 epochs, respectively. The fits to the generated distributions are made using

the Gaussian model and were optimized by BFPA (similar to Table 6.3).

Figure 6.14: A reconstructed mass of B0 obtained from the generated momenta distribu-
tions by the GAN with Wasserstein loss customized input nodes, after 250 epochs (left)
and 500 epochs (right).
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Table 6.5: Model parameters fitted to the reconstructed B0 mass spectrum by various
GAN variants.

Generative model Est. model A µ σ
GAN MLE 168.1 5.31 0.0081

BFPA 165.7 5.315 0.0084
GAN + Wasserstein MLE 165.1 5.279 0.0075

BFPA 165.3 5.278 0.0076
WGAN (DCGAN + Wasserstein) MLE 165.3 5.272 0.0079

BFPA 164.9 5.268 0.0081
BGAN MLE 170.4 5.362 0.0083

BFPA 170.5 5.361 0.0082
GAN, Morskyi and myself [5] MLE 168.3 5.31 0.008

BFPA 166.1 5.309 0.0082
DualGAN MLE 169.7 5.279 0.066

BFPA 170.1 5.279 0.065

In the final study, a few modern GAN concepts were tested in the same task as above

to check their relative performance. Those are the original GAN, GAN with Wasserstein

loss, GAN with convolutional generator and the Wasserstein loss (WGAN in Arjovsky’s

approach [160], see Section 2.4), BGAN, GAN with the improvements proposed by Morskyi

and myself [5] (code and studies available in github of Morskyi [498]), and DualGAN. To

estimate the reconstruction precision, BFPA fitting was applied in a similar way as in Fig.

6.14, and the MLE approach was used independently. The results of such a comparison are

presented in Table 6.5. The estimated parameters are different depending on the chosen

modelling and the variant of GAN. The real invariant mass of B0, m = 5.27963 GeV, was

approached the best by GAN with Wasserstein loss and DualGAN. While the success of

the latter model is not surprising, as DualGAN is a model dedicated to data multiplication

(it learns to modify the data rather than generate it from scratch), the high precision of

GAN with Wasserstein loss is intriguing. Worth noting is the fact that WGAN shows

weaker generation capabilities, which is most likely caused by the convolutional layers

in the generator. Together with the fact that GAN with Wasserstein loss significantly

improved the generation capabilities presented in the previous part of this Section, it

makes the model very promising for potential application in the future. In particular, it is

possible that changing and testing different forms of the loss function can further improve

the GAN performance and generation capabilities in physics analysis, and is surely a

direction for further studies on this matter.
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Footprint and prospects

The software platform for Upgrade I Vertex Locator presented and discussed in this thesis

is used on daily basis at LHCb to calibrate and monitor the vertex detector, which currently

is at the final developing stage before the commissioning. The platform will serve as a

calibration, monitoring and pixel detector studies tool during LHC Runs 3 and 4. The

software was written by the Author of this thesis, and the platform was connected and

embedded into the LHCb software and hardware ecosystem, as described in Chapter 4.

The platform allows for analysing the data for studies that were hardly possible before,

introducing calibration data emulation, data quality monitoring, smart optimization of

the clustering models, and many other functionalities.

A wide range of Machine Learning methods and modern concepts were discussed in the

thesis, beginning from the state-of-the-art in Chapter 2, to practical applications given in

Chapter 6. Many ideas for using intelligent systems in physics analysis were proposed and

examined, articulating the advantages that this approach could bring, but also potential

issues that have to be addressed in order to successfully employ ML-based methods in the

aforementioned field. Although structures like Generative Adversarial Networks, invented

in 2014, were a revolution in Machine Learning, their use in High Energy Physics is still

very scarce. The proposed ideas, although mostly preliminary, fill a large gap that has

shaped in recent years between the rapid pursuit of new artificial intelligence concepts in

computing technology and their use in other fields of science.

The Author wishes that both the software platform for Vertex Locator and some

discussed concepts for physics analysis will provide a tiny indirect contribution to the

research to make further breakthroughs in discovering the universe.
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