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Streszczenie

Niniejsza rozprawa doktorska składa się z opisu dwóch projektów badawczych zrealizowanych w ra-

mach współpracy LHCb. Pierwszy z nich jest dedykowany opisowi prac nad algorytmem do rekon-

strukcji śladów pochodzących od cząstek długożyciowych. W ramach prowadzonych badań zdecy-

dowano się zastosować nowatorskie metody uczenia maszynowego w celu poprawy czystości i wyda-

jności rekonstrukcji. Projekt ten jest jednymzpierwszych, któryużywazaawansowanychmodeli uczenia

maszynowego w ramach systemu wyzwalania (tryggera) wysokiego poziomu. W ramach studiów nad

analiząwydajności testowanychmodeliwykonanonowatorską analizę interpretowalności predykcjimod-

eli uczenia maszynowego.

Druga część pracy przedstawia zaprojektowanie i zaimplementowanie platformy do emulacji i moni-

toringu algorytmówprzetwarzania surowych danych zbieranych przez projektowany detektorUT (ang.

Upstream Tracker) w ramach modernizacji detektora LHCb. W wyniku tych prac została dostarczona

aplikacja TbUT. Aplikacja ta była wykorzystywana podczas szeregu testów na wiązce, których celem

było sprawdzenie poprawności projektowanych sensorów oraz elektronicznego układu odczytu front-

end Salt. W przyszłości oprogramowanie to będzie wykorzystywane między innymi do wykonywania

kalibracji i monitorowania poprawności działania detektora UT.

Rozprawadoktorska rozpoczyna sięodwstępu, który skupia sięprzedstawieniu eksperymentuLHCb

oraz wyjaśnieniu zasady działania każdego z elementów detektora, jak równieżmotywacji do jegomod-

ernizacji. W kolejnym rozdziale zostały przedstawione aspekty teoretyczne dotycząceModelu Standar-

dowego ze szczególnym uwzględnieniem oddziaływań słabych oraz problemu łamania symetrii kom-

binowanej CP, będącej motywacją do powstania eksperymentu LHCb. Rozdział trzeci skupia się na

przedstawieniu i dogłębnej analizie algorytmówuczeniamaszynowego. Dyskutowane są zarównomatem-

atyczne podstawy wybranych modeli, jak również procesu ich trenowania oraz optymalizacji ich hiper

parametrów. Czwarty rozdział jest dedykowany przedstawieniu prac w ramach poprawy algorytmu

rekonstrukcji śladówcząstekdługożyciowych. Rozdział ten składa się zprzedstawienia algorytmurozpoz-

nawaniawzorcóworaz studiównaddwomaklasyfikatoramiopartymioalgorytmyuczeniamaszynowego.
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Rozdział piąty przedstawia wstęp teoretyczny dotyczący oddziaływania promieniowania oraz materii,

czy zasady działania krzemowego detektora promieniowania jonizującego, po czym przedstawione jest

oprogramowanieTbUT.Szósty rozdział przedstawia analizędanychzebranychpodczas testównawiązce

wszczególności skupiając sięnaproblemiewspółdzielenia ładunku. Rozprawakończy siępodsumowaniem

i wnioskami zebranymi w rozdziale siódmym.

vii



Author’s Contribution

During my P.h.D studies, I made a contribution to the 1000 person LHCb particle physics experiment,
thus the work of this thesis is a combination of the author’s own contribution and the contribution of
others. I have been involved in two main projects.

The first one was related to the improvement of the Downstream Tracking algorithm described in
Chapter 4. The goal of this project was to enhance one of the track reconstruction algorithms dedicated
to finding so-called, long-lived neutral particles via the application of Machine Learning. This project
has allowed me to get practical knowledge on building a full Machine Learning pipeline and track re-
construction algorithm. I was responsible for preparing, cleaning, and visualization of the training data,
selecting the classification model, monitoring and visualization training progress, validating, and inter-
pretation of the model’s prediction. The algorithm has passed a very demanding testing procedure and
has subsequently been commissioned and added to the real-time event trigger system of the LHCb ex-
periment. Secondly, I was a member of the LHCb UT testbeam team. Within this project, I made
a significant contribution to modernizing the LHCb detector by implementing the whole monitoring
processing chain for theUpstreamTracker (UT).This software, calledTbUT, is described inChapter 5.
It was used to analyze the data collected during the number of testbeam campaigns as well as it will be a
core component of the futuremonitoring and calibration tool for the UT detector. Besides implement-
ing the aforementioned software, I took part in data-taking shifts at CERN. Imade a contribution to this
data analysis, which is a topic of Chapter 6.

In addition to the research duties, I have an excellent teaching opportunity at both undergraduate
and graduate levels. I was responsible for AGH course Python in the Enterprise. During this course,
the students have the opportunity to get familiar with such concepts as Unit Testing, Design Patterns,
Continuous Integration, and Machine Learning. The key part of my teaching duties was supervising
group projects. The projects were focused mostly on image processing using Deep Learning (car plates
recognition, sudoku solver using camera image captured, emotion detection).

The list of papers with my contribution, conferences, and summer schools that I participated in is
provided below.

viii



Publications

• Machine learning based long-lived particle reconstruction algorithm for the LHCb exper-
iment,
NeuralPS workshop ”Machine Learning and the Physical Sciences” (paper,poster);

• PatLongLivedTracking: a tracking algorithm for the reconstruction of the daughters of
long-lived particles in LHCb;
LHCb-PUB-2017-001;

• Emulation andCalibration of the SALTRead-outChip for theUpstreamTracker forMod-
ernised LHCbDetector;
Acta Phys. Pol. B 46 (2015) 1263-1269;

• Testbeam studies of pre-prototype silicon strip sensors for the LHCbUTupgrade project;
Nucl.Instrum.Meth. A806 (2016) 244-257;

• Signal coupling to embedded pitch adapters in silicon sensors;
Nucl.Instrum.Meth. A877 (2018) 252-258.

Conferences

• ML in PLConference 2019 Machine learning in High Energy Physics (recording);

• 76th LHCb Analysis and Software week Building and validating MVAs, How to build more
reliable ML models (slides);

• 8th International Conference onNewFrontiers in Physics (ICNFP 2019); Machine Learn-
ing techniques used in LHCb analyses and online applications;

• LHCP, Bologna, 4-9 June 2018A tracking algorithm for the reconstruction of the daughters of
long-lived particles in LHCb;

• Connecting the Dots/Inteligent Tracker; 2017; Deep Neural Nets and Bonsai BDTs in the
LHCb pattern recognition;

• XXII CracowEpiphanyConference onPhysics in LHCRun II; 2016;Calibration andmon-
itoring of the SALT readout ASIC for the LHCb UT detector;

• XXICracowEpiphanyConferenceon futureofHighEnergyCollider; 2015;Emulation and
calibration of the SALT readout chip for the UT tracker for modernised LHCb detector.

ix

https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_148.pdf
https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_148_poster.pdf
https://www.youtube.com/watch?v=6cO2OBhJlDQ&list=PLoaWrlj9TDhPf08oDhBspvSP11E_uXSnB&index=39
https://docs.google.com/presentation/d/14ZELcsYN_eMCpxtsYzOmIaC_o8rhU6abqH1jwxCijZI/edit?usp=sharing


Summer schools

• Wolfram Summer School, July 2017, Waltham MA, USA,

– Worked on project DeepLaetitia: Deep Reinforcement Learning That Makes You Smile
(project summary);

• Second Machine Learning in High Energy Physic Summer School 2016, July 2016, Lund
Sweden

• The3rd Asia-Europe-Pacific School of High Energy Physics, October 2016, Beijing China

• The38th CERN School of Computing, September 2015, Kavala Greece

x

https://education.wolfram.com/summer/school/alumni/2017/dendek/


Acknowledgments

If somebody who is about to submit an application for a Ph.D. position asked me what I think about
this idea, I would tell him/her that a Ph.D. study can be compared to a marathon race.  In my case, it
took six years to complete it, and it wasn’t painless. I had a lot of moments where I was within an inch
of resigning. However, I reached the moment when my thesis is done, and I am waiting for reviews.
Therefore, I would like to say “thank you” to some people who helped me be where I am.   First things
first, I would like to thank my supervisor, prof. T. Szumlak. You gave me an opportunity to work on
a project that involved applying machine learning techniques in a complicated scientistic scenario that
forced me to study them. This knowledge will drive my future career. Secondly, I would like to thank
You for allowingme to be your teaching assistant (AGHcourse “Python in the Enterprise”). AsRichard
Feynman once said, “If you want to master something, teach it,” and for me, teaching and supervising
a team of undergraduate students was a very productive time. According to the surveys, most of the
students enjoyed this course and thought of it as one that helped them to find a better job. Finally, I
would like to thank You for the review of this document.

Secondly, I wish to thank all members of the Upstream Tracker Testbeam team. The experience of
testbeams at CERN was one that shaped me as a researcher. Special thanks go to prof. Steven Blusk.
You are a great researcher, and you showed me a proper way how to approach scientific problems. Our
cooperation, even thoughnot successful as it shouldhavebeen, taughtme anunforgivable lesson. More-
over, I would like to thank Adam Davis. You supported me for so long, and you were kind and patient
in answering my silly question. And finally, I would like to mention Constantin “Stan” Weisser. I learn
from you one vital skill - to be bold and not being afraid of asking questions.

These acknowledgments would not be complete without a special thanks tomy old-time best friends
from high school (sorted in alphabetically ascending order using the first name as a key) Bartek, Dawid,
Karol, Konrad, Szymon, Tomasz, Wiktor. I hope that we stay together regardless of the distance that
may separate us.

I also wish to thank Łukasz Fulek for many discussions about physics, programming, and life in gen-
eral.

This is eventually time to thank my fiancée Kasia, for sharing your life with me and for making each
every minute we spend together a very special moment.

Ostatni paragraf w tej sekcji podziękowań chciałbym dedykować mojej Mamie. Zdaję sobię sprawę,
że nie jestem w stanie słowmi określić swojej wdzięczności za wszystko, co od Ciebie otrzymałem.
Pomimo, że dzielą nas duże odległości jesteś zawsze przy mnie, kiedy potrzebuję pomocy albo po-

xi



rady. W szczególności jestem wdzięczny za danie mi możliwości podejmowania oraz ponoszenia kon-
sekwencji samodzielnych wyborów.

xii



Contents

1 The LHCb Experiment and its Upgrade 8
1.1 CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 LHCb detrctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 LHCb tracking sub-system . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 LHCb trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.4 LHCb software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 LHCb upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.2 General aspects of the LHCb Upgrade . . . . . . . . . . . . . . . . . . . . 30
1.4.3 Upgraded Velo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.4 Scintillating Fibre Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Upstream Tacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6 SALT ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Physics behind the LHCb experiment 39
2.1 Symmetries in physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Standard Model of elementary particles . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Weak interactions and CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Neutral Meson Mixing and CP violation . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Baryon Asymmetry of the Universe and Sakharov conditions . . . . . . . . . . . . . 50

3 Principles of Machine Learning 52
3.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Classification metrics overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 k-Nearest Neighbors classifier . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 XGboost Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1



3.3.4 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.5 Universal Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . 78
3.3.6 Hyper-parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.7 Model interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 bonsai Boosted Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Machine learning based algorithm for long-lived particles reconstruction
in LHCb 93
4.1 Track reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 The LHCb track types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Downstream Tracking Algorithm overview . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Downstream Track model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Propagation through the magnetic field . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Determination of the momentum . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.3 Track model in the TT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5.1 T-seeds reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5.2 Search for compatible hits . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.3 Search for hits in x layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.4 Search for hits in the u layer . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.5 Search for hits in the v layer . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.6 Calculation of χ2 and outlier removal . . . . . . . . . . . . . . . . . . . . . 106
4.5.7 Accepting the candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.8 Addition of overlap hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Selection of T tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.1 T-seed classifier: Data Collection . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 T-seed classifier Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 109
4.8 T-Seed classifier: baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.8.1 k-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 T-Seed classifier: study based on XGBoost model . . . . . . . . . . . . . . . . . . . 114
4.10 T-Seed classifier as a bonsai Boosted Decision Tree . . . . . . . . . . . . . . . . . . 117
4.11 T-Seed classifier: studies based on the deep neural networks . . . . . . . . . . . . . 119
4.12 T-Seed classifier: model output interpretation . . . . . . . . . . . . . . . . . . . . . 123
4.13 Final machine learning model to select the best downstream track candidates . . . . . 129
4.14 Physics Performance of the modernised downstream tracking . . . . . . . . . . . . . 132

4.14.1 Monte Carlo based Downstream Tracking efficiency . . . . . . . . . . . . . 132
4.14.2 Comparison between Long-Lived Tracking algorithm and its predecessor . . 143
4.14.3 Performance measured using collision data . . . . . . . . . . . . . . . . . . 145
4.14.4 Tuning of the Downstream tracking algorithm . . . . . . . . . . . . . . . . 150

2



4.14.5 Processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.15 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.15.1 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.15.2 Focal loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.15.3 Workflow Management System . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Emulation and Monitoring of the Upstream Tracker RAW data 157
5.1 Interaction of Particles with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2 Operational principles of silicon detectors . . . . . . . . . . . . . . . . . . . . . . . 159
5.3 TbUT Emulation Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.1 Pedestal Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.3.2 Common mode subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.3.3 Cluster finding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 UT testbeam analysis - measurement of the charge sharing in planar silicon
sensors 173
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.1.1 The beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1.2 Timepix3 telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1.3 Read-out electronic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2 Testbeam studies and the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3 Cross-talk correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4 Charge sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7 Summary and Outlook 186

References 197

3



Success is to be measured not so much by the position that one
has reached in life as by the obstacles which he has overcome
while trying to succeed.

Booker T. Washington

Preface

Dear Reader!
I am glad you are reading this dissertation.
Writing the thesis is not an easy task. I have to summarize six years of my professional life into about

two hundred pages, so let me start by presenting my PhD project scope. Be aware that the preface sec-
tion contains several expressions that are not explicitly explained. However, the remained of this thesis
assures you will find a detailed discussion on most of them. I put a lot of effort into making this thesis
as clear and understandable as possible.

All ofmy activities during the doctoral studies were related to one of four biggest, currently operating
experiments at The European Organization for Nuclear Research CERN (fr. Organisation européenne
pour la recherche nucléaire). It is called LHCb, and it stands for the Large Hadron Collider beauty
experiment. The most vital tool that is at the disposal of the LHCb collaboration is the LHCb spec-
trometer, shown in Figure 0.0.1. Since there is not much to see besides the supporting steel structures,
I also added a schematic cross-section of the experimental setup in Figure 0.0.2. All major components,
also called sub-detectors, are described in Chapter 1.

From the physics point of view, the LHCb physics program is primarily focused on studyingCP vio-
lation, and rare phenomena in B (beauty) andC (charm)meson decays and searching for New Physics.
Chapter 2 is dedicated to providing a brief description of the physics behind the LHCb experiment.
The high-quality physics results obtained during the LHC Run 1 and Run 2, proved excellent perfor-
mance of the detector. The list of outstanding physics results published by the LHCb Collaboration is
extraordinary. For instance, LHCb collaboration was able to measure the very rare processes, such as
B0 → μμ, occurring for once for every ten billion B0 mesons [90] and the very first measurement of
pentaquark state [51].

Until now, no physics phenomena beyond the Standard Model’s prediction have been found. No
new heavy particle was discovered, apart from the Higgs boson, and the precision measurements may
be the only way to detect the new effects at LHC. However, to study such processes, the collection of
a significant amount of data is vital. Unfortunately, the data collection rate is limited by the current
detector design, in particular, by the throughput of the trigger system, which is described in section
1.3.3. The LHCb detector is undergoing a major upgrade to overcome this limitation. The crucial part
of theUpgrade project is the replacement of the entire readout system, which is currently limited by the
hardware Level-0 trigger. In consequence, the high-level trigger (HLT) can only process data at a rate

4



equal to 1.1 MHz. The new upgraded system will allow the full event readout at the LHC clock rate
(40 MHz). The machine bunch structure will be chosen in that way that the crossing rate at the LHCb
collision point will occur with the frequency of 30 MHz, and the HLT system will process each event
in real-time.

This goal can be achieved by replacing both read-out electronics and sensitive elements of the de-
tectors. One of the most challenging parts of the Upgrade is research and development related to the
design and test of the new tracking detector called Upstream Tracker. This silicon micro-strip detector
will be placed just before the bending magnet, and it is supposed to replace the current TT tracker. The
detailed description of the UT detector can found in section 1.5. The replacement of the current TT
detector is motivated by three facts. First of all, theTTdesign doesn’t allow the survival of the expected
radiation dose deposited under the upgrade data-taking conditions, particularly in the inner, close to
the proton-beam region. Secondly, the current sensor’s granularity could lead to unacceptably high oc-
cupancy. Finally, the front-end Beetle chip, which is an essential part of the read-out system, cannot
process the raw data at the beam crossing rate (40 MHz). What makes the situation worse is that the
front-end hybrids, which were designed to support the Beetle chip, are part of the mechanical structure
of the detector and cannot be replaced without damaging them. Besides, the new detector is designed
to improve the LHCb acceptance.

I was personally involved in the activities connected to the testing and verification of the UT sili-
con sensors. I participated in the number of the testbeam experiments, I designed and implemented a
complete emulation platform for the raw data processing and data analysis.

The testbeam experiments play a vital role in the newdetector R’&D’ process. It is crucial to quantify

Figure 0.0.1: View of the detector LHCb. The image was taken from the CERN public website.
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Figure 0.0.2: The layout of the LHCb detector, viewed from the side. The LHCb detector com-
ponents from left to right: proton-proton interaction point, Vertex Locator Velo, Ring Imaging
Cherenkov detector one (RICH1), TT, Magnet, T stations, RICH2, electromagnetic and hadronic
calorimeter (ECAL and HCAL), and muon stations. Figure taken from [17].

the performance of the various sensors that have been subjected to themaximal radiation dose expected
for a given sensor during the whole lifetime of the UT detector. Furthermore, the testbeams provide
realistic test-beds to confirm the expected performance of the entire data read-out chain, including the
front-end ASICs. During the testbeams, we collected the data, which allowed us to study, for instance,
Landau distribution as a function of the bias voltage, cluster sizes versus bias voltage, and resolution vs
angle. All of the mentioned studies were performed for both irradiated and unirradiated sensors. The
detailed description of the testbeam data analysis is a topic of Chapter 6.

Before we could analyze the testbeam data, we had to design and develop software for raw data pro-
cessing. I was the leading developer and the one who was responsible for software maintenance. Its
flexible design allows the process of data collected by the various DAQ electronics during the entire R’
&D’ phase. The detailed description of the mentioned framework is a subject of Chapter 5. Further-
more, the software will be used to monitor the performance of the data collected during the entire UT
detector’s life. It will be a crucial part of the future platform to detector calibration.

Moreover, as a member of the LHCb collaboration, I was involved in an improvement of the Down-
streamTracking algorithmusing the computational intelligence approach. Youwill find amore detailed
description of the tracking algorithm in Chapter 4. Briefly, the tracking is a procedure that is designed
to reconstruct the trajectory of the particles that were created as a result of the proton-proton collisions
using nothingmore but the electronics signals provided by the position-sensitive detectors. The recon-
struction algorithm is executed as a part of a real-time system, namely trigger procedure. Therefore its
time budget is minimal. However, due to the number of particles created during each beam crossing,
the previous implementation of the tracking procedures often made mistakes. Those mistakes corre-
spond to reconstructions of the fake, also called the ghost tracks. To avoid such a situation, we decided
to leverage Machine Learning and Deep Learning techniques. I enhanced the tracking procedure by
adding the Machine Learning classifier, which was trained to distinguish whether the partially recon-
structed track is true or not. As far as I know, the LHCb is the only one currently operating a High En-
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ergy Physics experiment, whichmakes use of advancedMachine Learningmodels as a part of the online
trigger. During the development, I familiarized myself with the concept of building the entire Machine
Learning pipeline using open-source tools like sklearn, XGBoost, and PyTorch. Such technologies are
widely used in both academia and industry. If you want to know more about Machine Learning and
the procedure, how to build and deploy the model, please take some time to read the second part of
Chapter 3.

I hope you enjoy reading this thesis.

7



In that sense, this new knowledge has all to do with honor and
country, but it has nothing to do directly with defending our
country except to help make it worth defending.

Robert R. Wilson during the Congressional Testimony
on building Fermilab’s first accelerator

1
TheLHCbExperiment and its Upgrade

This chapter is split into two parts, and the first one is dedicated to present a detailed description of
the LHCb detector that was deployed during both Run I and Run II. This part starts by presenting
the CERN (The European Organization for Nuclear Research). Then a basic understanding of how
the LHC ( Large Hadron Collider) works is explained. The mentioned section is followed by a
description of the LHCb detector, which consists of a paragraph dedicated to each sub-detectors. The
final section discusses the LHCb Upgrade by presenting its motivation and summarizing all changes
that have been planned.

1.1 CERN

The European Organization for Nuclear Research CERN is the world’s largest scientific organization
in the field of High Energy Physics. It was established in 1954 by twelve western European countries
to create one of the very first European joint ventures. Currently, the CERN associate 22 members
state, including Poland. The Institution is based on the Swiss-France border very close to Geneva. The
CERN’s primary focus is to design and construct instruments to study the fundamental building blocks
of matter and its interactions.

1.2 LargeHadronCollider

TheLargeHadronCollider (LHC) is theworld’s largest circular particle accelerator. It is installed in the
26.7 km long tunnel that was constructed for the previous experiment, Large Electron Positon Collider
(LEP) [80]. The tunnel is situated about 100 m below the ground. The LHC is designed to accelerate

8



Figure 1.2.1: The LHC accelerator complex showing all accelerator facilities and the four main
experiments, denoted by a yellow dots. The North Area is the location where all testbeam data
were collected, see chapter 6. Figure taken from [95]

the protons and heavy ions. At the nominal performance, the LHC delivers the two protons beams
of energy 6.5 TeV. This corresponds to the center-of-mass collision energy of 13 TeV. To achieve this
performance, the particle acceleration is done by a series of accelerators. Each of them progressively
boosts the energy of the beam. Figure 1.2.1 shows the LHC accelerator complex.

The entire boosting process starts from the small red bottle full of hydrogen. It is shown in Fig-
ure 1.2.2. This bottle is the only and sufficient proton source for the entire, massive LHC acceleration
system. This shows how sophisticated and resource-efficient LHC is. Then, the hydrogen atoms are
ionized by the external electric field to yield the protons. These particles are injected into the Liniac2,
the first linear accelerator in the chain, to boost its energy to the 50MeV. After that, the beam is inserted
into theProtonSynchrotronBooster, followedby theProtonSynchrotron (PS),which pushes the beam
to the energy of 25 GeV. The next step in the acceleration sequence is performed by the Super Proton
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Figure 1.2.2: The LHC proton source

Synchrotron (SPS). It accelerates the beam to the energy of 450 GeV. 1

The protons are finally injected into two beam pipes of the LHC. The beam in one pipe circulates
clockwise while the beam in the second pipe circulates anticlockwise. It takes 4minutes and 20 seconds
to fill each LHC ring, and 20 minutes for the protons to reach their maximum energy of 6.5 TeV. The
two beams interact inside four detectors – ALICE [53], ATLAS [52], CMS [44], and LHCb.

One of the key parameters that describe a particle accelerator (note, that we consider here the cir-
cular machine), except for beam energy, is the quantity called instantaneous luminosity. This quantity
expresses the ability to produce the required number of interactions by an accelerator, and formally it is
the proportionality factor between the number of events per second (also called the event rate) dN

dt and
the interaction cross-section σ:

dN
dt

= L× σ (1.1)

The unit of the luminosity is cm−2s−1. In practice, the integrated luminosityLint is often used. Based on
this quantity, one can estimate the number of expected events for a given process.

The relationship between the luminosity and the beam parameters for a circular machine, assuming
that the beamprofile is distributed according to theGaussian distribution, and there is negligible energy
loss during the bunch-bunch collisions is given by:

L =
N2

b · nb · frev · γr
4π · εn · β∗

· F (1.2)

whereNb is the number of particles per bunch, nb the number of bunches per beam, frev is the revolu-
tion frequency, γr is the relativistic gamma factor, εn the normalized transverse beam emittance, β∗ the
beta function at the collision point, and F the geometric luminosity reduction factor which originates
from the crossing angle at the interaction point.

TheLHCwas built to deliver a peak luminosity of 1034cm−2s−1 by colliding 2808bunches containing

1The beam form SPS was used during the testbeam experiments, which is the topic of Chapter 6.
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Figure 1.2.3: The integrated luminosity delivered to LHC experiments

approximately 1.1 · 1011 protons per bunch with the bunch crossing rate of 40MHz (also called the
machine clock). For more details on the LHC machine, see [62].

Figure 1.2.3 presents the integrated luminosity delivered to each of the LHC experiments. It is vis-
ible that LHCb operates at a significantly lower luminosity level that the remaining general-purpose
experiments. The LHCb detector was designed to operate at a luminosity of 2 · 1032cm−2s−1, which
is about two orders of magnitude less than the luminosity delivered to ATLAS and CMS experiments.
This is done by purpose since the LHCb experiment focuses primarily on precision, indirect measure-
ments. Operating at a lower luminosity produces fewer interactions, or primary vertices (PVs), per
bunch crossing. An increasing number of PVs produce complications in physics analysis, such as tracks
being identified coming from the wrong PV. Moreover, operating at lower luminosities induces less ra-
diation damage in the detectors operating very close to the proton beam. The LHCb collaboration im-
plemented the luminosity levelling technique, described in [64], to meet the occupancy requirement.

1.3 LHCb detrctor

The heart of the LHCb experiment is its detector. It was built to produce proton-proton collisions at a
centre-of-mass energy of

√
s =14 TeV. It is located in the cavern that previously was used to host the

LEP’s experiment Delphi [42]. The unique feature of the LHCb detector is its design. It is significantly
different from other general-purpose detectors like ATLAS or CMS, which look like multi-layer barrels
surrounding the collisionpoint (so-called4π geometry). On the contrary, theLHCb is a forward single-
arm spectrometer, that was designed to cover the pseudorapidity range of 2 < η < 5 [17]. The
pseudorapidity is a spatial coordinate describing the angle of a particle relative to the beam axis. The
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pseudorapidity can be calculated from the following formula:

η = − ln
[
tan
(
θ
2

)]
=

1
2
ln
(
|⃗p|+ pt
|⃗p| − pt

)
where θ is the angle between a particle’s three-momentum p⃗ and the positive direction of the beam

axis. The pt (transverse momentum) is a component of the p⃗ transverse to the beamline. Equation 1.3
allows finding the relationship between the parameter η and the angle θ. When the angle θ gets smaller,
then the η rises.

The choice of such layout was motivated by the LHCb physics programme, particularly the angular
distribution of the bb pairs produced by proton-proton interactions at the LHC energies, fly predom-
inantly into the forward and backward cones (see Figure 1.3.1). LHCb geometrical coverage corre-
sponds to only 4% of whole solid angle, but it can detect approximately 25% of all produced beauty
hadrons.

Figure 1.3.1: Production of bb quarks at LHC at 14 TeV. The left plot presents the production of
the bb quarks as a function of polar angle θ. The right plot shows the same distribution as a func-
tion of the rapidity of each quark. The pseudorapidity region inside a yellow square corresponds to
the acceptance region of the ATLAS and CMS detectors, while the red box highlights the accep-
tance region of LHCb. Figure taken from [61].

The LHCb, like all of the currently operating High Energy Physics experiments, consists of several
sub-detectors, each of which was carefully designed to provide highly efficient system, capable of de-
tecting physics phenomena beyond the Standard Model (BSM). To correctly identify and reconstruct
the decays and their kinematical properties, the LHCb detector needs to provide an excellent vertex
reconstruction precision, momentum resolution, and particle identification. The following section is
dedicated to describing each of the sub-systems.
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1.3.1 LHCb tracking sub-system

The tracking system was designed to reconstruct the trajectory of charged particles by combining in-
formation from a set of tracking stations. The reconstructed track information is used to estimate the
momentum of the charged particles. This estimation is possible due to the magnet’s installation, which
creates a magnetic field used to bend a particle trajectory. The LHCb tracking system is composed of
the Vertex Locator (Velo), the Tracker Turicensis (TT), and the three tracking stations T1, T2, and T3;
see Figure 0.0.2. The brief description of each tracking sub-detectors is a topic of this subsection.

1.3.1.1 Velo

The Vertex Locator (Velo) [21] is a silicon strip detector that is located close to the proton-proton col-
lision point, and it is dedicated to providing precise measurements of the position of the primary and
secondary vertices 2, which are essential to identify b and c hadrons, which typically traverse about 1 cm
at LHCb. The Velo active area is just about 8 mm away from the beamline, which is the world record.
Additionally, the Velo allows measuring the Impact Parameter of charged particle’s trajectories. Impact
Parameter is a transverse distance of closest approach between a particle trajectory and a vertex, most
commonly the primary proton-proton interaction vertex, see Figure 1.3.2. The Impact Parameter is
widely used in many LHCb data analysis to make a selection that significantly reduces the contamina-
tion from the light-quark backgrounds.

Figure 1.3.2: Graphical interpretation of the Impact Parameter (denoted in red). Figure presents
a topology of the K0

S decaying to two pions.

The Velo detector is comprised of twenty-one silicon tracking stations positioned along the beam
axis (z-axis). Each of the tracking stations is divided into two retractable halves, called modules, each

2The secondary vertex is a point of decay of short-lived particles, which was created in the primary interactions.
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consisting of two silicon microstrip sensors. Figure 1.3.3 presents the layout of the Velo detector. All
Velo sensors operate in the vacuum. The Velo vacuum is separated from the beam vacuum by a thin
aluminium layer called RF foil.

Figure 1.3.3: The layout of the Velo detector. The top picture presents the Velo setup seen from
the top, indicating the overlap between the left and right detector’s halves. The bottom figure is
a cross-section of the Velo at x = 0. The black lines indicate the maximum and minimum angular
coverage of the Velo and the average angle of the tracks. The figure was taken from [21].

The first type of the Velo sensor is called R-type, and it is dedicated to measuring r-coordinate, i.e.,
the distance from the proton beam, thus, the strips have a semi-circular shape. The R-type sensors are
divided into four sectors in the azimuthal angle to improve the pattern recognition phase of the track
reconstruction. The strip pitch 3 increases from 38μm at the innermost region to 102μm at the far edge.
The ϕ-type sensor is, in turn, divided into two regions, inner and outer, with different pitches to cope
with high occupancies. The respective strip topologies are presented in Figure 1.3.4. Both R and ϕ sen-
sors have a thickness of 300 μm. TheVelo sensors and read-out electronics are cooled by the evaporated
CO2 system. This system keeps the sensors approximately at the temperature of−8◦C during data tak-
ing.

The read-out of the data is performed by the Beetle front-end ASIC4 [102]. These chips are placed
on the outer edge of the sensor, see Figure 1.3.5. TheBeetle chip integrates 128 channels with low-noise
charge-sensitive preamplifiers and shapers, an analogue pipelined memory, and a multiplexer.

Theprimary vertex spatial resolutionof about13 μm in the transverse plane and close70 μm along the
3Pitch is a distance between the centres of two adjacent strip implants
4ASIC stands from Application-specific integrated circuit
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Figure 1.3.4: Geometry of the Velo R and ϕ sensors, with only a small portion of strips visible for
clarity (left). Figure was taken from [17].

z axis allows for very precise decay-timemeasurements that are vital for the LHCb physics programme.
The dependence of the primary vertex resolution versus number of tracks obtained using 2012 calibra-
tion data is shown in Figure 1.3.6. The resolution of the Impact Parameter, critical for detecting the
displaced secondary heavy-flavour decay vertices, depends on multiple scattering, primary vertex reso-
lution and single-hit resolution can be expressed as a function of transverse momentum pt [113]:

σIP =
(
11.5+

24.5
pt[GeV/c2]

)
(1.3)

1.3.1.2 Silicon Tracker

SiliconTracker [28] sub-systemconsists of twodetectors basedon similar technology; theTT(Tracking
Turicensis), upstream to themagnet, while the IT (Inner Tracker) is a part of the tracking stations (T1,
T2, T3, see Figure 0.0.2) located downstream to the magnet.

The primary purpose of the TT detector is to reconstruct low-momentum tracks and decays of the
long-lived particles, which decay outside of the Velo. The IT detector reconstructs tracks with momen-
tum larger than 1.5GeV/c, near the beam axis, that passed through the magnetic field. It covers approx-
imately 2% of the T stations acceptance, which corresponds to 20% of all tracks that pass through this
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Figure 1.3.5: The photo of a Velo module with 16 readout Beetle chips (right). Figure taken
from [17].

detector. On the other hand, TT is designed to cover the full LHCb acceptance region.

Both TT stations (TTa and TTb) are composed of two measuring planes capable of providing a 3d
space point for each particle hit. By convention, the sensitive planes are denoted as
(TTaX,TTaU,TTbV,TTbX). The X coordinate is measured in the direction perpendicular to the di-
rection of TT sensor vertical strips. Coordinates U and V are identical to the X but tilted by −5◦ and
5◦ respectively (see Figure 1.3.7). The distance between the two adjacent layers within each station
is about 4 cm, and the distance between the TTa and TTb stations is 27 cm. The TT silicon sensors
(p-on-n) are 500μm thick with a constant strip pitch of 183μm.

One of the quantities that can be used to determine ST performance is the hit efficiency, which can
be expressed as a ratio between the number of measured hits to the number of hits expected in a given
region. This ratio was measured to be 99.7% for TT and 99.8% for the IT. This measurement was per-
formed on the data collected during Run 1. Another important metric to determine ST performance is
the hit spatial resolution. For 2012 the hit resolutionwasmeasured to be 53.4μm for theTTand 54.9μm
for IT.

1.3.1.3 Outer Tracker

The Outer Tracker (OT) [20] is a complementary element to the IT detector, designed to cover the
remaining LHCb acceptance region. Each of the OT modules is made of drift-time straw tubes filled
with a gas mixture of 70% of Argon and 30% of CO2. The Drift-time detector reconstructs the hit po-
sition by measuring the drift time of the ionization electron to the anode located at the centre of the
tube. The distance between the wire and the particle’s trajectory is determined by comparing the drift
time with bunch crossing signals. The ionization electron is created when a charged particle interacts
with a gas. OT achieves drift time less than 50ns, which allows reconstructing hits with a spatial resolu-
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Figure 1.3.6: Primary vertex resolution as a function of a track multiplicity. The blue curve cor-
responds to x coordinate of the Primary Vertex, and the red one to the y coordinate. The gray
histogram presents the number of tracks per reconstructed primary vertex. Presented results were
obtained using 2012 calibration data with only one reconstructed primary vertex in the event. Fig-
ure taken from [113]

tion of 200μm. OT has a consistent layout of the IT detector, which means it also has four modules in
(X,U,V,X) orientation, which is shown in Figure 1.3.8.

1.3.1.4 Magnet

The LHCb Magnet plays a crucial role within the experiment. It bends the trajectory of the charged
particles allowing to estimate its momentum. LHCb detector is equipped with a single warm dipole
magnet. The magnet is situated between TT and T tracking stations. Figure 1.3.9 shows a photography
of theMagnet. It is composed of two identical saddle-shaped coils. These coils are placed inside an iron
yoke, that is compatible with the acceptance of the LHCb detector. The coils are made of AI-99.7 alloy
with a 25 mm diameter central channel for water cooling.

The estimated momentum resolution depends on the proper measurement of the magnetic field.
Therefore, a careful procedure to measure the magnetic field was conducted. As the outcome, the pre-
cision of the measurement of the magnetic field is quoted to be 4 · 10%−4δB/B, and the maximal
magnitude is 1.04 T, which is shown in Figure 1.3.9.

The systematic errors related to the track reconstructionprocedure, which canplay a dominant role in
the precisemeasurement ofCP asymmetries, can be decreased by operating themagnet at twopolarities
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Figure 1.3.7: The layout of the TT station (left) and the schematic view of the whole ST system
(plotted in magenta), the cartoon of the woman is shown to indicate the size of each detectors
(right). Figure taken from [17].

(positive and negative curves in Figure 1.3.9). The amount of data collected is approximately equal for
both polarities, and this split can be used to cross-check systematic reconstruction effects.

Figure 1.3.8: Schematic view of the OT stations. Figure (a) presents the cross-section of a sin-
gle OT module, all distances are given in mm, and the arrangement of OT modules in layers and
stations around the beam pipe (b). Figure taken from [17].
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Figure 1.3.9: A photo of the LHCb Magnet taken after its completion in 2004 is shown on the
left-hand side. The picture was taken towards the direction of the Velo detector before other sub-
detector have been installed, the visible parts are coils (yellowish) and yoke (reddish). Magnetic
field profile as a function of the z axis (direction along the beam pipe) is plotted on the right-hand
side. The red dashed lines correspond to the location of the tracking sub-detectors (right). Figure
taken from [17].

1.3.2 Particle identification

Particle identification (PID) is a vital step in anyphysics analysis. For instance, the ability to significantly
reduce the background often relies on the correct separation of kaons and protons from pions. The
LHCbPID system is complex and comprises of two ring-imagingCherenkovdetectors (RICH), a series
of muon chambers, and a calorimeter system (ECAL and HCAL), see Figure 0.0.2.

The combined information from these sub-detectors allows distinguishing between various types of
charged and neutral particles. Identification of the charged particles can be enhanced using tracking in-
formation. Calorimeters, apart from measuring the energy, can also provide information regarding the
particle type for electrons, photons and hadrons. The muon system provides identification of muons
with a high purity that is necessary for all CP-sensitive decay processes. Ability to distinguish pions
and kaons/protons with high efficiency is done using the RICH detectors and is critical for the purely
hadronic decays. It is important to note that for LHCb experiment the performance of the PID re-
construction is measured using data-driven techniques since the simulation poorly reproduces the PID
variables. At themoment, twomutually exclusive approaches are used where simple low-level variables
measured by respective sub-detectors are combined to provide more powerful selection variables. The
first method, calledDLLX,π , relies on a linear combination of likelihood information produced by each
detector which is then added to form the combined likelihood ratio (or difference of log-likelihoods)
between particle X (where X ∈ K, p, μ, e) and pion hypothesis. So, the general idea of applying the
DLLX,π method is to evaluate log-likelihood difference between a given particle X and a pion hypothe-
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sis as follow:

ΔlogLX,π = logLX − logLπ (1.4)

Where: LX andLπ represents log-likelihoods for particle X and a π. The classification is performed by
simply comparing the DLLX,π to a tuned threshold. When the DLLX,π is greater than this threshold, it
means that the particle is likely not to be a pion.

To enhance the PID performance the LHCb collaboration decided to apply also the multivariate
analysis [59]. Themodel, called ProbNNX, that was proposed and deployed is a fully-connected neural
network (that kind of model is described in section 3.3.4) with one hidden-layer implemented using
the TMVA package [83]. In order to produce the ProbNNX output the tracking information, such as
track momentum and pseudo-rapidity, is also used. In the end the output of the model is employed
to distinguish a given particle specie X from any other (i.e., a multi class classification problem). Ad-
ditional models are trained to identify neutral particles as well. In particular two models isNotE and
isNotH are trained to separate photons from electrons and hadrons respectively. These baseline models
proved that the application of Machine Learning could significantly improve the performance of Parti-
cle identification. Figure 1.3.10 shows performance comparisons using ROC curves 5 determined for
respective models.

Figure 1.3.10: Background misidentification rates versus muon (left) and proton (right) identifi-
cation efficiency. The variables ΔL(Xπ) (black) and ProbNN (red), are compared for 5 − 10 GeVc
muons and 5 − 50 GeVc protons, using data sidebands for backgrounds and simulated samples for
the signal. The data sample used corresponds to 2012 sample collected at center-of-mass energy 8
GeV. Figure adapted from [59]

Theoverall Particle Identificationperformance canbe summarizeusing the followingfiguresofmerit:

• Electrons: 90% identification efficiency with about 5% electron to hadron missidentification
probability.

• Kaons: identification efficiency averaged over the momentum range of
2− 100GeV/c is 95%with a nearly 5% pion to kaon missidentification rate.

5For a formal definition of ROC curve see section 3.2.0.2
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• Muon: 97% identification efficiency with pion tomuonmissidentification rate in between 1 and
3%.

The remainder of this section is dedicated to present each component of the Particle Identification
system.

1.3.2.1 RICH detector

The most critical component of the Particle Identification system is the Ring Imaging Cherenkov de-
tector (RICH). LHCb has two of these detectors installed [13]. The first one, called RICH1, is placed
just before TT detector and the second one (RICH2) after T stations, see 0.0.2. These detectors were
designed to identify charged hadronic particles over a large momentum range of 2 − 100 GeV/c. To
accomplish this task, RICH1 was filled C4F10 gas radiator, which provides sensitivity for particles with
momentum in range 2−10GeV/c (low-momentumparticles) including those that are swept out of the
detector acceptance by the magnetic field. In contrast, RICH2 is filled with CF4, which can be used to
cover the momentum range of 15 − 100 GeV/c. The geometry of both RICH1 and RICH2 detectors
are presented in Figures 1.3.11 and 1.3.12, respectively.

Figure 1.3.11: Geometry of the low momentum RICH detector (left), photo of the RICH1 detec-
tor (right). Figures taken from [17]

The fundamental principle of operation of the RICH detector is to measure Cherenkov radiation
emittedwhen a chargedparticle traverses its active volume. Cherenkov radiation is always emittedwhen
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Figure 1.3.12: Geometry of the high momentum RICH detector (left), photo of the RICH2 detec-
tor (right). Figures taken from [17]

a charged particlemoves through amediumat the velocity higher than the speed of light at thismedium.
The angle at which the Cherenkov photons are emitted (θc) depends directly on the particle velocity,
and it is expressed by

cosθc =
1
nβ

(1.5)

Where: β is the velocity of the particle divided by the speed of light,
and n = c

vmedium
is the refractive index.

Once emitted, Cherenkov radiation is reflected via a combination of spherical and flat mirrors to
hybrid photondetectors (HPD).TheHPDhas a photocathode that emits electronswhen excited by the
Cherenkov radiation. Electrons are accelerated by a potential of about 20kV towards a silicon detector,
which allows identifying the location of the hit. The performance, quantified using the identification
efficiency is shown in Figure 1.3.13.

1.3.2.2 Muon Stations

The proper muon identification is an essential requirement because muons are the final decay states of
some of the most important heavy flavor decays such as B0

s → J/ψ μ+μ−, B0
s → K∗0 μ+μ− and they

can be used as an initial flavor tag for measurements of B0 and B0
s oscillations.

The muon system provides muon identification as a log-likelihood variable, which depends on the
track momentum and the number of hits detected in muon stations and how close the hits are with
respect to the extrapolated track position in the muon system. It also provides such information as
x, y position in the muon station, which can be used for standalone-track reconstruction and finally pT
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Figure 1.3.13: Kaon identification efficiency and pion misidentification rate measured using sim-
ulated events as a function of track momentum. Two different ΔlogL(Kπ) requirements (often
called tight and loose) have been imposed on the samples (left), reconstructed Cherenkov angle
as a function of track momentum in the C4F10 radiator (right). Figures taken from [13]

information used by the L0 trigger system. More details refer to section 1.3.3. Because the information
from the muon stations is used in the hardware part of the LHCb trigger system, it is read out at the
frequency of 40Mhz (which is the LHC machine clock).

Muon stations are located the farthest from the interaction point. The placement of these detectors is
dictated by the fact thatmuons interact veryweaklywith thematerial, have a highmasses (105MeV/c2),
and long lifetime (2.2 · 10−6s) thus muons travels much farther than any other charged particles.

The muon system is composed of five stations, one situated just before the calorimeters and four
downstream from them. Each of the stations is composed of two types of detectors. The first one is
a multiwire proportional chamber located far from the beam pipe, and triple gas electron multiplier
(GEM) detectors 6 placed in central quadrants close to the beam. Those detector use gas mixture con-
sisting of Ar, CO2 and CF4. A cartoon of the muon station is shown in Figure 1.3.14. The efficiency of
themuon identification is, on average, above 98%with pion and kaonmisidentification rate below 1%,
which is shown in Figure 1.3.15.

1.3.2.3 Calorimeters

The calorimeter system performs several functions. It is responsible for providing fast information for
the hardware trigger level and allows identification of electrons, photons, and hadrons, jointly with a
measurement of their energies and transverse positions.

The calorimeter system is designed to measure the energy of an interacting particle. This is achieved
via measuring the energy of secondary electromagnetic and hadronic showers, which are created when
a particle travels through the very dense absorber material (i.e., the material with a very low radiation
length). The signal is formed using scintillator detectors (see text below). The measured energy is the
total energy of all showers absorbed in the active materials, thus corresponds to the initial energy of the

6GEM detector is used due to the higher particle flux
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Figure 1.3.14: Side view of the muon detector (left) and a photo of M5 station. Figures taken
from [17].

initial particle.

The calorimeter system consists of an Electromagnetic Calorimeter (ECAL) and Hadron Calorime-
ter. Both are placed between the first and second muon stations, see 0.0.2. ECAL subdetector is dedi-
cated to identifying photons and electrons. It is equipped with two additional detectors, placed in front
of it, a PreShower detector (PS) and a Scintillator Pad Detector (SPD), the layout and granularity of
both are presented in Figure 1.3.16.

PS and the SPD are used by the low-level trigger to distinguish electrons from photons and pions.
The information about the number of tracks per event obtained by SPD is also used by the trigger to
drop events that are too busy. The ECAL is made of 2 mm lead plates followed by a 4 mm scintillator
pad (shashlik like layout). Its granularity depends on the distance from the beam, see Figure 1.3.16. The
energy resolution of the ECAL detector can be expressed:

σE
E

=
10%√
E/GeV

⊕ 1% (1.6)

where: ⊕ denote addition in quadrature which can be formulated as:

Δa⊕ Δb =
√
Δa2 + Δb2 (1.7)

The HCAL has an alternating structure of iron and scintillator tiles. The scintillator tiles are 4 mm
tick and the iron ones are 16 mm. The HCAL energy resolution, obtained from the testbeam data can
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Figure 1.3.15: Muon identification efficiency as a function of momentum, for different require-
ments on the number of hits. Figure taken from [22].

Figure 1.3.16: Granularity for the different detector regions of the SPD, PS, and ECAL (left) and
of the HCAL (right). Figure taken from [17].

be expressed as:

σE
E

=
(69± 5)%√

E
⊕ (9± 2)% (1.8)

1.3.3 LHCb trigger

LHCb trigger is an example of the real-time system dedicated to compressing the input data stream.
The raw data volume is far beyond the limit of the present storage technology, thus the necessity of
employing such a system. The fundamental idea behind the large detector’s trigger is to work out a
decision whether a given event is interesting, from the point of view of the physics programme, or not.
The LHCb trigger was designed to reduce the data rate from the initial bunch crossing rate of 40 MHz
(i.e., one collision event each 25 ns) to about 12.5kHz of fully reconstructed events to be recorded on
tapes. The data rate reduction is achieved bymaking a fast decision based on approximatemeasurement
of particle transverse momentum and energy, muon identification, track displacement, and topological
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properties, which allows selecting some specific decays.
The LHCb trigger is built as a two-stage system. The first one, called Level-0 trigger (or L0 for

brevity), is implemented as a hardware layer with the fixed response time of 6 mus. The processing
power is provided by FPGA 7 chips. L0 trigger uses the information from calorimeters and muon sta-
tions to reduce the bunch-crossing rate to 1.1 MHz, which is the maximum input rate of the front-end
ASICs used by other sub-systems. This partial information is then combined and process by dedicated
electronics boards that give a final decision to process a given event further or drop it.

The L0 calorimeter trigger leverage the information from ECAL, HCAL, PS, and SPD detectors. Its
decision ismostly based on transverse energy deposited in a cluster of 2×2 cells (the cells are presented
in Figure 1.3.16) of the same size. The transverse energy, which is rather interesting quantity, is defined
as:

ET =
4∑

i=1

Ei sin θi (1.9)

Where Ei is the energy deposited in the i− th cell, and θi is the angle between the beam axis and the
direction of the particle’s flight path. This quantity is combined with the information on the number of
hits in the PS and SPD to distinguish between hadron, photon and electron candidates.

Events accepted by the L0 trigger are sent to the Event Filter Farm, a computing cluster located at
the LHCb pit, that consisted of approximately 29 000 and 50 000 CPU cores during Run 1 and Run
2 respectively. This computing farm is responsible for running High Level Trigger (HLT) application
instances. TheHLT software is written in C++ and consists of selection algorithms designed to identify
specific decay processes, for instance, b or c hadron decays. The trigger strategy had changed over the
course of years when LHCb detector collected the data. Figure 1.3.17 presents the triggering scheme
for both Run 1 and Run 2.

Implementing the second stageof theLHCbtrigger as a full software applicationhas a great advantage
of theflexibility that plays a paramount role in adapting to changingdata taking conditions. On theother
hand, it also requires constantmonitoring of the trigger configuration, which is a highly non-trivial task.
The machine provided beams that were tuned in the way that the average number of proton-proton
interactions per one beam crossing was 1.6. The data taking periods, when protons were circulating
in the machine, were called fills and they were, in turn, divided in runs. Each run could possibly be
configured individually, taking into account differences in the Data Acquisition system, calibration and
alignment conditions etc.

During the down period between Run 1 and Run 2 (called the Long Shutdown 1) a considerable
amount of work has been done to optimise and improve the HLT software. This led to splitting the
trigger into two logically exclusive parts called HLT1 and HLT2 (see text below for details). It allowed
evaluating the online alignment and calibration, while the events were stored in the disk buffer. The
online calibration procedures were vital for achieving high-quality reconstruction in HLT that is com-

7FPGA stands for Field Programmable Gate Arrays, which are devices based on a matrix of configurable logic blocks.
Their design has a benefit compared to a general-purpose CPU that allows massive parallelism since FPGA programable
blocks can work independently and simultaneously as streaming processors.
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Figure 1.3.17: LHCb trigger data flow during Run 1 (left) and Run 2 (right). Each graph illus-
trate a high-level trigger architecture and a typical event acceptance rate after each stage. Figure
taken from [47].
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parable to the offline one.
Within HLT1 the full detector information is used. The reconstruction process starts with the ver-

tex detector. The track candidates are selected based on the probability that particular track originates
from heavy flavor decay, which is achieved by determining their impact parameter. Selected tracks are
then associated with track segments in the tracking stations, which allows estimation of the transverse
momentum of the corresponding charged particle (so called forward tracking algorithm). This infor-
mation, together with track’s χ2 and impact parameter χ2IP, is used to select interesting events. During
Run 2, a small portion of data selected by HLT1 was used to calibration and alignment of the detec-
tors. This process, which takes a few minutes, is performed to reduce the probability of misalignment
on the tracker. Any misalignment would impact the momentum resolution affecting the quality of re-
construction in HLT2. No particle-identification is available at this stage (apart from a coarse muon
identification). The final output rate of HLT1 is approximately 110 kHz.

The final selections are performed by HLT2 trigger using the full particle identification variables.
HLT2 implements two types of trigger lines that select exclusive and inclusive processes, respectively
. Exclusive algorithms are used to select specific decays. For instance, they required all decay products
to be within the detector acceptance and reconstructed. Inclusive trigger selections, also called topo-
logical lines, trigger on partially-reconstructed b hadrons decays. Those lines are designed to detect all
b hadrons decays with a displaced secondary vertex, and at least two charged particles in the final state.
Theoutput bandwidth is divided into three streams and undergoes constant, carefulmonitoring. About
40%of the total output rate is assigned to inclusive topological selections, another 40% is reserved to ex-
clusive lines targeting the c-hadron decays and the rest is given to other exclusive processes. The quality
of reconstruction in the HLT2 during Run 2 allowed LHCb to implement so-called ”Turbo” lines that
return fully reconstructed analysis-ready data. Additionally, those lines allow saving space by discarding
the raw data, keeping only the relevant information describing reconstructed events.

The trigger efficiency is estimated using the so-called TIS-TOS (Triggered Independent of Signal -
Triggered on Signal) method, described in detail in [137]. TOS events are those where daughter parti-
cles that form a particular decay candidate passed the trigger selection criteria. In the case where other
particles in the event passed the criteria, a given decay candidate is called TIS. Both categories are not
exclusive. When estimating the trigger efficiency, detailed knowledge of which class a given event be-
longs to is very important. It should be stressed that the reconstruction algorithm that is the subject of
this thesis (described in chapter 4) was executed as a part of the HLT2.

1.3.4 LHCb software

In order to produce the Monte Carlo simulated samples (see Figure 1.3.18) and analyze data collected
by the LHCb spectrometer a dedicated software framework has been designed and implemented [54].
Most of the applications were written in C++, and they are based on two frameworks ROOT [34] and
Gaudi [23]. The list below contains a brief description of selected packages:

• Gauss [25] was designed to generate the initial particles and simulates their transport through
the LHCbdetector. TheGauss application consists of twomajor independent processing phases.
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The first one is a generation of the proton-proton interactions (primary vertices), at LHC ener-
gies, that result, in turn, in producing primary particles. This generation process is handled by
PYTHIA [129], a general-purpose event generator, whist the decay and time evolution of the
produced particles is delegated to EventGen [94]. The second phase of Gauss application per-
forms detector response simulation via a customized Geant4 [14] based module.

• Boole [54] performs a final stage of the LHCb detector simulation. It applies the detector re-
sponse to hits previously generated by the Gauss. This step, called digitization, includes simu-
lation of the detector and read-out electronics response, together with L0 trigger hardware in-
formation. The output format of Boole corresponds exactly to the data coming from the real
detector.

• Brunel [54] this package is responsible for the whole process of data reconstruction, which con-
sist of retrieving all recorded hits in a detector, doing the pattern recognition to identify tra-
jectories, finding primary vertices of proton-proton interactions, and assigning PID likelihoods.
Brunel can process both simulated and the real collected by detector data in a completely agnos-
tic way. The outcome of the Brunel consists of the high-level reconstructed objects (e.g tracks
and vertices described in Chapter 4) that are saved in a Data Summary Tape (DST) format.

• DaVinci [54] was designed to process the Brunel output and, based on it, reconstruct decays
of interest and apply selection criteria to reduce the background. The outcome of this step is a
dataset containing decay candidates for the user-specific decay topologies, which are used as a
starting point for further physics analyses.

1.4 LHCb upgrade

This section is divided into three parts. The first one is dedicated to present the general concepts of
why LHCb collaboration decided to upgrade its detector. The second one describes the scope of the
Upgrade by discussing which elements will be replaced. The final subsection focuses on the Upstream
Tracker detector. It provides a very detailed description of this detector since the author was personally
involved in its development.

1.4.1 Motivation

The data collected during both Run 1 and Run 2 allowed to perform and report several World best
measurements of rare decays of b and c hadrons, whichwere used to set new limits onmodels describing
NewPhysics. However, manymeasurements are still limited by the statistical uncertainties. Continuing
data collection at the current rate would not allow us to decrease them to the level compatible with the
theoretical predictions. In order to increase annual data yields, the LHCb detector must undergo a
major upgrade during the Long Shutdown 2 (expected to be finished in early 2022). The changes will
allow the detector to operate at the increased luminosity of 20×1033cm−2s−1, which is five times higher
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Figure 1.3.18: LHCb event simulation flowchart. Each rectangle with a sharp corners represents a
separated LHCb package described in text. Figure taken from [136].

than theprevious one. Thenewdetector is expected to readdata (full detector information) at the bunch
crossing rate of 40 MHz, which allows collecting about 10 fb−1 per year while during both Run 1 and
Run 2, LHCb collected approximately 8 fb−1. Figure 1.4.1 present the luminosity plan. This figure also
presents the prediction of the longer-term future of the LHCb experiment, which is out of the scope of
this thesis.

1.4.2 General aspects of the LHCb Upgrade

One of themain limitations that drive the idea of the LHCbUpgradewas the limitation of the hardware
L0 trigger and the readout electronics (which resulted in limited event input rate to HLT trigger). This
limitation comes from the specific of the current read-out system, see section 1.3.1.1. To overcome this
limitation, all tracking detectors and their read-out systems have to be replaced to be capable of reading
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Figure 1.4.1: Actual and predicted integrated luminosity from 2010 to 2037 for the LHCb experi-
ment. Red dots represent the value of measured or predicted instantaneous luminosity. Solid blue
line represents the value of measured or predicted integrated luminosity.

out the full detector information at the rate of 40MHz. New read-out electronics will allow removing
the L0 trigger, keeping only the software flexible part. Figure 1.4.2 presents the new layout of the LHCb
detector. When comparing this layout with the previous one, see Figure 0.0.2, it is clearly visible that
the overall structure of the spectrometer stays as it was. All components of the tracking system (vertex
detector, TT and T stations) will be replaced. The Cherenkov detectors will be heavily modified, and
both the PS and SPD detectors will be removed from the spectrometer. Only the detectors that were
previously contributing to the L0 trigger will not have major interventions.

1.4.3 Upgraded Velo

The upgraded Velo detector will be placed closer to the beam, its active area will reach the distance of
5.1mm from the beam axis, and it will have a finer granularity thanks to changing from micro-strip to
pixel technology. The new Velo will operate at much higher particle flux due to increased luminosity,
which causes an increase in the average number of visible proton-proton collisions from 1.6 to 5.2 (i.e.,
on average 5.2 primary vertices will be present at each beams crossing). Thus, theVelo group decided to
use pixel sensors to reduce occupancy. The upgradedVelo detector will consist of 41million 55×55μm
pixels, whichwill be readout by the custom-buildVeloPix front-endASIC, at the 40MHz rate. Thecool-
ing is provided by evaporative CO2 system. It will employ an innovative micro-channels embedded in
the structure of the support silicon modules. A layout of the upgraded Velo module is shown in Fig-
ure 1.4.3. Both the expected performance of the track reconstruction efficiency and impact parameter
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Figure 1.4.2: Layout of the upgraded LHCb detector. Figure taken from [49]

as a function of the inverse of the transverse momentum are shown in Figure 1.4.4.

cross  
section 

Figure 1.4.3: Layout of a module of the upgraded Velo detector, see detailed description in text.
Figure taken from [48]
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Figure 1.4.4: The left figure shows the reconstruction efficiency evaluated for particles which are
reconstructible as Velo tracks as a function of momentum. The right plot shows the 3D resolution
of the IP, the light gray histogram shows the relative population of b hadron daughter tracks in
each 1/pt bin. Figures taken from [48].

1.4.4 Scintillating Fibre Tracker

Scintillating Fibre Tracker (FT) [49] 8 was designed to replace the T tracking stations. Two factors
drove this decision. Extensive simulations studies showed that the upgraded condition would be too
harsh for a straw gas detector (like the previousOT gaseous system). The foreseen occupancy would be
too high to provide reliable input to the tracking pattern recognition algorithm. Moreover, the readout
electronics of both OT and IT detectors would not be capable of working as a part of a new data acqui-
sition system. FT tracker covers the full LHCb detector acceptance downstream to the magnet and, by
design, guarantees a spatial resolution close to 80μm. This detector will consist of three stations, each
of them composed of four detection planes organized, similar to IT, in a (X,U,V,X) orientation, see
Figure 1.4.5. The module will consist of scintillating fibres with a radius of 125μm, and a length of 2.5
m, which will be read out by Silicon Photo-Multipliers (SiPMs), located either at the top or bottom of
the detector. The SiPMs are kept in a cold box, at−40◦C, to reduce the dark count rate 9, and each of
them consists of nearly 128 individual pixels.

The FT detection mechanism is based on measuring the photons emitted when a particle traverses
the detector’s active area. Those photons are propagated through the fibres and finally reach the silicon
pixels located at the end of the fibres. A signal proportional to the number of photons detected within a
given SiPM detector is used to determine the position of the particle, shown in Figure 1.4.6. Each pixel
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Figure 1.4.5: Layout of one tracking station of the SciFi detector. Figure taken from [49]

Figure 1.4.6: Simplified visualization of the detection mechanism of the FT. The squares show
the pixels located at the end of the fibres, and the circles indicate the cross-section of the scintil-
lating fibres. Note that the fibres are not aligned to the detector channels, and the photons can
arrive at the detector outside the fibre area. Figure taken from [49]

can detect one photon at a time.
8The previous name of this sub-detector was SciFi and referred to the speculative fiction genre since many people did

not believe that the construction of such a detector is feasible.
9The dark count rate, is the count rate that is measured in the absence of photons, is caused by thermally generated

electron-hole pairs.
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1.5 UpstreamTacker

The Upstream Tracker (UT) is a detector that was designed to replace TT tracker. Its structure and
sensor technology is very similar to its predecessor. Thus it will be composed of four planes of silicon-
strip detectors divided into two stations, as it is schematically shown in Figure 1.5.1. Similarly toTT, the
detector plates will be arranged in a (X,U,V,X) orientation, with the second and third planes rotated
at a stereo angle of±5◦ with respect to the y-axis.

Figure 1.5.1: Layout of the four UT detector planes (looking downstream of the interaction
point). Outermost, intermediate, and innermost sensors are shown in green, yellow, and reddish,
respectively. Figure taken from [49]

The expected trigger efficiency enhancement with respect to the TT will originate from improved
acceptance coverage at small polar angles and finer granularity. This will be achieved by designing the
innermost sensor to have a circular cut-off around the beampipe, as shown in Figure 1.5.1 (reddish sen-
sors). The UT sensors will have improved radiation hardness, which is critical since the UT sensors
have to withstand an integrated luminosity of 50 fb−1, which is a factor of 5 more than TT. Figure 1.5.2
presents the expected irradiation dose, estimated by a FLUKA simulation [37], after 50 fb−1 as a func-
tion of y coordinate, obtained for a detector station slice at x = 0. Those expected irradiation doses
drove the decision on the sensor’s technologies. The sensors that are situated closer to the beamwill be
n+-on-p technology, which is more radiation hard than p+-on-n.

Four different sensors geometries, denoted type-A, B, C, andD, are used in theUT detector depend-
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Figure 1.5.2: Expected fluence profile (left) and radiation dose profile (right) as a function of y-
coordinate, for a slice of the detector that is positioned at x = 0. This slice represent the highest
fluence region throughout the UT system. Figure taken from [49]

ing on proximity to the beam pipe, see Figure 1.5.3. To mitigate the effects of irradiation and reduce
leakage current, the cooling system is designed to provide a maximum operating temperature of the
silicon detectors of−5 ◦ C.

Figure 1.5.3: Sketch of the three mask designs for the UT upgrade. Sensors C and D are shorter
and can be produced in a single 4-inch wafer, whereas sensors A and B require a full wafer. Figure
taken from [49]

1.6 SALTASIC

Thedesignof thenew strip readout chip, operating at bunch crossing frequencyof 40MHz,was a critical
part of the LHCbUpgrade. The primary goal of this ASICwas to overcome hardware trigger limitation,
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which significantly limited the amount of collected data in Run 1 and Run 2, see section 1.3.3. The
Silicon ASIC for LHCb Tracking (SALT) is a chip designed at AGH-UST Krakow that is capable of
reading 128-channels. It was manufactured in radiation-hard TSMC CMOS10 130nm 11 technology
and employed a novel architecture comprising an analogue front-end and an ultra-low power (< 0.5
mW) fast (40 MSps12) sampling 6-bit ADC in each channel. Thus, the chip is capable of performing
quite involved data processing on-detector and significantly reducing the data volume sent to the trigger
system.

Figure 1.6.1: Block diagram of the SALT ASIC readout chip, see text for more details. Figure
taken from [35].

TheSalt consists of twomainblocks analog anddigital, seediagram1.6.1. Theanalogblock consists of
a chargepreamplifier and a fast shaperwith apeaking timeof about25ns, and25ns after thepeaking time
ofnomore than5%of thepeak value. Thoseparameters are required todistinguishbetweenconsecutive
LHC bunch crossings. The SALT was designed to operate with both types (p+-on-n and n+-on-p) of
strip sensors with capacitance in range 5−20 pF. The shaper is followed by a single-to-differential block
that converts a single-ended signalling to a differential one 13. The last component of the analog block
is a fully differential 6-bit SAR ADC, which converts the analog signal to the digital domain.

The digital ADCoutput is processed by aDigital Signal Processing (DSP) block, which performs the
following algorithms:

• Channelmasking. Noisy or dead channels canbemasked and removed from further processing;

• Pedestal subtraction. This subtraction is performed in each channel independently using a dif-
ferent value;

10CMOS stands from Complementary metal–oxide–semiconductor and it’s a technology that uses complementary and
symmetrical pairs of p-type and n-type MOSFETs (Metal–Oxide–Semiconductor Field-Effect Transistor) for logic func-
tions.

11130nm refers to the minimum gate length that can be manufactured using a particular technology.
12milion of samples per second
13Single-ended signaling is a method of signal transmission where one wire carries a changing voltage (signal) and the

second wire is connected to a reference voltage (ground), while differential signaling sends a signal via employing two com-
plementary voltage signals to transmit one information signal [6]
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• MeanCommonModeSubtraction. Removal of themean value of calculatedon topof channels
with signal below the certain hit threshold;

• Zero Suppression; Only the data registered in channels where the signal is above hit threshold
are sent out for further processing in the trigger system.

Since high level emulation of these algorithms is part of the topic of this thesis, the detailed explana-
tion of each can be found in chapter 5.

After theDSP, the data is serialized and sent out through, so-called, e-links using SLVS interface [36]
operating at 320MBit/s data rate. EachASIC is equippedwith e-links, but only some of them are active,
depending on the expected hit occupancy on the sensor. The configuration andmonitoring of the SALT
ASIC can be adjusted through the Inter-Integrated Circuit (I2C) interface [111].
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Not only is the Universe stranger than we think, it is stranger
than we can think

Werner Heisenberg

2
Physics behind the LHCb experiment

This chapter is dedicated to providing a brief introduction to the physics of LHCb. It starts by presenting
the fundamental concept of symmetries in physics, including the particular type of discrete symmetries
and its consequence, then the Standard Model of particle physics is briefly described.

2.1 Symmetries in physics

Until the 20th-century, principles of symmetry played a minor role in theoretical physics. The ancient
Greeks were fascinated by the symmetries of objects and believed that these should be mirrored in the
structure of nature. Still, they did not manage to associate those symmetries with any deterministic
law of physics. Instead, symmetry was a critical component that inspires several architects designing
the most stunning and recognizable buildings, and even recently, psychologies proved that symmetri-
cal faces are more attractive [99]. In one of themost important book of all time ”PhilosophiæNaturalis
Principia Mathematica” [108] Newton postulated that laws of mechanics incorporate symmetry prin-
ciples, notably the principle of equivalence of inertial frames, or Galilean invariance. These symmetries
implied conservation laws. However, these conservation laws were seen as consequences of the dynam-
ical laws of nature rather than as consequences of the underlaying symmetries.

This situation had dramatically changed at the beginning of the 20th century when Emmy Noether
proved her famous theorem relating continuous symmetries and conservation laws. This theorem states
that as a direct consequence of the invariance of physics laws under continuous spatial transformations,
such as spatial translation, spatial rotation and time translation, momentum angular momentum and
energy are conserved respectively. The less intuitive case is the symmetry of thewave function under the
change of its phase that leads to the conservation of the electric charge. Precisely speaking, a symmetry
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is a mathematical operation that leaves the physical system invariant. From the moment of this paper
publication onwards, physics can be defined as the science that studies fundamental symmetries and
the mechanism of the symmetries breaking.

In Quantum Mechanics, symmetries are mostly discrete and satisfied if an operator commutes with
the Hamiltonian (representing the time transformations). If a discrete symmetry holds, it leads to a
conserved quantumnumber and a selection rule for the transitions between different states. Within the
framework of particle physics, there are three fundamental symmetries P, C, and T; those symmetries
are shown in Figure 2.1.1

A parity transformation P can be represented by inversion of the spatial coordinates of a coordinate
system and changing the helicity of the particle. Namely, the eigenfunction of the parity operator P̂
satisfy the condition:

P̂ |Ψ, r⃗⟩ = |Ψ, −⃗r⟩ = p|Ψ, r⃗⟩ (2.1)

Where p is an eigenvalue of the P̂ operator and |Ψ⟩ its eigenstate. A second application of the P̂ trans-
forms the |Ψ⟩ to its initial state, therefore the p must be equal to ±1, and by convention for fermions
p = 1.

Time parity T reverse the time direction of a process, and the charge conjugation C changes the sign
of the additive quantum numbers, transforming particles into antiparticles keeping their helicity. The
eigenvalues of the charge conjugation operator Ĉ can be expressed in the following form:

Ĉ |particle⟩ = |anti particle⟩ = c|particle⟩ (2.2)

Where c is an eigenvalue of the Ĉ operator, and similarly to the P̂ operator’s eigenvalues can have one
of±1 value. It is interesting to note that only particles that are their own antiparticles can be eigenstates
of the charge parity operator.

The strong and electromagnetic interactions are invariant under each ofC, P, andT symmetries. The
combination ofCPT is an exact symmetry of any interaction describedby theLorenz invariant quantum
field theory. This phenomenon is described as the CPT theorem [123] (thus far we did not find any
experimental results that would negate this fundamental theorem). It is observed that C and P are not
exact symmetries and they are both broken by the weak interactions: the weak charged currents couple
exclusively to left-handed fermions and right-handed anti-fermions, and hencemaximally violateC and
P symmetries individually. The combined CP operation transforms a left-handed fermion into a right-
handed anti-fermion. Therefore it could be expected that theCP symmetry is the one that is held by the
weak interactions. This statement was valid until 1964 when the group , led by James Cronin and Val
Fitch, working on neutral kaons decays discovered that this is not a case, [46].

2.1.1 Group Theory

This subsection is dedicated to providing a brief introduction to Group Theory, which is a branch of
mathematics that was developed to studying symmetries. This section reviews some of the properties
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Figure 2.1.1: Symmetries in particle physics. Each arrow represents one of the C, P, T transfor-
mations or their combinations. With the discovery that the weak interactions maximally violate
both charge and spatial parity symmetries, it was postulated the true symmetry between matter
and antimatter is the combined charge and spatial parity transformation. As it turned out, this
one is also broken by the weak interaction, but in that case, the violation effects are relatively
small. The combined CPT transformation is treated as the fundamental property of our Universe
and should hold for all processes. Figure taken from [1]
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of them.
A GroupG is an abstract set of elements, which can be finite or infinite, with defined operator (·) on

it, which obeys:

• Closure: ∀u, v ∈ G, u · v ∈ G

• Associativity: ∀u, v,w ∈ Gu · (v · w) = (u · v) · w

• Neutral element: ∃I ∈ G, u · I = I · u = u,∀u ∈ G

• Inverse element: ∃u ∈ G,∃u−1 ∈ G, u · u−1 = I

Group G is called Abelian or commutative if also the following axiom is satisfied:

• Commutativity ∀u, v ∈ Gu · v = v · u

In elementary particle physics, the most common groups are of the type ofU(n), which can be rep-
resented as a collection of all unitary n × n matrices 1. The second type of group used to construct
the Standard Model is a Super Unitary group SU(n). One of the fundamental properties of the unitary
matrices is that their determinant is equal to 1, this plays a vital role in quantum theory that requires
probability conservation. A group of matrices can represent any group, thus for every abstract element
u, there is a corresponding matrixMu, which needs to fulfil all axioms listed above.

As a concrete example let consider a group of real, orthogonal 2 n× nmatrices with the determinant
equal to 1, this group called SO(n) and can represent all rotation is space of n dimensions. For n = 3,
group SO(3) describes rotational symmetry of our word, which according to the Noether’s theorem is
equivalent to the conservation of angular momentum [75].

2.2 StandardModel of elementary particles

The Standard Model (SM) is a relativistic Quantum Field Theory that describes properties of elemen-
tary particles and the electromagnetic, weak, and strong interactions. It has been experimentally vali-
dated on numerous occasions, making very accurate predictions. However, it is an incomplete theory
since it does not include the theory of gravity and does not explain the darkmatter and dark energy, the
neutrino masses, nor the matter-antimatter asymmetry of the Universe.

This theory was built to model the particle interactions observed in nature. Using this framework,
one can obtain predictions for physical phenomena by calculating transition probability from an initial
state ⟨i, i′| to a given final state|k, k′⟩. These calculations are performed using Quantum Field Theory
tools such as expansions of a path integral into a power series, which can be visualized using Feynman
diagrams (one diagramper term). Each term in those series can be interpreted as a particular interaction
process.

1A unitary matrix is one whose inverse is equal to its transpose conjugateU−1 = U†

2An orthogonal matrix is a matrix whose inverse is equal to its transpose: O−1 = OT
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According to the Standard Model, the whole space is filled with different types of fields, and the
excitation of those fields are what can be interpreted as particles, the visualization of properties of el-
ementary particles are shown in Figure 2.2.1 . The matter is built by twelve particles called fermions
3, which has a half-integer spin, and they have to obey the Pauli exclusion principle. The interactions
between fermions are perceived as an exchange of integer spin particles called bosons. None of them is
known to have any underlying substructure. Thus they are called fundamental particles. All fermions
can be further split into two groups: quarks and leptons. This distinction is driven by the interaction in
which a particular fermion can participate.

The mathematical structure of the Standard Model can be described by the following symmetry
group:

SU(3)C × SU(2)L × U(1)Y (2.3)

The group SU(3)C represents symmetry transformations in an internal colour space that are used to
describe properties of the strong interactions. The dimension of the group corresponds to three types
of colour charge. The second SU(2)L × U(1)Y symmetry group describes electro-weak interactions
and takes into account the spontaneous symmetry breaking leading to massive intermediate bosons.
The SU(2)L group describes rotations in an abstract weak-isospin space and the subscript L is used to
express the fact that the fundamental representations of the weak interactions are left-handed dublets
and right-handed singlets. The remainingU(1)Y group describes the electromagnetic interactions that
should conserve weak hypercharge Y. In this case, the symmetry transformations can be interpreted
as phase shifts of the wave function. The core idea behind the significance of this combined symmetry
group is that the Lagrangian describing any process occurring in Nature must be invariant with respect
to any transformation that belongs to it.

The strong interactions, which are mediated by eight massless gluons carrying a quantum number
called colour and occurs between quarks, those interactions are described by a theory called Quantum
Chromodynamic (QCT). Among all fermions, only quarks can carry colour charge, which allows them
to interact via the strong interaction. There are six types of quarks known as flavors: up u, down d,
charm c, strange s, top t and beauty b. Due to the unique nature of the strong interaction, in which the
mediators of the force, the gluons, carry the same colour charge that they mediate, quarks are 4 ”glued”
to quarks and in Nature they always form colourless composite particles called hadrons.

Depending on the number of quarks they are made of, hadrons are classified as mesons (composed
of qq̄ pair), baryons (with three quarks combining all the colors) and exotic hadrons composed of four
and five quarks, which has been recently discovered and reported by the LHCb collaboration [51].

3And their corresponding antiparticles
4This happens for all quarks besides the top quark, which lifetime is too short to combine with other quarks to form

hadrons
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Figure 2.2.1: Illustration of the fundamental particles in the Standard Model and their properties.
The fermions are organized in three generations (denoted by I, II, and III) comprised of quarks
preseted as the purple squares and leptons as the green squares. The gauge bosons are shown as
red circles, and the yellow square indicates the scalar Higgs boson.
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2.3 Weak interactions andCKMmatrix

As explained in the previous section, the SU(2)L × U(1)Y gauge group describes the properties of the
electro-weak interactions. Those interactions are carried by four vector (i.e., spin 1) bosons, namely
W±, Z, and the γ. The first three of them mediate the weak interactions, and γ is responsible for carry-
ing electromagnetic interactions. One of the key features of the weak interactions is the experimental
observation that they couple to the left-handedparticles only, which is a directmanifestation of themax-
imal violation of the charge and spatial parity symmetries. Another unique feature of the weak forces is
the mixing between different quarks families, which leads in consequence to the experimental observa-
tion that the quark mass eigenstates are not the same as the weak eigenstates. The Cabibbo-Kobayashi-
Maskawa (CKM) matrix relates the weak eigenstates, (d′,s′,b′), with the mass eigenstates, (d,s, b), and
is written as: d

′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 (2.4)

where the 3 × 3 unitary matrix VCKM is known as the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix [39] [92]. The magnitude of each element in VCKM represents the coupling strength of
the quarks in the subscript to the weak fieldW±. One of the properties of such matrix is the possibility
to fully describe its transformation properties by three Euler angles and one complex phase. This phase
parameter is vital for the theory since its non-zero value can explain, within the theoretical framework of
the SM, the violation of Charge-Parity CP symmetry. Using the relation between the unitary matrices
and rotation matrices the CKM matrix can be decomposed as follow:

VCKM =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e−iδ13

0 1 0
−s13eiδ13 0 c13


 c12 s12 0
−s12 c12 0
0 0 1



=

 c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

 (2.5)

where cij = cos(θij), sij = sin(θij), θij are the respective quarkmixing angles, and δ13 is a complex phase.
Angle θ12 is called Cabbibo angle, which was introduced in 1963 when only two generation of quarks
were known [38].

One of the customary parametrizations of the VCKM, that is convenient to present the hierarchical
structure of its parameters is called Wolfenstein parametrization [140]:

VCKM =

 1− 1
2 λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2 λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+ O(λ4). (2.6)
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Experimentally, it is found that the mixing between mass and weak eigenstates is relatively small in
the quark sector. Based on current knowledge [43], the values of VCKM parameters are:

• λ = 0.224837+0.000251
−0.000060,

• A = 0.8235+0.0056
−0.0145],

• ρ = 0.1569+0.0102
−0.0061,

• η = 0.3499+0.0079
−0.0065.

Therefore each of the mixing angles, represented as an off-diagonal element 2.4, is small, and the
CKM matrix is approximately diagonal, see Figure 2.3.1. Therefore, processes that involve off-diagonal
elements of the CKM matrix, those that change the generation of the quarks are Cabibbo-suppressed
with respect to those on the diagonal, which are referred to as Cabibbo-favoured.

Figure 2.3.1: Hierarchy of the VCKM matrix elements. The numbers are approximate to illustrate
the relative magnitudes of the elements.

TheVCKM matrix is unitary one what leads to a series of relationships between different elements that
can be experimentally probed. These constraints impose the following relations:

V∗1jV1k + V∗2jV2k + V∗3jV3k = δjk

V∗j1Vk1 + V∗j2Vk2 + V∗j3Vk3 = δjk
(2.7)

Those six relations, summarized by Equation 2.7, can be visualized as, so called, unitarity triangles in
the complex plane. The most popular to study is the triangle with j = b and k = d. It drew attention
due to having all sides of the similar sizes. This triangle can be completely constructed by defining that
one of the sides lies on the real axis and then by defining its apex as:

(ρ, η) = −V∗ubVud

V∗cbVcd
(2.8)
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while the remaining apexes are (0, 0) and (0, 1). The angles of this unitary triangle denoted as α, β, γ
are defined as follow:

α = arg
(
V∗tbVtd

V∗ubVud

)
, β = arg

(
V∗cbVcd

V∗tbVtd

)
, γ = arg

(
V∗ubVud

V∗cbVcd

)

Figure 2.3.2: Visualization of one of the unitary triangles of the VCKM matrix. Definition of the
angles α, β, γ can be found in text.

The values of those angles cannot be predicted using the Standard Model framework. Instead, they
must bemeasured experimentally. Any possible discrepancy in relation 2.7may indicate a contribution
from physics beyond the Standard Model. Figure 2.3.3 shows the overall status of the CKM unitary
triangle in the ρ, η plane, with a global fit to the apex. Within the current experimental uncertainties,
there are no significant deviations from the Standard Model predictions.

2.4 NeutralMesonMixing andCP violation

One of the most astonishing phenomena in physics is neutral meson mixing, i.e., the ability to change
into its antiparticle spontaneously. Such transitions are relatedwith the corresponding flavour quantum
number violation (strangeness forK0 mesons, charm forD0 mesons and beauty for B0, and B0

s mesons)
and they can only be induced by the weak interactions. Mixing, also called flavour oscillation, is also
an essential source ofCP violation in the SM.Thosemixing processes can be described by the so-called
box diagram presented in Figure 2.4.1.
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Figure 2.3.3: Overlapping constraints of the CKM unitary triangle. The red dashed area indicates
global fit of the CKM apex with 68% confidence interval. Figure adopted from [43].

Figure 2.4.1: Box diagrams illustrating the mixing of K0 mesons. In both cases virtual W bosons
and quarks connect the four vertices. Figure adopted from [106].
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The mass eigenstates, that propagate in space, are written as a superposition of flavor eigenstates:

|ML⟩ = p|M⟩+ q|M⟩

|MH⟩ = p|M⟩ − q|M⟩
(2.9)

where p and q are complex numbers satisfying the normalization condition |p|2 + |q|2 = 1. The evolu-
tion of this system is described by the non-hermitian Hamiltonian, given as:

H = M− i
2
Γ (2.10)

whereM and Γ are the mass and decay matrices, respectively, defined as:

M =

(
M11 M12

M∗12 M22

)
, Γ =

(
Γ11 Γ12

Γ∗12 Γ22

)
(2.11)

TheHamiltonian of the process, Equation 2.10, is not hermitian, thus ensures that the neutral meson
may eventually decay. The diagonal elements of bothM and Γmatrices are the same due to CPT theo-
rem, and if the off-diagonal elements are equal to zero the meson states are degenerated and the mixing
would not occur. Moreover, bothM and Γ are hermitian operators. It is customary to define the average
mass and average decay widths as follow:

M ≡ MH +ML

2
, Γ ≡ ΓH + ΓL

2
(2.12)

Next, two parameters x and y can be defined using the mass and decay width differences respectively:

x ≡ MH −ML

Γ
=

ΔM
Γ

, y ≡ ΓH − ΓL
2Γ

=
ΔΓ
2Γ

(2.13)

The mass difference, ΔM, can be related to the mixing frequency and together with the difference of
decay width, ΔΓ, can be measured experimentally.

The time evolution of the flavor eigenstates obeys the time-dependent Schrödinger equation:

i
d
dt

(
|M(t)⟩
|M(t)⟩

)
= H

(
|M(t)⟩
|M(t)⟩

)
(2.14)

i
d
dt

(
|M(t)⟩
|M(t)⟩

)
=

(
M11 − i 12Γ11 M12 − i 12Γ11

M∗12 − i 12Γ
∗
12 M22− i 12Γ22

)(
|M(t)⟩
|M(t)⟩

)
(2.15)

The solution of Equation 2.14 is a pair of eigenvalues given by:

v1 =

(
p
q

)
, v2 =

(
p
−q

)
(2.16)
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Those eigenvalues allows to diagonalize the hamiltonian:

QHQ−1 = P =

(
ML − i

2ΓL 0
0 MH − i

2ΓH

)
(2.17)

whereQ is a matrix composed of vertically stacked v1 and v2, and P is an auxiliary matrix introduced to
simplify the notation. Using mentioned notation the time evolution of the flavor states can be written
as:

(
|M(t)⟩
|M(t)⟩

)
= QPQ−1

(
|M⟩
|M⟩

)
=

(
g+(t)

q
pg−(t)

p
qg−(t) g+(t)

)(
|M⟩
|M⟩

)
(2.18)

where the parameters g± are given as:

g+ = e−imteΓ
t
2

[
cosh(

ΔΓt
4

) cos(
ΔMt
2

)− i sinh(
ΔΓt
4

) sin(
ΔMt
2

)

]
(2.19)

g− = e−imteΓ
t
2

[
sinh(

ΔΓt
4

) cos(
ΔMt
2

)− i cosh(
ΔΓt
4

) sin(
ΔMt
2

)

]
(2.20)

andm = 1
2(ML +MH), Γ = 1

2(ΓL + ΓH), ΔM = MH −ML, ΔΓ = (ΓL − ΓH).
Equation 2.18 allows expressing the probability of mixing from particle to its antiparticle and vise-

versa. Those probabilities are given by

|⟨M|H|M⟩|2 =
∣∣∣∣qp
∣∣∣∣2 |g−(t)| = eΓt

2

∣∣∣∣qp
∣∣∣∣2 [cosh(ΔΓt2 ) cos(ΔMt)

]
(2.21)

|⟨M|H|M⟩|2 =
∣∣∣∣pq
∣∣∣∣2 |g−(t)| = eΓt

2

∣∣∣∣pq
∣∣∣∣2 [cosh(ΔΓt2 ) cos(ΔMt)

]
(2.22)

Equation 2.21 clearly indicates that the mass difference between light and heavy states drives the
mixing frequency. It is also important to analyze ratio p

q . If it differs from 1 then the mixing process
violate CP symmetry. The word average of this mixing parameter for B0 is p

q = 1.0009 ± 0.0013 and
for Bs

p
q = 1.0003 ± 0.0014 [135], which means the results are consistent with conservation of CP

symmetry.

2.5 Baryon Asymmetry of theUniverse and Sakharov conditions

The previous sections described the combined CP symmetry and discussed possible channels to study
its violation. Here comes a vital question. Why do the researchers study the CP violation? Why is it so
crucial that even it is mentioned inside of the logo of the LHCb experiment?

One of the answers to this question is the problem of the asymmetry of baryons with respect to anti-
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baryons. The current observed Universe is filled with baryons. This observation is contradicted to the
cosmologicalmeasurement, which strongly indicates that in the era of the earlyUniverse, thematter and
antimatter should have been created in equal amounts. Therefore, there must have been some process
that had created thematter-antimatter asymmetry. In 1967 Russian physicist Sakharov postulated three
conditions that have tobe fulfilled tomakebaryogenesis, or in otherwords existenceof knownUniverse,
possible [122]:

1. Baryon number violation. All known perturbative processes in the Standard Model result in
equal numbers of baryons and anti-baryons. However, there are non-perturbative electroweak
processes that can produce baryons without anti baryons [134].

2. C and CP violation. Violation of these symmetries are required even if there are processes, see
the first condition, that could generatemore baryon that anti-baryon an opposing process would
generate an excess of anti-baryons, so the net baryon number of the system would still remain
the same.

3. Departure from thermal equilibrium. Baryogenesis cannot occur at thermal equilibrium; oth-
erwise, the inverse of this process will occur at the same rate, and a net asymmetry will not be
generated.

The first condition is fulfilled by one of the default property of the Standard Model that requires the
baryonminus lepton number to be conserved. Still, it does not have any restriction on the conservation
of each of these numbers individually. The mechanism that would allow satisfying the third condition
is the electroweak phase transition. Although, due to the mass of the Higgs boson mH ≈ 126GeV/c2,
the phase transition would only be weakly first order and not provide a strong enough departure from
thermal equilibrium [93].

Within the Standard Model framework, the only source of the violation ofCP symmetry is the weak
interactions in the quark sector. Although the known CP violation in the quark sector is orders of mag-
nitude too small to explain the baryon - anti-baryon asymmetry in theUniverse, and therefore it is likely
that this additional CP-violation originates in physics beyond the Standard Model. Therefore, precise
comparisons of CP-violating observables and the Standard Model’s predictions provide an invaluable
probe of the New Physics.
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The Artificial Intelligence is the New Electricity.

Andrew Ng

3
Principles ofMachine Learning

This chapter provides a formal introduction to Machine Learning. It begins by presenting the concept
of supervised learning. Next section is dedicated to discussing each of the models, which were taken
into consideration during the author’s research. It contains a brief mathematical description of each
model and the overall approach to training them. The next section introduces the methodology of how
the performance of each model can be measured and discusses the problem of the model’s prediction
interpretation. In other words, it tries to answer the vital question, ”why should I trust the model that I
built?”. The final section covers the idea of bonsai BoostedDecisionTrees, which are the binned version
of the BoostedDecisionTree classifier. It explains the concept of discretization, its implementation, the
reason this approach was chosen, and the issues it addresses.

3.1 What isMachine Learning?

This introductory section is dedicated to providing answers to the following questions:

• What is Machine Learning?

• Are there any difference between Machine Learning and classical algorithms?

• What types of Machine Learning models can be distinguished?

• Why is Machine Learning becoming more and more popular?

• What kind of problems can Machine Learning solve?

The classical approach to building software contains the following steps: collect system and software
requirements, design the software architecture, then there is a coding and testing part, and the software
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finally goes to the maintenance phase. The presented model is the simplest one called the Waterfall1.
The most important part is the coding phase, in which the developer or group of developers need to
convert the system requirements, written in the Natural Language, into the code, which is understand-
able by a computer. They have to create a step-by-step set of instructions to process an individual input
to determine the exact output. This strategy is not sufficient formany problems such as spam detection,
image processing, or Natural Language understanding. For instance, the number of possible scenarios,
e.g., sentences to translate fromEnglish toPolish, is so enormous that it is infeasible to create a dedicated
logic for each of them.

In such cases, Machine Learning comes to the rescue. Instead of writing explicit instructions, a re-
searcher can provide examples and train the model using the data to extract the hidden patterns. The
only remaining problem is to collect a sufficient amount of good quality data. However, is it a problem
at all?

Figure 3.1.1 shows the quantity of data generated per minute by the most frequently used online
services. Facebook recently reported that the system that is designed to collect the logs generates about
2.5 PB of data per second [5], this is the approximate amount of the filtered data collected by the LHCb
experimentduringoneyearof nominal data taking. Another exampleof theonline service that generates
a massive amount of data is Twitter, according to its technical report, Twitter’s users composemessages
that required about 8 PB/day of data storage. One of the most challenging problems that the industry
needs to solve is to understand the data and make a profitable conclusion based on it.

Machine Learning as a discipline can be divided into three main areas: supervised, unsupervised
and reinforcement learning. Figure3.1.2presents allmentioned typesofMachineLearning approaches
together with a description of problems that can be solved by them.

Theunsupervised learning describes problems, where the data has nomanually assigned target value.
One of the most interesting unsupervised problems is synthetical data generation. It is is usually per-
formedusing the idea ofGenerativeAdversarialNetworks (GANs) [73]. Another type of unsupervised
problem is a dimensionality reduction, which reduces the number of random variables under consider-
ation by selecting a set of principal variables. One of the methods that are widely used to achieve this
goal is the PCA or Principal Component Analysis. PCA is a statistical procedure that reduces the di-
mensionality of the dataset by creating new uncorrelated variables that successively maximize variance.
Finding such new variables, called the principal components, reduces to solving an eigenvalue/eigen-
vector problem [86].

Reinforcement learning employs an agent that interacts with an external environment and tries to
learn the optimal behaviour strategy. This approachmay lead to creating the program, that is capable to
archive superhuman performance in such games as chess or Go [128], or can solve problem of protein
folding [125]. The theory and application of the reinforcement learning is beyond the scope of this
thesis, however author recommend the book [133], which the best resource to study this topic, and
what is even more important it is available for free.

1The other approach to the software project management is called agile, which is a practice that promotes continuous
iteration of development and testing throughout the software development life-cycle of the project. Both development and
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Figure 3.1.1: The amount of data generated per minute by the most popular online services.

Finally, supervised learning is a group of problems that are characterized by the presence of label
that is assigned to each of the data examples. Supervised learning can be further split into classification
and regressions tasks. Regression is a method of modelling a continuous target value (label) based on
independent variables (predictors). This method is mostly used for forecasting 2 and finding out the
relationship between variables. From the perspective of this thesis, the classification is the most impor-
tant type of problem. Therefore the remainder of this section will focus on it. In this task, the model
tries to find the mapping between the input space and one of the k labelled output.

As a concrete example, let us consider a problem of a real track segment (or seed) selection, which
is a topic of chapter 4. This is a supervised classification problem because the input to the model was
a pair (trackseed, label), which were obtained using Monte Carlo simulation, and the task is to predict
whether a particular seed is suitable for further processing.

To give a more precise and formal definition of the classification task, let us consider a given set ofN
training examples of the form {(x0, y0), · · · , (xN−1, yN−1)}, where xi ∈ RM is aM-dimensional feature
vector and yi ∈ N>1

3 is a label. During the training phase, an algorithm tries to find the function f :
X → Y, where X is an input space and Y is the output space. The fitted function f is an element of some

testing activities are concurrent.
2One of the examples that are usually usedwhen the regression problem is introduced is finding a house price when such

features as house area or the number of bedrooms are given.
3Within the context of this thesis, the one class classification problem, e.g. an outlier detection, is not not taken into

consideration as a classification one
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Figure 3.1.2: Graph showing the hierarchy of types of Machine Learning problems.

space of all possible mapping functions, which by convention, is called hypothesis space and denoted
asH. To measure how well the function f fits to the training data, a loss functionL(y, f(x)) needs to be
defined [74]. This function reduces all the various good and bad aspects of a possibly complex system
down to a single number. This scalar value allows candidate solutions to be ranked and compared to
others.

When a loss function is selected the training procedure aims to minimize it with respect to the fitted
function’s parameters (these are theparameters of the selectedmodel). This statement canbe formalized
in a following way:

f∗(x) = argmin
f∈H

L(y, f(x)) (3.1)

where f∗(x) is an optimal, from the perspective ofminimizing the loss functionwith respect to the train-
ing data, function belonging toH, and argmin

x
is an operator when applied to a given function picks out

the point in the function’s domain at which its takes its minimum value (assuming that the point is
unique), which can be formalized:

argmin
ζ∈S⊆Ζ

Φ(ζ) := {ζ | ζ ∈ S ∧ ∀ξ ∈ S : Φ(ξ) > Φ(ζ)} (3.2)

whereΦ : Ζ → Y, and the S is a subset where the functionΦ is defined.
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3.1.0.0.1 Information Theory
To get a better understanding of a common choice for the cost function, the remainder of this section

provides a brief introduction to the Information Theory. Back in 1964, Claude Shannon and Warren
Weaver published the paper ”The mathematical theory of communication” [126], where they intro-
duced the concept of information entropy. This quantity was used to determine the optimal, with re-
spect to the expected length, message encoding. The basic intuition behind the entropy is that more
likely events are less informative than the rare ones. To be more precise, the entropy needs to fulfill the
following requirements:

1. Rare events should have high information content.

2. In opposition, likely events should have very low information content, and in the case of a certain
event, the information content should be 0.

3. The information content of two independent events should be equal to the sum of it.

To satisfy above properties, the Shannon entropy is defined in the following manner:

H(P) = Ex∼P

[
1

logP(x)

]
= −Ex∼P[logP(x)] = −

n∑
i=1

P(xi)logP(xi) (3.3)

Where: P(x) is the probability distribution of an event x to occur, E is the expectation value operator,
and x ∼ P signifies that random variable x comes from distribution P. To summarize, the Shannon
entropy measures the expected amount of information drawn from distribution P. It provides a lower
bound on the length of encoding needed, on average, to encode a symbol taken from distribution P,
which is visualized in Figure 3.1.3.

As an example, let us consider a variablem that has four possible states
(a, b, c, d) for which the respective probabilities are given by
( 12 ,

1
4 ,

1
8 ,

1
8). The naive approach, where the creator of the encoding does not leverage the information

about respective state probabilities, would require to transmit a message of length 2 bits. Although,
taking into consideration the nonuniform probability of each state, the entropy can be expressed in the
following manner:

H(m) =
1
2
log(

1
2
) +

1
4
log(

1
4
) + 2

1
8
log(

1
8
) = 1.75 (3.4)

Which indicates that providing a better encoding the sender can save, on average, 0.25 bit per message.
The example, encoding that gives a shorter code to themore likely events, using for instance the follow-
ing encoding {a : 0, b : 10, c : 110, d : 111, }. For such a encoding the averagemessage length is equal
to:

average code length =
1
2
· 1+ 1

4
· 2+ 1

8
· 3 = 1.75bits (3.5)

Equation 3.5 shows a very interesting relation between entropy and optimal coding. In general, the
entropy is a lower bound on the number of bits needed to transmit the state of a random variable. There
is no way to get an average message length smaller than the entropy value.
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Figure 3.1.3: Visualization of the information entropy. The x-axis measures the proportion of
data points belonging to the positive class, and the y-axis axis measures their respective entropies.
Entropy is lowest at the extremes when the data either contains no positive instances or only posi-
tive instances. That is, when the data set is pure, the disorder is 0. Entropy is highest in the mid-
dle where the data is evenly split between positive and negative instances. Extreme disorder, be-
cause there is no majority. Figure adapted from [114]

The concept of entropy can be extended to the case of two separate probability distributions P(x)
andQ(x) over the same random variable x. In such a case, the quantity calledCross Entropymeasures
the amount of information needed to send amessage containing symbols drawn fromdistributionP(x),
when using encoding designed to minimize the length of messages coming from the probability distri-
butionQ(x). The cross-entropy is defined in a following way:

H(P,Q) = −Ex∼P[logQ(x)] = −
n∑

i=1

P(xi)logQ(xi) (3.6)

One of the key properties of the cross-entropy is the fact that it is always non-negative. It shall take the
minimum value of 0 only when P(x) andQ(x) are the same distributions. Therefore, the cross-entropy
can be interpreted as kind of a distance metric, that measure similarity between two distributions. For
the binary classification, this is the case where the number of classes to predict k = 2, the cross-entropy
simplifies into the following form:

L = −y ln (f(x))− (1− y) ln (1− f(x)) (3.7)
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Figure 3.1.4: Simplified Machine Learning flowchart

Figure 3.1.4 presents a typical methodology to build a Machine Learning system in the form of a
flowchart. Within this process, we can distinguish two phases: Creation and Production. The creation
phase starts by collecting the data, and then the entire data is split into two subsets of training and testing
samples. The former is usually divided into two disjoint sets training and validation sets.

The training set is used to select the hypothesis function, and the test set is used to verify the model’s
performance. The process of training themodel is usually a very complicated iterative procedure, which
consists of such steps as selecting thehypothesis space, finding anoptimal set ofmodel’s hyper-parameters,
etc. The way to robustly and properly measure the goodness of the model fitting is very often based on
metrics calculated using cross-entropy.

3.2 Classification metrics overview

3.2.0.1 Confusion matrix

The starting point in every discussion of the classifier performance measurement is a confusion matrix.
Karl Pearson invented the idea of the confusionmatrix in 1904. For a binary classification problem, the
outcome of the classification can have four possible values. If the particular example has a positive label
4 and the classification result is positive the outcome is called true positive; if it is classified as negative,
it is counted as false negative. In case the true label was negative, and the classification estimated nega-
tive, it is counted as true-negative. Otherwise, the outcome is called false-positive. The false-positive
and false-negative are also known as, using statistical language, type I and type II error, respectively. A
two-by-two matrix can be constructed for better understanding and visualization of the classification
outcome using the set of examples, usually called the test set. Figure 3.2.1 shows a confusion matrix

4In the field ofHighEnergy Physics the positive example is usually called the signal, and the negative one the background
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along with equations of selected standard metrics that can be derived from it. The elements from the
diagonal represent the correct decision made by the classifier. In opposition, the off-diagonal numbers
correspond to the miss-classified examples.

Figure 3.2.1: Confusion matrix and common performance metrics derived from it along with their
respective formulas.

Using the information that the Confusion Matrix is built on, one can calculate the following quality
metrics:

• accuracy = TP+TN
P+N , defines the number of examples that were correctly classified. Note, this

quantity may be misleading. Consider the problem of an imbalanced dataset where the number
of positive examples is 98% of the entire dataset. The dummy classifier, which always returns 1,
achieves a 98% accuracy score.

• precission = TP
TP+FP ; measure what proportion of events, that were correctly classified as a given

class to all events that were classified as this class. Precision is a goodmeasure to determine when
the costs of False Positive is high.

• recall = TP
TP+FN actually expresses how many of the actual positives model correctly classified.

Recall shall be themodelmetric inuse to select thebestmodelwhen there is a high cost associated
with False Negative. Recall can be interpreted as a measure of the model’s sensitivity.

• F1 = 2
1

precision+
1

recall
should be use, when one seeks for a balance between Precision and Recall and

there is an uneven class distribution.

3.2.0.2 Receiver operating characteristics

The Receiver Operating Characteristics graphs are two-dimensional plots where the true positive rate
(Y-axis) is plotted against the false positive rate (X-axis). A ROC graph depicts relative trade-off be-
tween benefits (true positives) and costs (false positives).
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Figure 3.2.2 presents a sample of a ROC graph comparing different discrete classifiers. That kind of
classifiers for a given input sample returns a single number as a decision, in the case of binary classi-
fication it is Yes or No decision. The origin, point (0,0), represents the classifier, which never issuing
a positive classification outcome, which means its prediction regardless of the input vector is always 0.
Such a classifier commits no false-positive errors but also gains no true positives. On the contrary, point
(1,1) represents classifier, which always returns a true value. Generally, all points that lay on a straight
line that satisfies equation y = x correspond to the random guessing policy, and the corresponding
classifiers are useless, and they have not extracted any patterns from the data.

Point D (0, 1) corresponds to the perfect classification, which means all negative examples are sup-
pressed, and all positive are preserved. In general, the classifier is better than another if its corresponding
point in a ROC space is to the northwest5 of the first.

Classifiers appearing on the upper right-hand side of a ROC graph may be considered as a liberal.
Theymake positive classifications with weak evidence, so they classify nearly all positives correctly, but
they often have high false-positive rates. Therefore the point A is more conservative than point B. The
point E corresponds to the strategy, which is worst than the random guessing; this indicates some issue
with data labelling, Usually, there are no such points in practical applications.

Figure 3.2.2: A exemplary Receiver Operating Characteristics graph indicating the performance of
five discrete classifiers.

Most of the classifiers, instead of returning a discrete value, return a probability measure also called
the score. These probabilities can be compared to thresholds to produce the binary classification. Each
threshold value produces a different point in the ROC space, and a collection of those points creates the

5oriented according to the compass rose
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ROC curve. The ROC curve is a very convenient way to find a classifier’s operating point. The curve
provides a convenient diagnostic tool to investigate one classifier with different threshold values and
the effect on the True Positive Rate and False Positive Rate. One might choose a threshold in order
to bias the predictive behaviour of a classification model. For instance, in the case of the track seed
classification problem, the classifier has to preserve almost all true tracks while keeping the background
as low as possible. Therefore, the classification threshold should be selected so that the true positive rate
would be equal to 0.99.

ROC curve is a popular diagnostic tool for classifiers on balanced and imbalanced binary prediction
problems alike because it is not biased to the majority or minority class. ROC analysis, in opposition
to the study based on accuracy metrics, does not have any bias toward models that perform well on the
majority class at the expense of the minority one, which is a desirable property that is quite attractive
when dealing with imbalanced data [78].

The ROC curve is a two-dimensional representation of classifier performance. This representation
may not be convenient when comparing the performance of two or more classifiers. Thus, it is custom-
ary to reduce the ROC curve to a single scalar value representing the expected classifier performance
while keeping its properties. Thecommonpractice is to calculate theAreaUnder theROCCurve (ROC
AUC). From the statistical point of view, theROCAUCcan be interpreted as a probability that the clas-
sifier will rank a randomly chosen positive example higher than a randomly chosen negative sample.

3.3 Model selection

This section provides a detailed description of the model selection and validation procedure. Within
the scope of this project, four different models were tested. Each of the subsection starts by presenting
the mathematical formalism of a particular model. The next part focuses on applied methodology to
find the optimal, in the sense of maximizing the selected metric score, set of model’s hyper-parameters,
see section 3.3.6. The first two presented models were constructed using the sklearn [112] and the
numpy [76] libraries.

3.3.1 k-Nearest Neighbors classifier

The k-NN was selected to play the role of a study baseline. The k-NN is a non-parametric model,
which means it takes no assumption on the underlying probability distribution of data [55]. Instead,
the model’s fundamental assumption is that similar inputs should produce similar outputs. To make
a prediction, the model looks at the K points in the training set nearest to the input xi and counts how
manymembers of each class are in this set and finally returns the empirical fraction as the estimate. That
statement can be formalized in terms of probability:

p(y = k,D,K) =
1
K

∑
i∈NK(x,D)

1(yi = k) (3.8)
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where: NK(x,D) are the K nearest points to x inD and 1(yi = k) is the indicator function defined as
follow:

1(e) =

{
1 when e is true
0 when e is false

(3.9)

In order to make a prediction, the algorithm needs to evaluate the following steps:

1 Data : T r a i n i n g da t a xtraini , yi , and t e s t d a t a xtest

2 R e s u l t : P r e d i c t e d t e s t ou t p u t ŷ
3 Load the t r a i n i n g and t e s t d a t a ;
4

5 Find the k t r a i n i n g da t a p o i n t s xi , which has the s h o r t e s t d i s t a n c eD(xtraini , xtest) ;
6 Decide ŷ wi th a ma j o r i t y vo t e among tho s e k n e a r e s t n e i ghbou r s ;

Algorithm 3.1: k-nearest neighbour, k-NN

The number of neighbours k and distance function are the only two hyper-parameters that need to
be selected apriori by a machine learning practitioner. In the case where the choice is not intuitive,
usually, an extensive scanof theparameter space shouldbeperformedas apart of the verification studies.
Figure 3.3.1 visualize the influence of the different values of k on the classifier decision boundaries. The
decision boundary is a disjoint region where each of the points is classified into the same class. It is
clearly visible that considering more neighbours produce a smoother decision boundary.

Figure 3.3.1: k-NN decision boundaries. Each plot was generated for a different value of the
nearest neighbours. The data (100 points) and the labeling function used to generate these plots
were selected randomly.

K-NN model has two limitations. First of all the K-NN’s prediction time and space grow linearly
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with the number of training examples6, which make this model infeasible when the amount of the data
samples are very large (i.e., 105 − 106 events). The second limitation of the k-NN models is the fact
that this model suffers from the curse of dimensionality. In low dimensional spaces, data may seem
very similar, but the higher the dimension, the further these data points may seem to be. To illustrate
this phenomenon let consider a collection of points xi that are sampled uniformly within the unit d
dimensional hypercube ∀i, xi ∈ [0, 1]d, and the model that is looking for k = 10 neighbours of a
particular test point. Let l be the edge of the smaller hypercube that contains all k-nearest neighbour of
a given test point, then

ld ≈ k
n

l ≈ (
k
n
)
1
d (3.10)

If the training dataset contains n = 1000 entries each of dimensionality d = 20, then l ≈ 80%,
which means almost the entire space is needed to find the 10-NN. This breaks the k-NN assumption
because the k neighbors are not particularly close to each other, and therefore similar, to any other data
points in the training set. If we take into consideration that dimensionality of the track classification
problem, it is not expected to get promising results. Although training the k-NN is pretty fast, so seems
to be a reasonable choice for a baseline model.

3.3.2 Logistic Regression

Another family of models that is usually trained in order to get a study baseline is Logistic Regression,
which is one of the simplest parametric classification models. The name of this model may be confus-
ing. Despite having term ”regression” inside its name, it is a classification model. It is based on the
assumption that the output is a linear function of the inputs:

y(x) = σ(wTx+ b) = σ

(
D∑
i=1

wixi + b

)
(3.11)

where: wTx is a dot product between the input vector x and themodel’sweightsw, and b is a bias term. In
this context, the bias termmeans themodel’s output when no input signal is given. Do not confuse with
the statistical ”bias”, which represents the difference between true parameter value and the estimator’s
expected value. The σ is a sigmoid function. It is defined as:

σ(x) =
1

1+ exp(−x)
(3.12)

The term ”sigmoid” means S-shaped, which is shown in Figure 3.3.2. This function is used to map the
whole real axis into a finite interval. In the case of classification, it squashes the regression output (term

6There are a couple of methods like KD-trees that reduce K-NN evaluation complexity. Still, it does not affect the space
complexity of the model
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wTx) into the interval {0, 1}, which can be interpreted as a probability. Positive input numbers become
high probabilities, and the negative values become low ones. The first derivative of this function can be
expressed in the following way:

dσ(x)
dx

= σ(x) · (1− σ(x)) (3.13)

Figure 3.3.2: Plot of the sigmoid function.

In the case of binary classification, y ∈ {0, 1}, the model 3.11 can be rewritten in the following
probabilistic form:

p(y|x,w) = B(y|σ(wTx+ b)) (3.14)

where: B(z|θ) is a Bernoulli distribution defined as:

B(z|θ) =

{
θ if z = 1
1− θ if z = 0

(3.15)

the θ is a probability of a success. The Bernoulli distribution is a special case of a binomial distribution,
where n = 1.

The model fitting procedure can be derived using Maximum Likelihood Estimation (MLE) tech-
nique 7 [30]. The likelihood function is a quantity similar in its nature to the probability. The difference
is that the probability is used to describe the future outcome of the random process, and the likelihood
tells what is the probability that observed data were sampled from the process described by some spe-
cific model and is a function of the model’s parameters.

For a dataset D := {xn, yn} where yn ∈ {0, 1} and n = 1 · · ·N the likelihood of the entire dataset
can be written as:

7MLE is used to find θ̃ = argmin
θ

logp(D|θ), whereD is a data
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L(w) =
N∏
i=1

B(yi|xi,w)

=
N∏
i=1

σ(wTxi)yi ·
[
1− σ(wTxi)

]1−yi (3.16)

Equation 3.16 assumes that the training examples are independent and identically distributed (iid).
In the practical application instead of maximizing the likelihood 3.16 it is more convenient tominimize
negative logarithm of likelihood according to the following formula:

NLL(w) =
N∑
i=1

yilog
(
σ(wTxi

)
+ (1− yi)log(1− σ(wTxi)) (3.17)

Formula 3.17 is identical to the cross-entropy 3.7 for a case when number of classes is two. This
provides an additional justification for using cross-entropy as a cost function.

The conventional approach to finding a minimum of the cost function and setting the derivatives of
this function with respect to the parameters w fails due to the lack of closed-form for the minimum.
Instead, the iterative optimization algorithm has to be applied. Within the scope of this thesis, the Gra-
dient Descent algorithm will be discussed.

3.3.2.0.1 Gradient Descent Optimization
The Gradient Descent is an optimization algorithm that attempts to find a minimum of a function

by taking small steps in the direction of the gradient vector and ends at the local minimum. In the case
of a linear model, it can be proved that it will always be a global minimum [30]. The proof is based on
analysis of the Hessian matrix, which for the case of linear model 8 is always positive defined9. That
kind of optimization is called convex, and it is the reason why generalized linear models still play an
important role in classical Machine Learning. During a single optimization step the new, updated value
of the parameter wi is calculated according to the following formula:

wnew
i = wold

i − η · ∂L
∂wold

i

= wold
i − η ·

N∑
j=0

(
σ((wold)Txj)− yj

)
xj (3.18)

where: η is a step size, also called learning rate, which has to be set before the training procedure andL
denotes the loss function. The wrong choice of the learning rate value can pose a number of problem
for the training algorithm, which is shown in Figure 3.3.3. Setting it to a value that is too low may lead

8Linear term in a linear model refers to the parameters but not necessarily to the features, for instance, f(x) = w1x +
w2x2 + w3 sin(x) is considered as a linear model

9n × nmatrixM is positive defined if for all vector x⃗ ∈ Rn x⃗TMx⃗ > 0. Intuitively, a positive defined matrix is a matrix
generalization of a positive number, which does not change the sign of the number
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to a very long training process that may not be practical. On the other hand, setting too high may lead,
in turn, to rapid oscillations in the loss function and usually, the algorithm will fail.

Figure 3.3.3: Comparison of the learning rate values and its influence on a final model perfor-
mance. Figure taken from [12]

The second parameter of the gradient descent algorithm 3.18 is a number of examples N, that are
used to calculate the new weights. There are three versions of this optimization method. The first one
also called Stochastic Gradient Descent (SGD), update weights after each training example, which is
equivalent to set N = 1. For N > 1 it is called Mini-batch Gradient Descent. The final method uses
N equal to all examples, and it is usually called Batch Gradient Descent. Those tree methods and the
corresponding weight updates are visualized in Figure 3.3.4. The SGD frequently updates the model,
which provides immediate insight into its performance and improvement rate. However, this method’s
downside is noisy gradient information, which may affect the model parameters to oscillate around the
minimumvalue, whichmay reveal a higher variance over training epochs. On the other hands, theBatch
version of the Gradient Descent require a lot of memory and can be very slow for large datasets, and
more stable error gradient may result in coverage to less optimal local minimum.

Several enhanced versions ofGDalgorithmwere proposed in the literature, the summary of themcan
be found in [119]. From the perspective of deep learning, which is a topic of section 3.3.4, the ADAM
optimization algorithm is the most recommended one [91].
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Figure 3.3.4: Comparison of the different variants of the gradient descent algorithms and its in-
fluence on weights update path toward minimum.

3.3.2.0.2 Regularization When training any classification model, the general task is to make it
performwell not only on a training set but also on a new, previously unseen data sample. This objective
is called generalization and can be quantified by a test error. One of the strategies to reduce the gap
between training and test errors is called regularization. There aremany forms of regularization. Within
this thesis’s scope, the modification of the cost function 10 in order to discourage the parameters from
reaching a large value. A model with one or a few large parameters means that model is using only a
small subset of features to make a decision. To avoid that kind of situation, the additional penalty term
can be added to the loss function:

Lreg(w) = L(w) +Ω(w) (3.19)

where: L is the previous, non-regularized loss function, and theΩ(w) is a regularization term that is a
function of a model’s weights.

Thesimplest andmostpopular choiceof theΩ(w) is a sumof squaresof the themodel’s coefficients11.
In such a case, the cross-entropy loss function 3.7 is expressed by the following formula:

L =
N∑
i=1

yilog
(
σ(wTxi

)
+ (1− yi)log(1− σ(wTxi)) +

α
2
wTw (3.20)

where: α is a hyper-parameter that weight a relative contribution of a squared norm penalty. That kind
of regularization is also known asweight decay. It can be shown that the addition of theL2 regularization
term modifies the learning rule to shrink the weight vector on each optimization step.

10The other popular regularization method is data augmentation, which is used to generate a new training example by
applying some transformation function on old examples. The proper choice of a transformation function in the case of
high-dimensional tabular data is not obvious; that why it was not implemented.

11that kind of regularization is also called Ridge Regression or L2
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The second popular way of expressingΩ(w) is called a lasso regression:

Ωl1(w) =
α
2
||w|| = α

2

M∑
i=1

|wi| (3.21)

Adding the lasso regularization term is equivalent to a feature selectionmechanism. The proof of this
statement is based on an analysis of the lasso regularization gradient, which is formulated by

dΩL1(w)
dw

= sign(w) =


1 when w > 0
0 when w = 0
−1 when w < 0

(3.22)

Formula 3.22 indicates thatL1-regularizationwill move anyweight towards 0with the same step size,
regardless the weight’s value. In other words, if the α hyper-parameter is sufficiently large, some of the
weights are driven to zero, causing the optimization solution to be sparer. In contrast, the L2 gradient is
expressed as

dΩL2(w)
dw

= w (3.23)

Formula 3.23 shows that the weight’s update, see Equation 3.18, linearly decrease towards zero as the
weight goes towards zero. Therefore, L2-regularization will also move any weight towards zero, but it
will take smaller and smaller steps as a weight approaches zero. Therefore, the model never reaches a
weight of zero, regardless of how many steps it takes. Figure 3.3.5 shows the difference between these
two regularization methods.

The statistical justification of using both L1 andL2 regularization comes fromMaximumAposterior
Estimation (MAP), which enhance the maximum likelihood method by adding prior factor. The MAP
framework is one of the tools of the Bayesian statistic, which allows adding a probability distribution
over the model’s parameters (external heuristics). From a conceptual standpoint, the interpretation is
that one has some prior knowledge about the possible values of the unknown parameters (for instance
a physics law such as momentum conservation).

3.3.2.0.3 Logistic Regression and data linear separability

The logistic regression model has zero training error rate only when the data is linearly separable,
which means that there is an n-dimensional hyperplane that can separate data into classes. Figure 3.3.6
presents example of such a data.

The linear separability of the data is a strong assumption and, in practical applications, holds rarely.
To produce the nonlinear decision boundaries, twomethods can be used. The first one is to handcraft a
function φ(x) that transforms data into the form that makes it linearly separable. This task is very chal-
lenging, taking into consideration the high dimensionality of the practical classification problems. The
second idea, discussed in the next sections, is to build a classifier that can generate nonlinear classifica-
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Figure 3.3.5: Visualization of the impact of the regularization term on the optimization solution.
The blue contours plot represents regularized cost function along with a L2 (left) and L1 (right)
regularization terms. The optimum value of the parameters is denoted by w∗. The lasso regulariza-
tion gives a spare solution in which w∗1 = 0. Figure taken from [30]

Figure 3.3.6: Visualization of the linear separability of a data.

tion rules.
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Figure 3.3.7: Logistic regression decision boundaries. The bottom figure presents a 3D plot,
which visualize the classifier output (horizontal line) versus feature values.
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3.3.3 XGboost Classifier

TheXGboost stands forExtremeGradientBoosting [45]. It is the state-of-the-art implementationof the
Gradient Boosted Classifier. The Gradient Boosted Classifier is a model that uses k additive functions
to predict the output. Each of these functions is called a weak learner. The next section discusses one of
the usual choice of week learner - Decision Tree Classifier.

3.3.3.1 Decision Tree Classifier

The Decision Tree Classifier is a parametric model implemented by recursively partitioning the input
space, and defining a local model in each resulting region of input space. This can be represented by a
so-called tree object, with one leaf per region. Analytically, themodel can be expressed in the following
form:

f(x) =
L∑
l=1

γ l1(x ∈ Rl) (3.24)

where: L is the number of disjoint regions R1,R2, . . . ,RL of the entire input space, γ l is a local re-
sponse for region Rl, and x is a input N-dim vector. The decision whether to make an additional split is
based on the information gainmetric. The information gain is closely related to the information entropy
3.3:

IG(P, a) = H(P)− H(P|a) (3.25)

where H(P|a) is the conditional entropy of P given the value of the attribute is a. The information
gain can be interpreted as a change in the entropy when attribute a is observed. The process of the
partitioning of the input space is performed by the procedure, in which greedy selects the attribute that
gives the highest information gain. From the practical perspective, Decision Tree (DT) algorithm is
implemented in the following way:

1 Data : T r a i n i n g a t t r i b u t e−v a l u e d a t a s e t D
2 Tree = {}
3 i f a l l i n s t a n c e i n D has the same c l a s s c then :
4 l a b e l ( Tree ) ← c
5 t e rm i n a t e
6 e l s e i f a t t r i b u t e s s e t = ∅ or no a t t r i b u t e s has p o s i t i v e i n f o rma t i o n g a i n then :
7 l a b e l ( Tree ) ← most common c l a s s i n D
8 t e rm i n a t e
9 f o r a l l a t t r i b u t e s a ∈ D do :

10 abest = Bes t a t t r i b u t e s a c c o r d i n g to the i n f o rma t i o n g a i n
11 Tree = c r e a t e d e c i s i o n t r e e node wi th abest a s a r oo t
12 Da = Induced sub−d a t a s e t from D based on abest
13 f o r each v a l u e o f a t t r i b u t e s i n Da :
14 Treea = Bu i l dDe c i s i o nT r e e (Da )
15 a t t a c h Treea to the co r r e s pond i n g branch Tree
16 end f o r
17 r e t u r n Tree

Algorithm 3.2: Building Decision Tree (psudocode)
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Figure 3.3.8: Example of the result of training a DT Classifier based on the Iris dataset [63] [18].
This dataset consists of three different species of iris plant. The upper figure present the decision
boundaries that are produced by the classifier, each of the color represents different species of iris.
The graph below, shows the nodes where the decisions are evaluated by the classifier. The decision
boundaries plot was taken from [31].

72



Figure 3.3.8 presents the exemplaryDTClassifier, that was trained in order to classify different spices
of iris plant [63] [18]. It is visible that each node of the tree is composed of a single ”yes or no” type
question, and the prediction is calculated by recursively answering those questions (starting from the
root node) using the information decoded within the input vector. One of the most critical features of
this model is that a human easily interprets its prediction. One can get the intuition of why the model
made a particular decision by looking at each question-answer pair and comparing them with an initial
problem’s domain knowledge. The DT models are very popular in the field of High Energy Physics.

3.3.3.2 Gradient Boosting

Gradient Boosting is an idea to enhance a single weak learner prediction by creating an ensemble of
those models. The gradient boosted method creates a strong learner model by learning from the errors
of the weak learners. Typically, the weak learner is selected to be a shallow DT or Logistic Regression
model. Although all classification models can be used, the only regiment is that the weak learner needs
to perform better than chance when trying to label the data.

Gradient Boosting constructs additive model by sub-sequentially fitting week learners to current
pseudo residual at each iteration12. Mathematically, the Gradient Boosting algorithms minimize the
cost function by approximating the optimal solution f∗(x) using an additive expansion of the form:

f(xi) =
K∑

k=0

fk(xi;w, q,T) (3.26)

Where fk(x;w, q,T) is a weak learner belonging to the class of regression trees, q represents the struc-
ture of each tree thatmaps from input vector x into the corresponding leaf index,T is a number of leaves
in each tree and w ∈ RT is a leaf weight. To learn the parameters of each function that constitutes the
xgboost model, the following cost function is minimized:

Lxgboost(f) =
N∑
i=0

L(yi, f(xi)) +
K∑

k=0

Ω(fk)

=
N∑
i=0

L(yi, f(xi)) + γT+
1
2
λ||w||2

(3.27)

whereL is a is a differentiable convex loss function 13 that measures the difference between the pre-
diction f(x⃗i) and the target yi. The term Ω penalizes the complexity of the model and depends on two
hyper-parameters. The first one γ is dedicated to reducing the number of leaves, and λ is L2 regulariza-
tion parameter.

The optimization of the formula 3.27 is infeasible because it introduces functions as parameters, and
that why using numerical methods such as Stochastic Gradient Descent is not an option since they op-

12one iteration is a process of adding one weak learner to the model
13Within the scope of this thesis only Cross-Entropy was tested, although section 4.15.2 provides description of an alter-

native metric.
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erate on numerical vectors, not trees. Instead, the model is trained in an additive manner, each time a
single decision tree is added to themodel. Let ŷ(t)i be themodel’s prediction of the i-th training instance
at the t-th interaction, then this procedure can unfold:

ŷ(0)i = 0

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(0)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)
...

ŷ(t)i =
t∑

k=1

fk(xi) = ŷ(t−1)i + f(t−1)(xi)

(3.28)

The cost function 3.27 can be expressed as:

L(t)
xgboost =

N∑
i=0

L(yi, ŷ(t−1)i + ft(xi)) +Ω(ft) (3.29)

Using the Taylor expansion formula for the objective, the loss function can be written as:

L(t)
xgboost ≃

N∑
i=0

[
L(yi, ŷ(t−1)) + gift(xi) +

1
2
hif2t (xi)

]
+Ω(ft)

≃
N∑
i=0

[
gift(xi) +

1
2
hif2t (xi)

]
+Ω(ft)

(3.30)

where gi and hi are gradient and hessian defined as follow:

gi =
[
∂L(yi, ŷ(t−1))

∂ŷ(t−1)

]
(3.31)

hi =
[
∂2L(yi, ŷ(t−1))

∂ŷ(t−1)

]
(3.32)

Learning objective written in the form of 3.30 is very convenient from the perspective of the code
implementation. To add customized loss function, one needs to provide the implementation of the
gradient and hessian. The procedure, that minimize 3.30 is visualized in Figure 3.3.9.

XGBoost is aperfect combinationof software andhardwareoptimization techniques toyield superior
results using less computing resources in the shortest amount of time. Themain features of this package
are listed below:

• Split finding approximate algorithmTofind the best split over a continuous feature space, data
need to be sorted andfit entirely intomemory. Thismaybe a problem in the case of large datasets.
An approximate algorithm is used for this. Candidate split points are proposed based on the
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Figure 3.3.9: Gradient boosting algorithms visualization. Each iteration corresponds to adding
one tree, which allows creating more sophisticated non-linear decision boundaries. This graph was
taken from [141]
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percentiles of the feature distributions.

• Sparsity-aware algorithm. The input may be sparse due to such reasons as one-hot encoding,
missing values, or zero entries. XGBoost is aware of the sparsity pattern in the data and visits only
the default direction (non-missing entries) in each node.

• Out-of-corecomputationData that donot fit intomainmemory is divided intomultiple blocks,
and each block is stored on the disk. A dedicated algorithm can compress each block by columns
and then decompress it on the fly.

• Regularized LearningObjectiveThe default loss function is composed of two components

Lxgboost(w) = L(w) +Ω(w) (3.33)

where Ω(w) is a regularization term and depends on the complexity of the model. Most of the
implementations, including TMVA [83], miss this term and thus they are more prone to over-
training.

3.3.4 Deep Neural Network

This section provides a basic intuition on how the Deep Neural Network works. The one who wants to
know more should refer to [74].

The critical limitation of linear models described in section 3.3.2 is a lack of ability to generate non-
linear decision boundaries. To overcome this limitation, a mapping ϕ(⃗x) that transforms the input vec-
tors into the representation thatmakes those vectors linearly separable has to be found. Themost robust
strategy of searching for such transformations is to construct a model that will be capable of learning
ϕ(⃗x). One of such amodel is a neural network, which parametrizes ϕ(⃗x; θ) and uses the gradient-based
optimization algorithm to find the optimal set of θ that corresponds to the desired representation. The
idea of such a model comes from the brain’s computation mechanism [105], which consists of compu-
tation units called neurons. The schematic view of such a model is presented in Figure 3.3.10.

A neuron is an entity that multiplies each input by its weight and sums them, afterwards applies a
non-linear function to the result. The non-linear function is a crucial feature of the whole neural net-
work idea, which is indicated in Figure 3.3.10 by the sigmoid shaped symbol. Its absence would not
allow creating a more complex model that the logistic regression. The neurons are connected, forming
a network, in which the output of a neuron is feed into the inputs following neurons. Neural network
models arrange the neurons into layers, which reflect the flow of information. Within the scope of this
thesis, onlymodels built on top of fully-connected layerswere investigated. Such a layer applies an affine
transformation to the input vector 14. Therefore, the output of the first layer can be written as:

h(1) = σ(1)(w(1)Tx⃗+ b(1)) (3.34)

14Typically, that kind of layer is called linear, which can bemisleading since it applies an affine transformation, not a linear
one
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and the output of the second layer is given by:

h(2) = σ(2)(w(2)Th(1) + b(2)) (3.35)

where σ(i) is an i-th activation function, x⃗ ∈ Rin, w(i) ∈ Rdi−1×di are weights matrix, b(i) ∈ Rdi is a bias
term and di is the number of neurons in the i-th layer.

Propagation of the input vector x⃗ through the network by iteratively calculating the output of each
hidden layer toproduce theprediction ŷ is called forwardpropagation, see algorithm3.3 for implemen-
tation details. Beside of providing the prediction, the full version of the forward propagation contains
loss calculation step.

As indicated in Figure 3.3.10, the bottom layer, which has no incoming arrows, is the input to the
model, where each neuron represents one component of the input vector x⃗. The top-most layer has no
outgoing arrows. Thus, it is the output of the network. The layers situated between the input and the
output are called hidden.

1 Requ i r e : T r a i n i n g da t a xtraini , yi ;
2 Requ i r e : Network o f depth l ;
3 Requ i r e : W(i)andb(i), i ∈ {1, . . . l} the we i gh t m a t r i c e s and b i a s v e c t o r s o f the model
4 h0 = xtraini

5 f o r k = 1, . . . , l do
6 z(k) = W(k)hk−1 + b(k)

7 h(k) = σ(k)(z(k))
8 end f o r
9 ŷ = hl

10 L = L(yi, ŷ) + λω(w, b)

Algorithm 3.3: Forward propagation of feed-forward neural network

The non-linear function σ can be implemented in a various ways. The design of it is an extremely ac-
tive research area. The twomost popular types of activation functions are sigmoid, described in section
3.3.2, and rectified linear unit (ReLU) (bothwere used to train themodel within the presented studies).

ReLU [71] it defined as follow:

ReLU(x) = max(0, x) =

{
x x > 0
0 otherwise

(3.36)

This activation function is the default activation function recommended for use inside hidden layer
formost feed-forwardneural networks [74]. Applying this function to the output of a linear transforma-
tion yields a non-linear transformation, which remains very close to linear. The only difference between
a linear unit and a rectified linear unit is that a ReLU unit outputs zero across half its domain.

One of the essential features of this activation function is the fact that its derivative is not computa-
tionally expensive and remains largewhenever the unit is active. On the other hand, the drawback of the
ReLU units is that they cannot learn via gradient-basedmethods on examples for which their activation
is zero. This issue was addressed by Leaky ReLU [103] and PReLU [79].
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Figure 3.3.10: Feed-forward neural network with two hidden layers. Each circle represents a neu-
ron, with incoming arrows being the neuron’s inputs and outgoing arrows being the neuron’s out-
puts. Each arrow carries a weight, reflecting its importance (not shown). Figure taken from [72].

3.3.5 Universal Approximation Theorem

One of themost important concepts of the neural networks with at least one hidden layer is the capabil-
ity of approximating any Borel measurable function 15. This observation is called the universal approxi-
mation theorem. The proof of this theorem is beyond the scope of this thesis and can be found in [84]
and [56]. The intuition behind this theorem is shown in Figure 3.3.11. The theorem does not say how
to construct the network; therefore the layermay be infeasibly large andmay fail to learn and generalize
correctly. From a practical perspective, it is recommended to use deeper (having more layers) rather
than wider networks [107].

3.3.5.1 Back-propagation and computational graphs

The remainder of this section is dedicated to present the algorithm that is widely used to train the neural
network model. It contains three steps:

• Forward propagation with loss calculation;

• Calculation of the loss function with respect to the model’s weights;

15Within the scope of this thesis, a function is Borel measurable when it is continuous on a closed and bounded subset of
Rn
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Figure 3.3.11: Visualization of the Universal Approximation Theorem. The objective was to build
a network with one hidden layer that is able to represent f(x) = x3+ x2− x−1. This network is pre-
sented in the left plot. The right plot present the f(x) and weighted sum of six ReLU functions. To
reduce the approximation error more ReLU functions has to be added. Figure adapted from [65]

• Weight update via Gradient Descent-like algorithm using the previously calculated gradient.

This procedure was designed to iteratively adjust the weights of connected neurons using the cross-
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entropy between the network’s output vector and the desired one. As a result of this procedure, the
hidden units produce a new feature’s representations, which aremore convenient from the downstream
task perspective. To estimate the changeofweights for each layer, their gradient has to be calculated first.
This algorithm is called backpropagation or backprop and was proposed in 1986 by G. Hinton [121].
The final round of evaluating a single step in training deep neural networks is to use the previously cal-
culated gradients to update the model’s weights using Gradient Descent-like algorithm.

1 Requ i r e : T r a i n i n g da t a xtraini , yi ;
2 Requ i r e : Network o f depth l ;
3 Requ i r e : W(i) and b(i), i ∈ {1, . . . l} the we i gh t m a t r i c e s and b i a s v e c t o r s o f the model
4

5 run fo rwa rd p r op a g a t i o n f o r a g i v en example xtraini

6 compute the g r a d i e n t on the ou t p u t l a y e r :
7 g← ∇ŷL = ∇ŷL(y, ŷ)
8 f o r k = l− 1, . . . , 1 do
9 c on v e r t the g r a d i e n t on the k−th l a y e r ou t p u t i n t o a g r a d i e n t on the pre−σ a c t i v a t i o n :

10 g←z(k) L = g⊙ σ′(z(k))
11 compute g r a d i e n t s on a we i gh t and b i a s e s :
12 ∇bkL = g+ λ∇bkΩ(W, b)
13 ∇WkL = gz(k−1)T + λ∇WkΩ(W, b)
14 p ropag a t e the g r a d i e n t s w . r . t t he ne x t lower− l e v e l h idden l a y e r a c t i v a t i o n :
15 g←z(k−1) L = W(k)Tg
16 end f o r

Algorithm 3.4: Backward propagation of feed-forward neural network

where⊙ is a Hadamard Product also known as element-wise product defined as:

(A⊙ B)ij = (A⊙ B)ij = (A)ij(B)ij (3.37)

Thebackprop, which is demonstrated by the algorithm3.4 is specified to the feed-forward neural net-
work only. However, the modern deep learning framework, such as TensorFlow [8] or PyTorch [110],
is based on a general form of backpropagation, which is implemented using computational graphs. A
computational graph is a graph in which each node represents a variable. The variable may be a scalar,
matrix, tensor 16 or variable of another type which is useful when calculating higher-order derivations.
The edges of the graph represent the operations that are applied to particular nodes. Thedirection of the
edge indicates whether some node is a parent of a given child node. One of the approaches to calculat-
ing the gradient is to extend the graph by adding additional nodes to the graph that provide a symbolic
description of the desired derivatives. A detailed explanation of how the PyTorch implements gradient
calculation can be found in [104].

From the practical perspective, the one who wants to build a model using the PyTorch framework
has to define only how the forward propagation is calculated. The framework will take care of backward
propagation.

16In the field of deep learning, a tensor is an object that has more than two dimensions and, in contrary to the tensor in
physics, does not need to follow any transformation rules.
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Figure 3.3.12: Computational graph used to perform the forward propagation and estimate the
cross-entropy loss with L2 regularization for a single layer full-connected neural network. The blue
rectangles represent tensors and the gray operations applied on those tensors. Figure generated by
author’s implementation of the autograd [58].

3.3.6 Hyper-parameter optimization

Themodel’s hyper-parameter is a non-learnable parameter that has to be set priory to thewhole training
process. Each of the models has its own set of hyper-parameters, which depends on the model’s archi-
tecture. For instance, one of the hyper-parameters of the Decision Tree, described in section 3.3.3.1 is
its maximum depth, which indicates what the maximum number of splits used to construct the tree is.

One of the essential concepts regarding the hyper-parameters is that its influence on themodel’s per-
formance is not equal. Some of the hyper-parameters aremore important than the others. Additionally,
the interaction between each of the hyper-parameters is usually unknown and complex.

Hyper-parameter optimization is a procedure of searching for a set of hyper-parameters to achieve
highprediction accuracy. Thewrong choice of the hyper-parametersmay lead to a significant decrement
of the classification power of themodel. There are several hyper-parameter tuning techniques, but three
are presented within the scope of this thesis. The difference among each of the method is a strategy to
choose the set of S trial points {λ(1), . . . , λ(S)} to evaluate f(x; λ) in order to find the λ(i) parameters
that work the best. Within the scope of this thesis, three methods are explained; see section 3.3.6.2 and
3.3.6.3.
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3.3.6.1 Cross Validation

One of the methods to get more reliable measurement of the classifier performance is k-Fold cross-
validation [33], which is schematically shown in Figure 3.3.13. This method randomly split the data
into k independent subsets. For instance, if k = 5, 80% of data is used to train the model while 20% of
the data sample constitutes the validation set.

Subsequently, one of the subsets is used to check the model’s performance and the reaming data to
train it. Each fold generates one prediction. That created set of scores can be used to estimate the statis-
tical uncertainty of the classifier’s performance. The cross-validation result is more robust and reliable
than a single score calculated on a single test set.

Figure 3.3.13: The visualization of k-Fold cross validation idea.

This technique is advantageous when deciding which set of hyper-parameters works best. The cross-
validation provides ametric performance distribution rather than a singlemeasurement. The drawback
of this method is that for more complicatedmodels, which training takes a lot of time, it becomes infea-
sible.

3.3.6.2 Grid and Random Search

Grid Search, except formanual search, is themost basicmethodology to tune hyper-parameters. It splits
the hyper-parameter space into rectangular hype-regions. Each of the regions represents one trial. In
other words, Grid Search choose a set of values per each variable (λ1 . . . λK), where K is a number of
hyper-parameters, and then a set of trials is formed by assembling every combination of values for each
hyper-parameter; therefore the number o trials in a Grid Search is:

S =
K∏

k=1

|λk| (3.38)

This product over K hyper-parameters makes Grid Search suffer from the curse of dimensionality
because the number of joint hyper-parameters values, that has to be checked grows exponentially with
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Figure 3.3.14: Comparison of the Grid Search and Random Search methods of hyper-parameters
tuning. On both of the figures, the x-axis represents a hyper-parameter. The modification of its
value has a negligible effect on model performance, and the y-axis presents a hyper-parameter that
has a large impact on the model classification ability [27].

the number of hyper-parameters.
The only real difference between Grid Search and Random Search is on step 1 of the strategy cycle –

RandomSearchpicks thepoint randomly fromthe configuration space. The researcher needs toprovide
a set of distributions, one per hyper-parameter, to generate trials. From a practical perspective, the usual
choice for these distributions is uniform and log-uniform distributions. The second one is a common
choice when dealing with such hyper-parameter as the learning rate, where the hyper-parameter’s value
range that needs to be check is λk ∈ (1× 10−6, 1).

To compare these two methods a toy experiment was shown in Figure 3.3.14. It presented a search
for nine trials for optimizing a function
f(x, y) = g(x) + h(y) ≈ g(x). With Grid Search, nine trials test g(x) in three distinct places only, in
comparisonRandomSearch leveraged all nine trials to explore distinct value of g(x). The failure ofGrid
Search is the rule rather than the exception in high dimensional hyper-parameter optimization [27].

3.3.6.3 Bayesian optimization

Both of the previously described methods have one drawback. Neither of them leverages the previous
evaluation results to reject the regions where there is a small probability of finding the maximum value
of the unknown objective function f(x), which is a nonlinear function defined over a compact set A.
This section is dedicated to describing the general idea of Bayesian Optimization, which can be applied
to any regression problems. It is not limited to the optimal hyper-parameter search. The enhancement
to these methods should make use of accumulated observations D1:t = {x1:t, f(x1:t)}, where xi is a ith
sample, and f(xi) is a observation of the objective function at xi. 17. One of the methods that fulfil this

17In the case of hyper-parameters optimization, f is a specific metric used to measure model performance, within this
thesis, the ROC AUC was selected, and x represents a vector of hyper-parameters
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condition is Bayesian optimization.
Bayesian optimization is a technique widely used for solving the regression problems when function

evaluation is expensive, and the derivative is usually unknown. Thus the usual optimization methods
like Gradient Descent, are not applicable. The hyper-parameter optimization problem belongs to this
area. To be more precise, in the case of seed classification model training takes a significant amount of
time (in the case of XGboost, one trial takesmore than an hour), and themodel performance derivative
with respect to, for instance, the tree depth is not defined. The method’s name comes from the famous
Bayes theorem. In the case of an optimization problem, the posterior distribution can be expressed in
the following manner:

P(f|D1:t) ∝ P(D1:t|f) · P(f) (3.39)

where P(D1:t|f) is a likelihood function,D1:t is a dataset of previous observation that contains t con-
secutive trials, P(f) is a priory function that express one’s belief on a objective function f, and P(f|D1:t)

is a posterior distribution. The assumption of the Bayesian optimization method is the function f has
to be Lipschitz-continuous, which means that exist some constantC, such for all pairs x1, x2 ∈ A the
following inequality holds:

||f(x1)− f(x2)|| ≤ C||x1 − x2|| (3.40)

where || · || denotes a norm.
The posterior probabilities capture updated beliefs about the unknown objective function. This may

be interpreted as a single step of the Bayesian optimization procedure, which is an estimation of the
objective function with a surrogate model. The surrogate modelling is a technique which builds the
approximating model of the objective function using models that are cheap and fast to evaluate.

To sample efficiently trails x 18, Bayesian optimization has the second component - acquisition func-
tion u(x|D1:t). This function is used to determine the next trial location xt+1. The acquisition function
should be able to find a trade-off between exploration (searching for a region where the surrogate func-
tion is very uncertain) and exploitation (searching for values of x where f(x) is expected to be high),
which is shown in Figure 3.3.16.

1 \ l a b e l ={ a l g : B a y e s i a n Op t im i z a t i on }
2 f o r t = 1 , 2 , . . , do :
3 Find the nex t s amp l i ng po i n t xt+1 by op t im i z i n g the a c q u i s i t i o n f u n c t i o n : xt = argmaxxu(x|D1:t)

4 Sample a p o s s i b l y no i s y o b j e c t i v e f u n c t i o n yt+1 = f(xt+1) + εt+1

5 Augment the da t a D1:t+1 = {D1:t, (xt+1, yt+1)} and upda te the s u r r o g a t e f u n c t i o n
6 end f o r

Algorithm 3.5: Bayesian Optimization

3.3.6.3.1 Gaussian Process
A popular surrogate model for Bayesian optimization is a Gaussian process. A Gaussian Process is a

randomprocesswhere every point x ∈ Rd, where d is a dimensionality of the optimization problem, for

18In the case of hyper-parameters optimization x corresponds to the vector of hyper-parameters x = (λ1, λ2, · · · )T
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Figure 3.3.15: Simple 1D Gaussian process with three observations x1:3. The solid black line is
the mean prediction of the Gaussian Process, and the shaded area is one sigma region around
mean value. Graph taken from [32].

the problem of hyper-parameter optimization d is equal to the number of hyper-parameters taken into
consideration during the study, is assigned to a randomvariable f(x). TheGaussian Process can be inter-
preted as an extension of themultivariate Gaussian distribution to an infinite dimension or distribution
over functions. For such a process, any finite combination of dimensionswill be aGaussian distribution.
Gaussian Process is completely specified by its mean functionm and k covariance function:

f(x) ∼ N (m(x), k(x, x′)) (3.41)

Intuitively, the Gaussian Process can be interpreted as a probability function that, for each value of x
returns a mean and variance over all possible values of f at x, which is shown in Figure 3.3.15.

The convenient and common choice of mean function is m(x) = 0 19. The second building block
of the Gaussian Process is the covariance function, also called kernel function. The literature discussed
several choices of the kernel function, but within the scope of this thesis, only the most popular and
basic one is discussed, i.e. squared exponential function:

k(xi, xj) = exp
(
−1
2
||xi − xj||2

)
(3.42)

The function 3.42 approaches 0when xi and xj get apart and 1when they are very close to each other.
The interpretation of the function is straightforward. When two points are close, they have a significant
influence on each other. In the optimization task, the data come from an external model’s evaluation

19Within the scope of this thesis the Gaussian process is limited to model a noise function in a form of f(x) = g(x) + ε
and ε ∼ N (0, σ)
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and fits the Gaussian Process to get the posterior. In the hyper-parameters optimization case, the data
refer to the model performance that was training using a particular set of hyper-parameters. Assuming
that the data from the previous iterations is denoted as {(x1:t, f1:t)}, the f(t+ 1) is:[

f1:t
ft+1

]
∼ N

(
0,

[
K k
kT k(xt+1, xt+1)

])
(3.43)

where

K =


k(x1, x1) . . . k(x1, xt)

... . . . ...
k(x1, xt) . . . k(xt, xt)

 (3.44)

and
k =

[
k(xt+1, x1) k(xt+1, x2) . . . k(xt+1, xt)

]
(3.45)

Formula 3.43 comes from the properties of theGaussian Process, which states that the joint distribu-
tion of Gaussian distributed variables is also a Gaussian. Putting together equations 3.43 and 3.39 one
can obtain the expression for the predictive distribution [115]:

P(ft+1|D1:t,xt+1) ∝ N (μt(xt+1), σ2t (xt+1) (3.46)

where:
μt(xt+1) = kTK−1f1:t

σ2t (xt+1) = k(xt+1, xt)− kTK−1k

To summarize Gaussian process allows leverage information obtained from the previous objective
function evaluation.

3.3.6.3.2 Acquisition Function for Bayesian Optimization

This paragraph is dedicated to the second component of BayesianOptimization, the acquisition func-
tion. The role of this object is to drive the search for the optimum solution, see the right side of Fig-
ure 3.3.16. It is defined in such a way that its high values correspond to the potentially high values of the
objective function. The maximum acquisition function is used to select the next point at which the ob-
jective function is evaluated see right side of Figure 3.3.16. A typical choice of the acquisition function
is Expected Improvement defined as:

EI(x) = E (max(f(x)− f(x̃), 0)) (3.47)

where x̃ is best location so far x̃ = argmax
xi∈x1:t

f(xi).

The expected improvement can be evaluated analytically using the Gaussian Process model [115]:

EI(x) =

{
(μ(x)− f(x̃))Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ = 0

(3.48)
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Figure 3.3.16: An example of using Bayesian optimization on a 1D optimization problem - finding
maximum of function f(x). The figures on the left side show a Gaussian process approximation of
the unknown objective function (golden dashed curve) over ten iterations of the sampled value of
the objective function. The figures on the right present the acquisition function (red curve). The
acquisition function has a high value in the region where GP predicts a high objective, and the
prediction uncertainty is high.

where Z =
μx−f(̃x)
σ(x) − ξ, μ(x) and σ(x) are the mean and standard deviation of the Gaussian Process

posterior predicted at x, Φ and φ are cumulative distribution function (CDF) and probability density
function (PDF) of standard distribution respectively, ξ is the exploration-exploitation trade-off param-
eter, it is proportional to the amount, understood as a CPU-time or number of iterations, of exploration
during optmization.
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3.3.7 Model interpretation

One of the crucial problems when building 20 a complex Machine Learning model is lack of inter-
pretability of its prediction. This fact raises the question of why one should trust the prediction that
model gives. The Machine Learning model’s interpretability is an active research area, and many ideas
were recently published. Tomake sure that themodel, thatwas trained to classify the track seeds provide
reliable predictions two methods, apart from the usual quality metrics, were proposed: LIME (Local
Interpretable Model-Agnostic Explanations) [116] and SHAP (Shapley Additive exPlanations) [100].
This section starts by presenting a brief overview of both methods. Section 4.12 resents the results ob-
tained in order to understand the prediction of the trained seed classifier.

3.3.7.1 LIME - Local Interpretable Model-Agnostic Explanations

The discussion of the LIME should start from choosingmodels, that are human interpretable. An inter-
pretable explanation needs to use a representation that is understandable to humans, regardless of the
actual model’s architectures or features used to make a decision. For instance, a possible interpretable
representation of the text classification is a vector of binary values indicating the presence or absence of
a certain word, even though the model may use more complex input features. To get a better intuition
of what is the purpose of the LIME explanation, let consider a toy example where a Machine Learn-
ing model has to predict whether the patient has the flu or not. The input to this model is the patient’s
symptoms and other features such as weight or age. LIME selects the symptoms in the patient’s history
that aremost relevant and led to the prediction. With these approximations and the domain knowledge,
the doctor can make an informed decision about whether to trust the model’s prediction or not. The
visualization of this toy experiment is presented in Figure 3.3.17.

Figure 3.3.17: A toy example that visualizes the concept of LIME individual prediction explana-
tion. A model predicts that a patient has the flu, and LIME highlights the symptoms in the pa-
tient’s history that led to the prediction. Sneeze and headache are portrayed as contributing to the
”flu” prediction, while ”no fatigue” is evidence against it. Figure taken from [116].

In the case of the tabular data, the model that can be used as an interpretable approximation is a
linear model 21. That kind of explanation provides insights into the model for each studied event z. To

20in this context model building is understood as a complete model selection and validation processes
21the second type of interpretable model class is a decision tree, but within the scope of this thesis, only interpretation

based on a linear model was studied
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adopt this idea of explanation of the complex nonlinear decision boundaries, the LIME approximates
the model response locally, around the point of interest. The point of interest is a single instance, e.g.,
one track seed that was classified as a true seed. Conceptually LIME approximation is very close to the
Tylor series approximation, which infinitely differentiable function transforms to a power series around
the specific point x0:

f(x) =
∞∑
n=0

f(n)(x0)
n!

(x− x0)n (3.49)

In the case of LIME the approximation ismade by taking only the first order terms. To bemore specific,
let the model being explained is expressed as f : Rd → R and an explanation g ∈ G, where G is a
class of interpretable human models. The πx(z) is a proximity measure kernel between an instance z to
x, which is essential to define the local neighborhood of instance z.

Finally, let L(f, g, πx(z)) be a loss, which measures how faithful the local approximation g is. To re-
duce the complexity of the approximation model, the loss function is constructed by adding a regular-
ization term that depends on amodel complexity ofΩ(g). For the linear model, theΩ(g) depends on a
number of non-zero weights. Figure 3.3.18 visualize the idea of each component of the LIME explana-
tionmethod. The explanation produced by LIME is obtained by finding the minimum of the following
formula:

g∗(z) = argmin
g∈G

L(f, g, πx(z)) +Ω(g) (3.50)

The usual choice of Ω(g) is a K features LASSO regression [60]. Its detailed explanation can be
find in section 3.3.2.0.2, equation 3.21. The weight of the explanation model represents the relative
strength, measured as a influence on the model prediction for a given instance z, of each feature. The
second reason why the Lasso regression is a usual choice is its ability to select significant features only,
the weight of remaining are set to zero, see discussion in section 3.3.2.0.2.

From the practical perspective the LIME approximation is obtained by evaluating the fowling algo-
rithm:

1 Requ i r e : C l a s s i f i e r f , N da t a sample
2 Data : I n s t a n c e x and i t s i n t e r p r e t a b l e v e r s i o n x′

3 Requ i r e : S i m i l a r i t y k e r n e l πx(z)
4 Requ i r e : Length o f e x p l a n a t i o n K
5 Z ← {}
6 f o r i ∈ {1, 2, 3, . . . ,N} do :
7 z′i ← sample_around(x′)
8 Z ← Z∪ < z′i , f(zi), πx(zi) >
9 end f o r

10 w← K− Lasso(Z,K) wi th z′(i) a s f e a t u r e s and f ( z ) a s t a r g e t
11 r e t u r n w

Algorithm 3.6: Model explanation using LIME

3.3.7.2 Shap - SHapley Additive exPlanation

To understand the final method of analyzing the feature’s importance, an explanation of the shapely
value and the coalitional game theoryneed tobeprovided. The fowlingparagraphwas adopted from[132].
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Figure 3.3.18: Toy example to present intuition for LIME. The black-box model’s complex de-
cision function f (unknown to LIME) is represented by the blue/pink background, which cannot
be approximated well by a linear model. The bold red cross is the instance being explained. LIME
samples instances gets predictions using f, and weighs them by the proximity to the instance being
explained (represented here by size). The dashed line is the learned explanation that is locally (but
not globally) faithful [116].

3.3.7.2.1 Coalitional game
The coalitional game is a tuple < N, v >, where N = {1, 2, . . . , n} is a finite set of n players, v :

2N → R is a characteristic function, that describe worth of each coalition. The solution of the game is
to find the operator φ(v) = (φ1, . . . φn) ∈ Rn, which assigns to < N, v > vector of payoffs for each
coalition participant. To find a fair solution operator φ(v) needs to fulfill the following axioms:

•
∑

i∈N φi(v) = v(N), where v(N) is a value of grand coalition consisting of all players. This axiom
is called efficiency axiom.

• if for two players i and j v(S ∪ {i}) = v(S ∪ {j}) holds for every S, where S ⊂ N and i, j /∈ S,
then φi(v) = φj(v). This axiom indicates symmetry property.

• The dummy axiom says if v(S ∪ {i}) = v(S) holds for every S ⊂ N and i /∈ S, then φi(S) = 0,
and the player i is a dummy player, who has no influence on the coalition game outcome.

• for any pair of games v,w : φ(w+ v) = φ(w) + φ(v). This property is called additivity axiom.

Shapley theorem says, that for a given game< N, v > exists a unique solutionφ, which satisfies above
axioms, and it is called the Sapley value:

φshapleyi (v) =
∑

S⊆N,s=|S|

(n− s− 1)!s!
n!

(v(S ∪ {i})− v(S))) (3.51)

The proof of the above theorem can be found in the original Shapley’s paper [127].
To illustrate, let us consider a United Nations Security Council example. The UN council consists

of 5 permanent members, namely China, Russia, France, the UK, and the US, with veto power and ten
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non-permanent members. All permanent members must not veto, and the majority of members need
to agree to pass the resolution. What is the Shapley value for each of the countries?

To simplify the example let us consider the gameN = {1, 2, 3} . The player 1 is a permanent mem-
ber with the veto power, and players 2 and 3 are non-permanent members. The value of this game is
expressed: v({1, 2}) = v({1, 3}) = v({1, 2, 3}) = 1 and v(S) = 0 otherwise. The Shapley value for
this game obtained using formula 3.51 is ϕ1 =

2
3 , ϕ2 =

1
6 , ϕ3 =

1
6 . The conclusion is that both players

2 and 3 generate some value, so they deserve to get some reward and the player 1 gets the most of the
reward, because it is the most important since no resolution can be made without it.

3.3.7.2.2 Shap method

To leverage the idea of the Shapley value for the problem of model explanation let assume that the
explanation model g defined in the section 3.3.7.1 is a linear function of a binary variables:

g(z′) = φ0 +
M∑
i=1

φiz
′
i (3.52)

where z′ ∈ {0, 1}M indicates whether the feature was observed (z′ = 1) or unknown (z′ = 0), and
φi ∈ R are feature’s value.

In order to evaluate the effect of missing features i on the model being explained f, it is necessary to
define a mapping hx, that each missing binary feature z′ maps to the original function. Such a mapping
allows calculating the effect f(hx(z′)) of observing or not features. To compute the Shap values, the
authors proposed [100] the following assumption:

f(hx(z′)) = E[f(x)|xS] (3.53)

where S is the set of non-zero indexes in z′, and E[f(x)|xS] is the expected value of the function f(x)
conditioned on a subset S of the input features. Putting together equation 3.53 and 3.51 the shap value
is calculated using the following formula:

φi =
∑
S⊆N

(M− |S| − 1)!|S|!
M!

(E[f(x)|S ∪ {i}]− E[f(x)|S]) (3.54)

Figure3.3.19visualizes the ideaofmodel explanationand feature importancebasedonaShapmethod.

Figure 3.3.19: Shap values explain the output of a function f as a sum of the effect φi of each
feature being introduced into a conditional expectation [101].
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3.4 bonsai BoostedDecision Tree

Since the tracking algorithm is a part of the real-time LHCbHigh-Level Trigger system, both the execu-
tion time and memory footprint are important, so using the full continuous classifier is not an option.
Instead, a binned BDT (called bonsai BDT or bBDT ) classifier that meets the speed and memory cri-
teria of the HLT is used. This section is dedicated to present the idea of the model’s binarization, and
the benefits drawback will be discussed. Similar idea was implemented within the LHCb HLT [69].

The idea is to replace the evaluation of each tree that constitutes the Gradient Boosted Classifier
model 22 into an operation that is independent of the model’s complexity. The best possible choice for
such an operation would be the one that has a constant time computation complexity O(1). A lookup
table 23 is the right candidate. Thus it is a data structure that fulfils the above access time requirement.
The remaining problem is how to convert a complex model into the lookup table. The solution to this
problem is data discretization, which is a process of splitting an input space into k bins, and then for each
of the combinations of the bins, the model’s prediction is calculated, and the obtained value is saved.

To get a better understanding of how this process works, consider a 2D binary classification problem
where ”X” and ”0” represent two possible classes, which are shown in Figure 3.4.1. For simplicity, let
the number of bins k = 2, therefore in order to discretize the models, one needs to calculate four
predictions, which is a number of bins times number of features. The outcome of this process is a table
presented on the right side of Figure 3.4.1. In order to calculate the prediction for a given new instance
x (denoted as a red dot), the classifier needs to find corresponding bin indices and extract value from
the table. In this example, the prediction is 1.

Figure 3.4.1: bonsai Boosted Decision Tree idea visualization, see text for an explanation

22From the technical perspective gradient boosted model is very close to the big array of if-else statements
23The lookup table should be implemented as a hash table
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Research is what I’m doing when I don’t know what I’m doing

Wernher Von Braun

4
Machine learning based algorithm for long-lived

particles reconstruction in LHCb

This chapter presents a Machine Learning based study related to the improvement of the Downstream
Tracking algorithm. It starts by providing the general introduction to the LHCb track reconstruction
methodology, and the Downstream Tracking algorithm is described, including a section focused on a
seed classifier. Then, the performance of the entire Downstream Tracking algorithm is discussed. The
final section is dedicated to present ideas on how to approach similar types of problems by leveraging
more sophisticated Deep Learningmodels. Thosemodels will be tested as a part of the development of
the Downstream Tracking algorithm for the Upgraded LHCb experiment.

4.1 Track reconstruction

Tracking is one of the essential steps in the event reconstruction. This procedure is dedicated to recon-
structing particle trajectories using a collection of hits that were created when a particle interacts with
tracking stations. Tracks are essential to provide precision vertexing andmomentum estimation. With-
out that information, no physics analysis can be performed. Moreover, track information is crucial for
particle identification. In order to find a specie of particles the calorimeter clusters, muon station hits,
and Cherenkov rings need associated tracks to be properly detected.

The tracking procedure consists of three major subroutines listed below:

• Pattern Recognition. Pattern recognition is the first step in the tracking reconstruction se-
quence, that is responsible for associating hits to a given particle. These algorithms have to deal
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with big combinatorics, which originates from the number of hits that are recorded by the track-
ing detectors.

The pattern recognition efficiency has vital importance. In order to reconstruct Bmeson decays,
one has to reconstruct several tracks. As an example, let consider decay channel B0 → K∗0(→
K+π ′)μ+ + μ′, which is one of the most promising channels to detect a New Physics phenom-
ena [50]. In this case, in order to accurately reconstruct B0, meson four charged particles have to
be reconstructed. Thus the efficiency ofBmeson reconstruction depends on the fourth-order on
the track reconstruction efficiency. Moreover, Pattern recognition algorithms have very limited
CPU time budget because they are executed as a part of software online trigger, for which timing
is essential.

• Track Fitting. The tracks that were found by the pattern reconstruction are then fitted using a
Kalman filter algorithm [87][66]. This method is capable of accounting multiple scattering and
energy loss in the detector. This track reconstruction subroutine is the most CPU-time consum-
ing because it has to perform the intense computation of material interaction and propagation
through the magnetic field. The detailed description of how this method is utilized within the
LHCb tracking can be found in [136].

• Clone killing. The final subroutine of track reconstruction is called clone killing. In this stage,
tracks that have been reconstructedmultiple times are eliminated. Those duplicated tracks origi-
nate from the redundant pattern recognition, when the algorithms create two tracks with similar
hits content. The outcome of this step can be used for further physics analysis.

4.2 The LHCb track types

The tracks reconstructed in the LHCb detector are split into five categories. The splitting criterion is
based on subdetectors in which they were reconstructed, which is shown in Figure 4.2.1.

The first category of the tracks is VELO tracks. That tracks are reconstructed using only hits mea-
sured in the Velo detector. Therefore, for this track, momentum measurement is impossible 1. Never-
theless, Velo tracks also play an essential role to select isolated particles, for instance, when the analysis
focuses on searching for a rare or forbidden decays.

The second type of track is Upstream tracks. They consist of Velo segments matched with hits in
the TT detector. Those tracks are reconstructed to expand the detector acceptance for low momentum
particles, which would otherwise be removed by the magnet. Moreover, because of the weak residual
magnetic field in TT, the estimated momentum resolution for these tracks is worst than 10%.

T tracks are defined as those which have measurements only in the T stations. Despite the worst
momentum resolution, estimated to be around 25%, they play a vital role in improving the purity of
LHCB’s photon reconstruction by identifying ECAL’s clusters create by the electrons.

1As mentioned in section 1.3.1.1, in the Velo region there is no bending magnetic field, so the track are modeled as a
straight lines
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Figure 4.2.1: Track types available in the LHCb and corresponding subdetectors.

Themost important category of the tracks is Long tracks, which contains those tracks originating in
the vertex detector and traverse the full tracker acceptance, including passing throughT andTTstations.
These tracks provide the best momentum resolution for particles that traverse the full tracking detector
and are used in the majority of LHCb analyses.

Thefinal and themost significant, fromthis thesis perspective, groupof tracks isDownstreamtracks.
The Downstream track contains T-segments matched to the hits in the TT detector. Those tracks are
created by the daughters of the long-lived particles, which decays outside of the Velo detector. The
reconstruction of the Downstream tracks allows to almost double the LHCb acceptance for long-lived
particles. Those tracks are reconstructed by, the PatLongLivedTracking algorithm [57]. The accurate
description of this algorithm is a topic of section 4.3.

Within the framework of LHCb experiment, a track is modeled as a series of straight line segments,
known as track states. A track state is defined as a 5 dimensional vector of the form:

x⃗ =


x
y
tx
ty
p
q

 (4.1)

where: tx = ∂x
∂z and ty =

∂y
∂z , p is a track momentum and q is a track’s associated particle charge. It
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is worth to notice that LHCb uses the right-handed coordinate system, in which the x − z is bending
plane and the y− z is non-bending one.

To visualize the complexity of tracking reconstruction problem Figure 4.2.2 presents a single event
display, that was collected during Run II.

Figure 4.2.2: A typical LHCb event fully reconstructed during data taking on May 9th 2016 (dur-
ing Run II). Particles identified as pions, kaon, etc. are shown in different colours. Figure taken
from [96].

One of the analyses, which utilizes long-lived particles, is a study of time-dependent CP-violating
asymmetries in B0 → J/ψK0

S decays. Measurement of time-dependent CP asymmetries provides a
valuable test of the Standard Model’s flavor sector as well as an opportunity for discovery effects of
physics beyond the Standard Model. The study of this asymmetry in the B0 → J/ψK0

S decay mode
provides a way to determine the effective CP phase. The CP violation asymmetry in b → c̄cs decays
of the B mesons is caused by the interference between mixed and unmixed decay amplitudes. A state
initially prepared as a B0 can directly decay into J/ψK0

S or can oscillate into a B̄ and then decays into
J/ψ K0

S. Taking the correction to the theoretical uncertainty, this amplitude is equal to twice the angle
β = arg[−VcdV∗

cb
VtdV∗

tb
] of the Unitary Triangle.

4.3 DownstreamTracking Algorithm overview

The description of the downstream tracking pattern recognition algorithm is based on [57].
Downstream tracks at LHCb are reconstructed in the following way. First, a standalone track recon-

struction in theT stationswith an algorithm called PatSeeding [41] is performed, creatingT tracks, also
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Figure 4.2.3: The Feynman diagram presenting the decay topologies contributing to the B0 →
J/ψK0

S channel: (left) tree diagram and (right) penguin diagram.

called T-Seeds. Roughly speaking, the downstream tracking algorithm’s goal is to add TT hits that are
likely to match those T-Seeds.

Those T-Seeds are filtered by amachine learning classifier to discard bad candidates which are tracks
thatdonot represent the trajectoryof a real particle. AcceptedT-Seeds are thenpropagatedback through
the magnet to the TT station. Then the pattern recognition algorithm searches for clusters in the two
x-layers of the TT detector. Those clusters already allow constraining the flight path of the particle with
good precision. Then a cluster in the other x layer is searched for. Finally, clusters in u and v layers are
added. Those selected clusters are then fitted to a parabola model using a χ2 minimization technique 2.
The χ2 test is defined as:

χ2(α) =
n∑

i=1

(f(xi, α)− xi)2

σ2i
(4.2)

where α is a vector of free parameters being fitted, f(xi; α) is a model, and σ i are the uncertainties in the
individual measurement xi.

To reduce spilover influence on a tracking reconstruction, a flag is set for each cluster if it is likely
to have been created in a different collision than the current one. This flag is called a high-threshold
bit. Tracks with a large number of high-threshold clusters are rejected. Finally, the best track is chosen
according to the output of another multivariate classifier.

4.4 DownstreamTrack model

4.4.1 Propagation through the magnetic field

Charged particles traversing through the tracking stations, which are located outside of the magnetic
field, follow a straight-line path. The bending of their trajectory inside themagnetic field can be approx-

2Fitting a model to the data involves construction of a test statistic, designated to measure the goodness of fit, and the
model that for a given data minimize beforementioned statistic
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imated by a sharp kink in the flight path at a given z position of a magnet point, called zmag. The kink
method is visualized in Figure 4.4.1. This z position depends on the parameters of the track and is also
affected by inhomogeneities in themagnetic field. The numerical value of this position can be obtained
using the parametrized empirical formula:

zmag = α0 + α1 · t2y + α2 · t2x + α3 · 1/p (4.3)

+ α4 · |xT|+ α5 · |yT|+ α6 · |ty|.

where α are free parameters, tx and ty are the slopes of the last track state in theT stations. Theabsolute
momentum, p, is estimated from the T track, using a simplified parametrisation that assumes a kink of
the trajectory at the center of themagnet and the track to come from thepoint of origin. Theobservables
xT and yT are the x and ypositions of the last state in theT stations, respectively. AnalyzingEquation 4.3,
one can find that the variable zmag depends mostly on the values in the first line, while the dependence
on the ones from the second row are smaller.

Figure 4.4.1: Sketch of the LHCb detector with the tracking system in the x-z plane. A down-
stream track (blue line) and its approximation outside the magnetic field (red dotted line) is
shown. In the approximation the track undergoes a sharp kink at the magnet point (big red dot).

The α parameters are determined in using Monte Carlo simulations. Those numbers are obtained
by fitting a straight line to the true position of the hits in TT, and a third-order polynomial to the true
position of the hits in the T stations. The crossing point of both curves in the x-z projection determines
the true value of zmag. An illustration of zmag determined in described way, and the difference between
the values obtained with Equation 4.3 when using measured instead of simulated quantities are shown
in Figure 4.4.2.

The x position of the magnet point is then determined by using a linear extrapoltion of the state in
the T stations to zmag.

xmag = xT + tx · (zmag − zT) (4.4)

To correct the effect of magnetic filed on estimation of the y position, an additional correction is
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Figure 4.4.2: Left: true z position of the magnet point. Right: Difference between true and es-
timated z position of the magnet point. For the true position, simulated observables, for the esti-
mated position measured observables were used.

applied:

ymag = yT + ty · (zmag − zT)− β1 · ty · Δ
2
slope (4.5)

where Δslope is the difference of the slopes in x before and after the magnet, defined as:

Δslope =
∣∣xmag/zmag − tx

∣∣ , (4.6)

and β1 an empirical parameter.
The predicted slope in y in the TT is calculated as:

ty,TT = ty · (1+ β0|ty|Δ
2
slope) (4.7)

with β0 an empirical parameter, determined on simulation, using regression with true observables, to
correct for the effect of the bending in the magnetic field on the slope in y.

The track that constitutes of OT hits only requires a dedicated procedure since y resolution, and the
resolution of the slope in y is rather poor. Thus, the following parametrization is used instead:

yTT = yT + ty · (zmag − zT) + ty,TT · (zTT − zmag)− β1 · ty · Δ
2
slope, (4.8)

where β1 is determined on simulated data using regression with true observables. The current imple-
mentation of the algorithm does not apply any further track correction logic, therefore the slope in the
T stations can be calculated as:

ty,constr = yT/(zT + (β0|ty|zmag + β1)Δ
2
slope) (4.9)

For tracks with hits in the OT only, corrected ty,constr is used in Equation 4.5 instead of the measured
value ty.

Determination of the magnet point is crucial since it is used as an additional constraint in the down-
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stream track χ2 fit, see section 4.5.6. Therefore, its uncertainty has to be determined and those are calcu-
lated by estimating the difference between the values of xmag and ymag obtained using simulated quan-
tities and reconstructed quantities for the extrapolation. This uncertainty depends on Δslope and the
types of hits that constitute the track. The following empirical parametrisations of the uncertainty were
used:

σx,OT = (2.0+ 18.0 · Δslope)mm

σy,OT = (5.0+ 20.0 · Δslope + 50 · Δ2
slope)mm

σx,IT = (1.0+ 16.0 · Δslope)mm

σy,IT = (2.0+ 15 · Δslope)mm

The numerical values of those parameters were obtained by fitting residual distributions.

4.4.2 Determination of the momentum

The momentum of a downstream track mainly depends on the kink it undergoes in the magnetic field,
but also shows a dependence on the slopes in x and y. The following parameterisation results in a mo-
mentum resolution of about 2% averaged over the full momentum spectrum.

p =
γ0 + γ1 · t2x + γ2 · t2y

Δslope
, (4.10)

where again the parameters γ i were determined using the true position of the hits in simulation. This
resolution contains both the effect from the detector resolution and from dependencies which are not
accounted for in the parametrization. The momentum resolution is presented in Figure 4.4.3.

4.4.3 Track model in the TT

The downstream track is modeled as a parabola in theTT.This representation comes from the presence
of a strong residual magnetic field in and before theTT, which deflects low-momentum particles from a
straight-line trajectory. The track is modeled by the following function:

x(z) = x0 + tx · (z− zmag) + c · (z− zTT)2, (4.11)

with zTT the z position in the middle of the TT, zmag the z position of the magnet point, tx the slope in x
in TT, and c = 1.48 · 10−5 · Δslope. The initial value for x0 is xmag.

The parameter c is determined on simulation by fitting the true position of the hits in TT with a
parabola and determining it as a function of Δslope. The deflection from a straight line is tiny. For in-
stance, a track with a momentum of 3GeV/c2, is deflected of about 200μm, which is roughly the strip
pitch of a TT sensor.
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Figure 4.4.3: Momentum resolution for the initial track estimate. It amounts to about 2%.

The y position of the track is modeled as a straight line:

y(z) = y0 + ty,TT · (z− zmag), (4.12)

where ty,TT is the track’s slope in y given by Equation 4.11, and the initial value for y0 is ymag.

4.5 Pattern Recognition

This section provide an overview of the stages of the pattern recognition in PatLongLivedTracking,
which are presented in the form if flow diagram in Figure 4.5.1. The detailed description on the first
step, filtering T-Seeds, was moved into the separate section 4.6.

4.5.1 T-seeds reconstruction

The algorithm, that performs pattern recognition for the T-Seeds is called PatSeeding [41]. It consists
of five distinct steps:

• hit preparation;

• track search per detector region;

• track search for tracks migrating from IT to OT;

• track search per Outer Tracker region for tracks at large |y|;
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Figure 4.5.1: Different stages of pattern recognition within the PatLongLivedTracking algorithm.
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• validation of low-quality tracks left over from the per region search;

Within this algorithm, the track is described as a straight line in x− y plane. For x− z projection, a
cubic model with three parameters is used:

x(z) = c(z− zreference)2(1+ dratio(z− zreference)) + b(z− zreference) + a (4.13)

y(z) = byz+ ay (4.14)

dratio describes the correlation between the quadratic and cubic terms and is determined fromMonte
Carlo studies. The shift by zreference makes the fit more numerically stable (zreference is in the middle of the
T stations, by default).

4.5.2 Search for compatible hits

In this initial reconstruction stage, the downstream track candidates are modeled by the straight line
from the LHCb origin point (0,0,0) to the magnet point, which is the only constrain. This model is not
always accurate since most particles of interest do not originate from the global LHCb origin (0,0,0),
thus a correction to the x position of the search window is applied. The value of the search window is
given by:

δx = sign(p · magPol) · (XCorrectionConst/p+ XCorrectionOffset) , (4.15)

with magPol the magnet polarity. This correction is shown in Figure 4.5.2, left.

Furthermore, a similar searchwindowtechniquewas applied tomomentum-dependent search,which
can be seen in Figure 4.5.2. The dependence of the window size on the momentum is given by:

Δx = XPredTolConst/p+ XPredTolOffset, (4.16)

where p is the absolute value of the momentum. The parameters determining the size of the search
window, XPredTolConst and XPredTolOffset, were derived on simulation, illustrated on the right
of Figure 4.5.2.

Finally, the pattern reconstruction algorithm checks whether the hit is compatible with the expected
y-position in theTTwith a tolerance YTol. As the position of a hit in theTTcan only be determined up
to the length of a sensor module, this provides only a weak constraint. The x positions of the hits in the
stereo layers are then updated, assuming the y position from the T track extrapolation.

All hits in all four layers which lie inside these tolerances are then stored in a container, and sorted
according to the projection distance, this is the absolute distance of the hit to the predicted position.

The T track is not considered if less than three hits in the TT are found in total, or the x or the stereo
layers do not contain any hit.
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Figure 4.5.2: Left: Distance between extrapolated track (constrained to come from the LHCb
origin (0,0,0)) and (truth-matched) hits before correction. The red line represents the correction
function which is applied. Right: Distance between extrapolated track and (truth-matched) hits as
a function of the momentum of the track for the preselection step, after the correction. The cut is
show as the red line.

4.5.3 Search for hits in x layers

In this step, the algorithm iterates over all hits preselected by the previous step hits in the x layers to form
preliminary track candidates.

The first hit that is added to the track candidate is chosen in one of the two x layers. This allows
for a more precise determination of the slope of the track and the curvature, and therefore also of the
momentum of the partially reconstructed downstream track.

Next, corresponding hits in the other x layer are searched for. The search window in the other x layer
is defined as follows:

Δx = TolMatchConst/p+ TolMatchOffset, (4.17)

if Δx is smaller than a given value MaxWindowSize, otherwise MaxWindowSize is taken as the tol-
erance. This serves as a sanity check to exclude unphysically large values of the window size for low
momentum particles. All hits within this window are then considered for further processing. As il-
lustrated in the left hand plot of Figure 4.5.3, essentially all hits from true particles in simulation are
enclosed within this region.

A χ2/ndf fit to the x coordinate is then performed for each possible candidate, consisting of the first
hit in the x layer, and one of the matching hits in the other x layer. Themagnet point is used as a further
point to add enough degrees of freedom for the fit. All track candidates are then sorted according to
their χ2/ndf value, and track candidates are discarded if the χ2/ndf value is above:

χ2/ndfmax, x hits = FitXProjChi2Const/p+ FitXProjChi2Offset. (4.18)

If no hit could be found in the other x layer, the track candidate is not rejected. It is kept without fit to
search for hits in the u layer. This allows for hit inefficiencies in the TT.
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Figure 4.5.3: Left: Distance between extrapolated track with one x hit and (truth-matched) hit in
the other x layer. The red line represents the cut on the distance. Right: χ2 values for a fit to the
x hits (truth-matched), with the cut represented as a red line.

Due to the large combinatorial background, there can be many ghosts in this selection. Track candi-
dates with only two x hits are prone to be ghost tracks, and it is possible that the true combination of
hits does not have the smallest χ2/ndf . Therefore, in the next steps, the first MaxXTracks candidate
has considered whose χ2/ndf value is within the range (MaxChi2DistXTracks) to the lowest χ2/ndf
value.

In future studies, this section can be enhanced by training amachine learningmodel to select the best
matching hits.

4.5.4 Search for hits in the u layer

The searchwindow in the u layer can be smaller than those in the x layers, since the parameters of a track
with two hits are reasonably well constrained. Hits are searched around the track extrapolated to the u
layer, where the x position of the hit is updated by using the extrapolated y position. All hits within a
search window are considered, where the window size is defined as

Δx = TolUConst/p+ TolUOffset. (4.19)

The parameters TolUConst and TolUOffset are determined from simulation, visualized in the left
handplot of Figure 4.5.4. Thehits inside thewindoware then sorted according to their distancebetween
the extrapolation of the track and their actual position. For each hit which passes this tolerance, a new
track candidate is formed, until the maximum number of xu tracks (MaxXUTracks) is reached. Each
of these candidate is then fitted with a χ2 fit to obtain the best parameters for the final search in the v
layer.
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4.5.5 Search for hits in the v layer

The last step in the hit search subroutine is searching for the hits in the v. If the track’s candidate already
has three hits, a momentum dependent window is created according to the following formula:

Δx = TolVConst/p+ TolVOffset. (4.20)

Figure 4.5.4 (right) ilustrate this this search window. In case the track only contains two hits, For-
mula 4.19 is used to determine the size of the search window. The hit that is closest to the extrapolation
is added.

Figure 4.5.4: Left: Distance between extrapolated x-hits track and (truth-matched) hit in u layer.
The red line represents the cut on the distance. Right: Distance between extrapolated xu-hits
track and (truth-matched) hit in v layer. The red line represents the cut on the distance.

4.5.6 Calculation of χ2 and outlier removal

At this stage, all possible hits inTTwere added to the track candidates. It is the time to perform a χ2 fit. If
the fit χ2/ndf is smaller than a given value (MaxChi2 andMaxChi2ThreeHits for candidateswith four
and three hits, respectively, the candidate is accepted and passed on to the next stage. Otherwise, the hit
that contributesmost to the χ2 is removed, and the fit is repeated. The procedure is repeated until either
the χ2/ndf is small enough, or alternatively, there are hits in less than three planes left. Furthermore,
for each iteration of the fit, an explicit sanity check is made that each hit is still compatible with the
estimated y position of the track. The χ2 is defined as:

χ2 =
∑
i∈hits

(
xi − (x0 + tx · (z− zmag) + c · (z− zTT)(z− zTT) +

(
dx
dy

)
i
y0)
)2

σ2i
(4.21)

with
(

dx
dy

)
i
the slope of the stereo plane and y0 the displacement in y. Note that c is fixed, see section

4.4.3.
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Figure 4.5.5: Left: χ2 distribution for truth-matched tracks with 4 or more hits. The maximum
allowed value is 30. Right: χ2 distribution for truth-matched tracks with 3 hits. The maximum
allowed value is 50.

4.5.7 Accepting the candidates

The track candidate is accepted in the final selection of track candidates, if it fulfills the following criteria.
All cut values were obtained using simulated data, with the goal of keeping a balance between signal
retention and background rejection.

• It has at least three hits in at least three different layers of the TT.

• The χ2/ndfis below a given threshold. This value is different for three-hit tracks
(MaxChi2ThreeHits) and tracks with four or more hits (MaxChi2), see Figure 4.5.5.

• It contains at least as many hits as any other candidate for a given T track.

• The track has a pseudorapidity larger than 1.8 and smaller than 5.2.

• At least NMinHighThresHits of the hits have the high-threshold bitset.

The following checks are repeated, this time using the fit result instead of the initial estimates.

• The momentum estimate is compatible with the momentum estimate from the T track.

• The track has a minimum momentum MinMomentum and a minimum pT MinPt.

• The track does not point into the beampipe.

4.5.8 Addition of overlap hits

For all track candidates whose are retained at this stage, hits in the overlap regions of the TT detector
are searched for. TT modules are staggered in the z direction with an overlap, in order to cover the
insensitive region of themodules and not to lose efficiency. A hit qualifies as an overlap hit if it is within
a certain distance to the extrapolated track (OverlapTol), in the same layer as an already existing hit,
but at a different z position.
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As adding an extra hit will change the track’s properties, the track is again fitted with the potential
removal of outliers.

4.6 Selection of T tracks

T-Seeds together withTThits constitute an input to the LongLivedTracking algorithm and their quality
has a direct and significant impact on the algorithm performance. Therefore, the very first and crucial
step is a filteringprocedure, whichpurpose is to increase purity of the set ofT-tracks by rejecting asmany
unreconstructible track as possible. This also allows to reduce the execution time since the combinatoric
is greatly reduced. A previous analysis showed that T-Seed filtering based on a simple linear selection
using track quality and kinematic variables is not feasible. Therefore, an idea of using machine learn-
ing techniques was proposed. This section is dedicated to present all studies, starting from preparing
and understanding training dataset, selecting the best model, to attempting to understand the model’s
prediction.

The T-Seed selection problem is similar to the email spam detector. In both cases it is desired to
keep all true events and remove as much as possible false events. The nature of this problem reflects in
selection of the cutoff probability threshold.

4.6.1 T-seed classifier: Data Collection

The very first step within the machine learning model training pipeline is a data collection. It is not
possible to build any statistical model without collecting sufficient amount of the data. From the per-
spective of this project the data was generated by theMonte Carlo simulation. To retrieve required data
a dedicated tool within the Brunel project was implemented. This tool is dedicated to match track with
Monte Carlo particle. The particle is considered as matched to a given track if they share at least 70% of
the hits. Such a link allows to assign a target value to a given track. The flag is a binary value whether a
given track is a true one.

One of the most difficult problem during the data preparation step was choosing the track labeling
policy. Within this process, for each T-Seed a target flag was assigned. What is crucial, every time when
this strategy is changed, the entire process of model selection and training has to be redone, which hap-
pend at least three times during author’s study. The final labelling strategy tells the track is consider as a
reconstructable, later called a true T-Seed, when it meets the following criteria:

• Has to be associated with a valid Monte Carlo particle;

• From above association the electron is excluded;

• Has at least two hit associated with TT station;

• no hits in the Velo detector.

Those criteria can be justified by definition of the Downstream track. Those are the tracks created by
the particles that decays outside of the Velo detector.
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4.7 T-seed classifier ExploratoryData Analysis

The next steps that were performed is Exploratory Data Analysis (EDA). This stage is essential to un-
derstand the structure of the input data, find patterns, relationships, or anomalies that can influence the
outcome of the model prediction.

The search for the best classifier was performed using a simulated data sample containing the B0 →
J/ψK0

S signal events. The entire dataset contains more than 2 million T-Seeds (both true and fake). To
avoid bias that could be introduced by considering only one magnet polarization the training dataset
consists of combined datasets generated for both magnet polarities, in the equal proportions. The fol-
lowing variables were considered as an initial feature set. Further input dimensionality enhancement
was done in the feature engineering phase.

• χ2/ndf: T-track χ2/ndf determined by the PatSeeding algorithm, which is defined in the follow-
ing way:

χ2 =
∑
i∈hits

1
σ2i

(
xi − xtrack(zi)

cos α
± rdrift

)
(4.22)

where: (xi, zi) is the x coordinates of the i-th hit at the y(zi) predicted form the track model, σ i is
the hit postilion uncertainty and rdrift is the drift radius for Outer Tracker hits or 0 for the Inner
Tracker.

• p: the absolute momentum of a T-track;

• pt: the transverse momentum;

• Nhits: number of hits constructing tho a given T-seed;

• xTtrack: the x position of the T track’s first state;

• yTtrack: the y position of the T track’s first state;

• tx: the slope of the track in the x− z plane;

• ty: the slope of the track in the y− z plane;

• rtrack: the distance from the beam line, z-axis, calculated for the first state. The rtrack is calculated
as follow:

rtrack =
√
x2Ttrack + y2Ttrack (4.23)

• η: pseudorapidity.

The selected feature distributions are presented in Figure 4.7.1. It is clearly visible that the data is
not-linearly separable and the distribution for both true and false classes are very similar to each other.
This gives a first impression, that the classification task is hard.
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Figure 4.7.1: Distribution of the input variables used to train T-Seed filter. The sample was ex-
tracted using a B0 → J/ψK0

S samples decays. The green solid histogram is the signal distribution,
while the light blue distribution is the background.
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One of the most popular way to show the dependencies among features is to use the Pearson corre-
lation coefficient ρ. The formula for ρ is given by:

ρ(X, Y) =
E
[
(X− μx)(Y− μy)

]
σxσy

(4.24)

This parameter has value in the range of< −1, 1 >. The value of 0 indicates no correlation, -1 and 1
implies strong negative and positive correlation respectively. In order to visualize all of the correlation
coefficients, so called, correlationmatrix was created. Figure 4.7.2 shows two correlationmatrices, each
of which is plotted for a different value of the target flag. There are no significant differences between
true and false T-Seeds correlation matrices.

The Pearson correlation coefficient is a good metric to detect linear dependencies among features,
however it is not sensitive to more sophisticated (like quadratic) relations. To overcome this limita-
tion the pair-plot, showed in Figure 4.7.3, was made. A pairs plot allows to visualize both distribution
of single variables and relationships between two features, which is represented as a scatter plot. It is
particularly interesting to visually inspect how the variables are distributed for a given pair of attributes.
To make this plot more readable the data were split into two groups according to the target flag. That
kind of plot allows making an initial guess on the importance of the features, i.e., if two features are sep-
arated from each other, this may indicate that those features can have a significant impact on a classifier
decision. Assuming the model will be capable of learning this separation.

4.8 T-Seed classifier: baseline

This section is dedicated to present the study baseline, which was implemented as training of twomod-
els, namely k-NN and logistic regression.

These two models were selected as a baseline due to their simplicity indicated as an amount of time
that is required to train them. The simplicity, except for the model’s underlying idea, is manifested by
a small number of hyperparameters that has to be tuned. The baseline score is the entry point to the
remainingmachine learning study. This score should be over-performedby all of themore sophisticated
models. It alsoprovides an initial understandingof howhard the classificationproblem is. In somecases,
excluding this one, the study baseline could be an average human performance on a given task.

4.8.1 k-NN

The k-NN described in section 3.3.1, is a model that has two tunable hyperparameters a number of
neighbors k and a distance metric. The model training pipeline contains of the following steps:

• Data extraction;

• Data normalization: each of the features were normalized by removing the mean and scaled to
unit variance. Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set;
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Figure 4.7.2: Pearson correlation matrix that were obtained using a subset of input features. The
top plot shows correlation matrix for True T-seeds. The bottom plot presents similar Pearson cor-
relation matrix generated using the ghost T-Seeds.
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Figure 4.7.3: Pair-plots that were generated using subset of input features. The input data was
separated based on the value of the target flag. The blue points represents ghost T-Seeds and the
orange points represents true T-Seeds.

• Model training and performance evaluation.

The mentioned pipeline were implemented using the sklearn framework [112].
Figure 4.8.1 presents the area under the ROC curve score versus the number of neighbors. The score

and its uncertainty were obtained using the 4-fold cross-validation method. The maximum score value
(ROC AUC score 76%) were obtained for k ≈ 210.

4.8.2 Logistic Regression

The second baseline mode is Logistic Regression described in section 3.3.2, and implemented using
sklearn framework. The input to this model has to be normalized, which is the only preprocessing step
that was applied, therefore the data processing pipeline was identical to the one described in section
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Figure 4.8.1: The k-NN performance plot, ROC AUC score vs the number of neighbor. The green
shaded area represents score’s one standard deviation region.

4.8.1. Tomaximize the classifier score analysis of theL1 andL2 regularization constantswere conducted.
These two hyperparameters were introduced to reduce overfitting, although as presented in Figure 4.8.2
none of them has significant impact on the classifier performance.

Finally, to check the stability of the prediction, the study of model performance versus a number of
training examples was performed. The results are shown in Figure 4.8.3. This plot indicates the biggest
limitation of the linear model. The model’s performance is not very weakly affected by increasing the
amount of data, that were used to train them.

The score, measure as ROC AUC, obtained by the Linear Regression model is about 74%, which is
slightly worst than the result obtained by the kNN classifier.

4.9 T-Seed classifier: study based on XGBoost model

Thepreviously discussed twomodels were selected to provide the baseline scores. This section presents
the training strategy and results that were obtained using the XGBoost model.

The first step within this analysis was to train the model with default values of hyper-parameters. It
was done to get a better understanding of the model initial performance and to estimate the number,
or at least the order of magnitude, of weak learners that need to be added to the boosting model. This
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Figure 4.8.2: Logistic Regression validation curves. The plots present the impact of L1 (left) and
L2 (right) regularization on classifier performance.

Figure 4.8.3: The Logistic Regression model performance vs. the number of training examples

number can be estimate by detecting moment when model performance starts to saturate.

The model saturation occurs when adding a new tree has no (positive) impact on the performance,
measured using both training and the validation datasets. This effect can be easily detected using the
learning curve. The learning curve plot is a two-dimensional plot with classifier performance on the
y-axis and a number of trees on the x-axis. The saturation effect occurs when learning curve plateau.

The initial training estimated the number of trees to be around 700. The other hyperparameters, that
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were taken into consideration are listed below:

• learning rate - shrinkage parameters (see section 3.3.3), which control the weight of new tree
added to the model;

• max depth - a maximum allowed depth 3 of each of the trees that constitute xgboost model,
increasing this value makes week learners more complex and more likely to overfit thus, it is rec-
ommended to keep the value of this hyperparameter reasonably low.

• gamma - minimum loss 4 reduction required to make a further partition on a leaf node of the
tree. Increasing the gamma values makes the boosting process more conservative.

• min child weight - a minimum sum of instance weight needed in a child to make a split. If the
tree partition procedure step produces a leaf nodewith a sumof instanceweight smaller thanmin
child weight, then the building tree process is terminated. This parameter can be interpreted as
a minimum number of instances needed to be in each node.

• colsample by tree - subsample ratio of features used to construct a particular tree. Subsampling
occurs once for each tree.

• reg alpha, reg lambda - regularization factor L1 and L2 on weights.

Taking into consideration the dimensionality of this optimization problem, as well as the fact that
each training iteration (or function evaluation) takes about 2 hours the Bayesian Optimization seemed
to be the most promising approach to tune the hyperparameters. Although, all three hyperparameters
tuning strategies described in section 3.3.6 were applied. The Bayesian optimization needs about 40
iterations tofind theoptimalhyperparameter set 5. TheGrid andRandomSearchprovide similar results,
although each of these methods requires more optimization steps to find a set that performs as good as
the one produced by the Gaussian optimization.

Figure 4.9.1 presents the Bayesian optimization results in a form of coverage plot, where each of
the scores is a ROC AUC score calculated using three-fold cross-validation method. Within the pre-
sented experiment the Gaussian process was selected as a surrogate function and Expected Improve-
ment played the role of an acquisition function. Each training round was terminated once the perfor-
mance on the test dataset has not improved after a fixed number of training iterations. This method
is called early stopping, and its main purpose is to prevent training the model when it performance
saturates. The positive side effect of this method is better control of the overfitting.

Using selected by the Bayesian optimization method set of hyperparameters, xgboost based model
achieved a score, measured as an area under the ROC curve of 94%. Figure 4.9.2 presents three differ-
ent learning curve plots. The first one (top left) shows the training progress measured as a reduction

3The tree depth is a maximum distance from the root to the leaf.
4In this context, the loss refers to the tree-related loss e.g., information gain
5In this context optimal is consider to be the best one for a given subset of hyperparameter’s ranges, it is not guaranteed

to be globally optimal
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Figure 4.9.1: Bayesian optimization coverage plots. Left plot presents iterations vs. distance be-
tween consecutive selected hyperparameters sets, the right plot shows iterations vs. the ROC AUC
score of the current model.

of the cross-entropy loss versus the number of trees constituted the model. The second one (top right)
presents the binary classification error rate, which is calculated as a ratio between several wrongly clas-
sified cases to all test cases, vs the number of training iterations. The final, bottom one presents the
area under the ROC curve score versus the number of weak learners. Those learning curve plots were
generated using a test sample that constitutes 20% of the entire dataset.

The learning curve plot is one of the most important tools to investigate whether the model is over-
fitted visually. Overfitting refers to a model that has learned the training dataset too well, including the
statistical noise or random fluctuations in the training dataset. This effect becomes apparent when the
performance gap between training and validation curves increase when increasing the model complex-
ity, which is shown in Figure 4.9.3. Figure 4.9.2 indicates that the model performs reasonably well, and
the effect of over-training is not present 6.

4.10 T-Seed classifier as a bonsai BoostedDecision Tree

As described in section 3.4, the evaluation of the continuous complex classifier is too expensive (from
the perspective of CPU time) to deploy that kind of model within the HLT2 online system. Therefore,
the model was binarized and deployed in the form of bBDT. The structure of the bBDT is visualized in
Figure 4.10.1.

The response of the binned BDT and its ROC curve are presented in Figures 4.10.2 and 4.10.3 re-

6This conclusion is based on a specific test set. It is not guaranteed to obtain the same test accuracy for all possible test
sets.
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Figure 4.9.2: Learning curve for the XGBoost classifier. Upper left plot presents cross-entropy
loss function vs. a number of week estimators, right upper plot shows miss classification vs the
number of trees. Bottom plot presents the ROC AUC versus training iterations.
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Figure 4.9.3: Cartoon presenting different behavior of the Boosted Decision Tree classifier. The
leftmost region represents the model that is under-fitted which is reflected in decreasing learning
curves. The rightmost region corresponds to the model that is over-trained, in such a case valida-
tion curve is increasing while train curve is decreasing.

spectively. A slight drop in the performance of the binned classifier with respect to the full one is visible.
The figures of merit measured for the bBDT algorithm amounted to 87%. Based on the ROC curve the
classification threshold was selected to be 0.07, section 4.14.4 contains a discussion on different values
of the cut threshold and its influence on the track reconstruction algorithm performance. This highly
conservative value of the threshold was advocated by the fact that the final classifier has to keep more
than 99% of the true T-Seeds. Nevertheless, this threshold value allowed to remove 30 % of the fake
seeds, thus significantly decreased the ghost rate, formally defined in section 4.14.

4.11 T-Seed classifier: studies based on the deep neural networks

The final model that was taken into consideration when working on a T-Seed selection model was
deep neural network, described in 3.3.4. All described studies were conducted using PyTorch frame-
work [110], which allows for tensor computation acceleration via graphics processing units (GPU)
and supports automatic differentiation. Moreover, Pytorch supports the C++ interface, which makes
the model’s deployment within the LHCb trigger convenient. However, studies discussed in this sec-
tion were never deployed within the LHCb trigger system due to the algorithm’s submission deadline,
thus the model based on bonsai Boosted Decision Trees was selected instead. Nevertheless, the author
decided to include this section since it may be useful for the future studies.

Pytorch provides a number of utility classes that abstract a lot of complexity, such as data paralleliza-
tion and batching. From a practical perspective, the developer needs to ensure a customized implemen-
tation of the following classes:
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Figure 4.10.1: Structure of the bBDT lookup table. Each of the plot presents different range of
lookup table indices (x-axies) versus response of the classiers (y-axies).

• Dataset. This class is dedicated to retrieving the input data, applying data transformations and
optional augmentation logic, and converting processed data into the PyTorch tensor. Within
the scope of the presented study, the transformations were limited to adding such features as
pseudorapidity and the data normalization.

• DataLoader. The DataLoader combines a Datasets object with different samplers producing
data batches. Samplers are implementations of different strategies for providing data to models.

• Criterion. The criterion is an abstraction of the loss function. Within this study’s scope, only the
Cross-entropy loss were used, however section 4.15.2 discusses possible alternatives.

• Optimizer. Anoptimizer is anobject that holds the current state of themodel andupdate param-
eters based on the computed gradients. The choice of the optimizer is considered as a model hy-
perparameter. However, the recommendedandused in thepresented studies choice isADAM[91].

• Model. It is an abstraction that defines the forward propagation, and it contains all components
(layers) of the model. Thus, the researcher has to override two methods. The first one is the init
method, which defines and initializes the network’s architecture. It is recommended to initialize
the layers using, so-called, Xavier initialization [70]. The second method that has to be imple-
mented is the forward technique. It defines how the input tensor is processed in order to get a
vector of output probabilities. The framework takes care of the backward propagation, so the
user does not need to manually calculate the gradients of the loss function.

• Training loop. This utility function defines the way how the model is trained and allows cus-
tomizing training progress measurement. Roughly speaking, the training loop consists of two
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Figure 4.10.2: bBDT classifier output distribution, blue is background and orange is signal

Figure 4.10.3: Comparison of ROC curves for selecting true T tracks using a simulated B0 →
J/ψK0

S sample before and after binning.
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Figure 4.10.4: Normalised confusion matrix determined for the trained bonsai BDT (binned)
model.

nested loops (one over epochs and the second one over batches of data). Within the presented
studies’ scope, the training progress was measured as loss function versus epoches and batches.
To ensure that the model is optimal, quantities such as information flow and the changes in the
model’s weight distributions over time were monitored. An exemplary plot of the information
flow is shown in Figure 4.11.1.

Figure 4.11.1: Information or gradient flow visualization. This figure was generated for network
with nine hidden layers. The light blue bars indicate mean value of the information flow, while the
dark blue bars represent maximum value of it.

After all of the beformentioned componentswere implemented, the next step is to checkwhether the
model can overfit on a small sample of the data, this method was recommended in [88]. If the model
is not able to reach a low error rate that may indicate some issues, bugs, or model misconfiguration.
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Themost time-consuming part of the studywas the optimization of the network’s architecture since the
number of tested models exceeds one hundred, and training one model might take a couple of hours.

Thearchitectureoptimizationprocedure consists of the following steps. Startwith a shallownetwork,
that contains a single hidden layer only. Then iteratively extend the previously testedmodel by adding a
hidden layer, whichmakes themodel deeper. Within each iteration step, try to optimize the architecture
of the current network. The following choices of network internal structure were considered:

• Use the constant number of neurons per hidden layer;

• Build a triangle-type network, where the number of the hidden neurons decrease with network
depth;

• Optimize number of hidden units per layer using Bayesian Optimization;

• Use the Batch Normalization layer. This special layer normalizes the output of a previous activa-
tion layer by subtracting the batch mean and dividing by the batch standard deviation. For more
details on how the Batch Normalization works, see [85].

• Use dropout layer. The dropout layer works by randomly setting the outgoing edges of hidden
units (neurons that make up hidden layers) to zero at each update of the training phase. The
detailed description of the dropout layer can be found in the original paper [131].

Within thepresented study,modelswithup tofifteenhidden layerswere tested. Figure4.11.2presents
a selected four learning curves (cross-entropy loss versus the number of training epochs) each of them
documents training progress of a model with a different number of hidden layers. Surprisingly, adding
more than two hidden layers to the model has a neglectable influence on the model prediction per-
formance, even though the number of the network parameters increased by two orders of magnitude.
Thus, the recommended architecture of the network contains two hidden layers. Such a shallow net-
work produce similar results, measured as a ROC AUC, to the optimized xgboost one, which is shown
in Figure 4.11.3.

4.12 T-Seed classifier: model output interpretation

This section is dedicated to emphasizing the importance of the model’s prediction interpretability. As
presented before the T-Seed filter achieved satisfactory overall performance, but the question regarding
the reliance still remains open. Within the scope of this thesis, three approaches to interpret Gradient
Boosted Decision Tree model prediction have been tested; each of them has been described in section
3.3.7.1. The classical approach to interpret feature importance is to look at themodel globally. Theusual
way to view the importance of the features is to investigate the following metrics:

• The featureweight is the number of times a feature appears in a tree across an ensemble of trees.
For instance, if the model was built on top of the dataset consisting of 100 entries, five features
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Figure 4.11.2: Fully-connected neural network learning rates. Each of the plot was obtained for
model having different number of hidden layer. Upper left for one, upper right two, bottom left
ten and bottom right fifteen.

and themodel itself consist of 3 trees, and suppose the feature1 occurs in the 1 splits, 2 splits, and
3 splits in each of three trees respectively, then the weight for feature1will be 1+ 2+ 3 = 6.

• The Gain measures the relative contribution of the corresponding feature to model by taking
each feature’s contribution for each tree within the model. This metric can be interpreted as an
average training loss reduction gained when using the feature for a split.

• TheCoverage describes the relative number of observations related to this feature. In the above
example if the feature1 is used to decide the leaf node for 20, 10, 5 observations in thementioned
trees respectively, then the coverage for this feature is 20+ 10+ 5 = 35.

Figure 4.12.1 presents three plots, each for a differentmetric described above. It is clearly visible, that
these plots contradict each other. According to the feature weights, the most important feature is seed
χ2dof and theNhits is redundant, while the coverage metric scores it as a second most important.

Tounderstandwhy some, possibly categorical, features have smallerweight value consider the follow-
ing example. Let feature1 be a binary feature, which is highly correlated with the target variable and its
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Figure 4.11.3: Fully-connected neural network containing two hidden layers ROC curve for select-
ing true T tracks using a simulated B0 → J/ψK0

S sample.

inclusion or removal has a significant influence on classifier performance. Due to the nature of feature1,
it has a tiny number of possible values compared to the other features. Such variable can be used atmost
once per tree, while continues ones may appear more often on a different level of the tree. Therefore,
such a feature gets very low weight value. For this reason, none of the presented global metrics gives an
ultimate estimation of the importance of the feature. To get a better understating of it, and taking into
consideration the non-linear nature of themodel’s decision boundaries, it would be worth investigating
different approaches of measuring the feature importance.

The second method to take a closer look inside the black box is based on the idea of Shapley value,
described in section 3.3.7.2. Theanalysis of feature importance is usually donebypresenting twogroups
of plots. The first one is presented in Figure 4.12.2. The standardized importance plot provides a no-
tion of relative feature importance and can be compared with the classical plots described previously.
Although, it does not provide any additional information regarding the impact that a particular feature
has on the model’s output. To overcome this limitation the Shap summary plot was introduced, which
leverages individualized feature attribution to the model’s decision. In order to make that kind of plot
the features are sorted by their global impact

∑N
j=1 |φ

(j)
i |, then each of the dots corresponding to the

Shap values φ(j)i | are plotted horizontally, stacked vertically when running out of space. This concept
allows achieving similar effect to the violin plots [81], which can be further enhanced by coloring the
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Figure 4.12.1: Feature importance plots for XGBoost model. Each of the plots were obtained
for a different global feature importance metric. According to the coverage (upper left) the four
most important features are (|yTtrack|[mm],Nhits,|ty|, pt[MeV/c2]), gain (upper right) selects (p[MeV/
c2],pt[MeV/c2],|yTtrack|[mm],rtrack[mm]) as the most important ones and finally according to the
weight metrics (bottom) such features as ( (χ2/ndf,|yTtrack|[mm],ty,pt[MeV/c2]) are the most im-
portant ones. Each feature importance score is measured as a F-score.

dots according to the feature’s value.

To get a better understanding of Shap values presented in Figure 4.12.2 let focus on one feature -
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Figure 4.12.2: Shap summary plots of all T-Seed classifier features. The plots were obtained us-
ing a sample of 50 thousand test examples. The interpretation of this plot is straightforward, the
higher Shap value of the feature, the higher influence on the decision of whether T-Seed is recon-
structable. In the upper plot, each dot represents every feature for every individual test example
that was run through the model. Dots are colored by the feature’s value (red high, blue low). The
bottom plot presents the standard feature importance bar plot. The x-axis is essentially the aver-
age magnitude change in model output when a feature is hidden from the model.
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Nlayers. It is the second most important one to decide whether a T-Seed is a ghost. The impact of this
feature on a model’s output varies smoothly as the value of the feature increases, which is indicated by
the smooth color gradient. The long tail reaching to the leftmeans that the extremevalues of this variable
can significantly increase the probability that this T-Seed is not a valid track segment. This is consistent
with the priory intuition saying that seeds, thatwere reconstructedusing a small number of hits aremore
likely to be ghosts.

The second type of Shap based plot is dependence plot presented in Figure 4.12.3. The concept is
similar to the pair-plot, which are usually created in order to visualize dependencies between two fea-
tures. The shap dependence plots also take into consideration the Shap values. The idea is to make a
scatter plot, shap value versus feature value, and apply color scheme that is based on the value of the
second feature.

Figure 4.12.3 (upper left) is the one that is the easiest to interpret. It shows the shap value versus the
number of layers. It is clearly visible that T tracks with the numbers of measurements smaller than 15
push strongly the classifier toward negative decisions. This effect is escalated when the track has a big
value of χ2/ dof. This means the classifier decisions are compatible with an initial understanding of the
problem, the track that was reconstructed using a small number of hits and it’s fit to the trackmodel has
a poor quality is more likely to be a ghost.

Figure 4.12.3: Shap dependence plots. Each dot is a track. The x-axis shows the value of the
feature 1 and the y-axis is the Shap value attributed to this feature. To show the dependence
between feature 1 and feature 2 the color of particular dot depends of the value of the feature
2.
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The result of the evaluation of the third and final approach, the one that is based on LIME model,
is shown in Figure 4.12.6. The presented LIME outcome were obtained for two randomly chosen test
examples. Each of these examples represents one of the target classes. It provides a good indication of
the importance of the features and highlights why a particular decision was made. The length of each
bar is proportional to the feature’s value times linear regression weight associated with this feature. It is
easy to note that one of themost important features is the number of hits, that were used to reconstruct
T-Seeds, and this is consistent with the initial intuition.

4.13 Final machine learning model to select the best downstream track

candidates

In the final stage of the downstream tracking pattern recognition algorithm, a neural network is used
to find the best downstream track candidate for a given input T-Seed. The network used is a fully-
connected neural network with one hidden layer built using fifteen nodes. A rectified linear unit was
used as an activation function for the hidden layer. For the output layer, a sigmoid function was ap-
plied. The following input variables were used:

• log(χ2/ndf): Natural logarithm of track χ2 given by the fit

• log(p): Natural logarithm of the total momentum

• log(pt): Natural logarithm of the transverse momentum

• Δp: Difference between momentum estimate from the T track and final momentum estimate of
downstream track candidate.

• log(|Δxmagnet|): Natural logarithm of x displacement with respect to the point in the magnet
after the fit

• log(|distinitial|): Natural logarithm of the distance of the hits with respect to the initial track esti-
mate

• log(|ytrack(0)|): Natural logarithm of the absolute y position at z = 0

• log(|xtrack(0)|): Natural logarithm of the absolute x position at z = 0

• # fired Layers: Number of layers in the TT with hits on this track

The network was trained on simulatedD∗+ → D0π+ decays. The sample was chosen, such that also
tracks fromD decays are considered, which tend to have a softermomentum spectrum than tracks from
B decays and aremore similar to low-momentumbackground tracks. Only downstream reconstructible
tracks that are not electrons were used as signal events. As a background sample, tracks that could not
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Figure 4.12.4: LIME explanation for randomly chosen True example

Figure 4.12.5: LIME explanation for randomly chosen Ghost example

Figure 4.12.6: Exemplary outcome of the LIME for two randomly chosen examples. Those sam-
ples were drown from the test dataset. The red color indicates that the features pushed prediction
toward ghost.
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Figure 4.13.1: Input variables for the training of a Fully-connected neural network to select the
best downstream track candidates. The training dataset consists of D∗+ → D0π+ decays. The blue
solid histogram is the signal distribution, while the hashed red distribution is the background.
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Figure 4.13.2: Left: Classifier output distribution, blue is signal, red is background. The default
cut is at 0.1. Right: ROC curve for the fully-connected in LongLivedTracking algorithm. Both are
obtained on a sample of D∗+ → D0π+ decays.
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be matched to a single simulated particle were used. The distributions of input variables are shown in
Figure 4.13.1. The classifier output distribution and the ROC curve is shown in Figure 4.13.2.

A candidate is selected out if its probability of being a true downstream track is larger than a specific
tunable threshold.

4.14 Physics Performance of the modernised downstream tracking

The previous sections describe the LongLived pattern recognition algorithm. This one is dedicated to
showing the physics performance of this algorithm. The performance of the track reconstruction al-
gorithm can be measured using various methods. The most intuitive one is to measure the efficiency
of reconstructing a charged particle in the LHCb acceptance as a downstream track using Monte Carlo
simulated samples. The secondone evaluates the algorithm’s performance via analysis based on real data
collected by the detector. This approach determines and compares the pattern recognition algorithms
performance by measuring the reconstructed long-lived particle invariant mass resolution.

4.14.1 Monte Carlo based Downstream Tracking efficiency

The pattern recognition algorithm performance measurement can be determined from Monte Carlo
simulations by comparing the number of tracks that the algorithm managed to find (reconstructed
tracks) with the maximum number of tracks that it could possibly find (reconstructable tracks).

To discuss the efficiency of the pattern recognition algorithm it is obligatory to define a number of
quantities that are used in this study. First of all, theMCparticle is said tobe reconstructible, if it left the
sufficient number of hits in the detector. The particle reconstructible criteria vary for one subdetector
to another [118], and they are summarized here:

• Velo reconstructible is a particle that has at least three hits in R and ϕ sensors.

• TT reconstructible particle is consider when it has at least one hit in the first two planes (TTa)
and one hit in the last two planes (TTb).

• T-Station reconstructible is a particle that has at least one x and one stereo hit in each of the three
T-Stations.

Therefore a particle is considered reconstructible as a Downstream track if it satisfies the TT and T-
Stations reconstructibility criteria. In order to associate the reconstructed tracks to the reconstructable
ones a cross-checkof hits in bothof themhas to bedone. A reconstructed track is considered asmatched
to a simulated Monte Carlo particle if they share at least 70% of the hits. Based on this definition the
following pattern recognition performance metrics can be defined:

• The Tracking efficiency (ε) is defined as a ratio between the number of reconstructed and
matched tracks to the total number of reconstructable tracks.

ε =
reconstructed ∩ matched

reconstructable
(4.25)
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• The ghost rate is the amount of reconstructed tracks not associated to any of the Monte Carlo
particle, thus having less than 70% of matched hits, with respect to the total amount of tracks
found by the pattern recognition algorithm

ghost rate =
not matched

reconstructable
(4.26)

Within the scope of this analysis the efficiency of a Downstream Tracking algorithm is calculated as
the one that includes the efficiency of a Long-Lived Tracking pattern recognition algorithm combined
together with the efficiency of the T-Seed reconstruction.

In the presented studies, the analysis was performed on a sample constituted of 50,000 simulated
events of bothmagnet polarities. Two types of decayswere simulated: B0 → J/ΨK0

S andD∗+ → D0π+.
The first type of decay was selected to represent Bmeson decays and the second one for a charm. There
are four different categories of tracks that were consideredwithin the scope of this performance analysis
on MC data:

• εTT+T : efficiency for all downstream reconstructible particles;

• εTT+T,p>5Gev/c : efficiency for all downstream reconstructible particles with momentum p >

5GeV/c;

• εTT+T,fromB/D : efficiency for all downstream reconstructible particles from a decay of B orDme-
son;

• εTT+T,fromB/D,p>5GeV : efficiency for all downstream reconstructible particles from a decay of B or
Dmeson with momentum p > 5GeV/c.;

The overall efficiency numbers are collected in upper half of Table 4.14.1 and the ghost rate related
numbers are presented in Table 4.14.2 (upper half). Plots of the efficiency and the ghost rate as a func-
tion ofmomentum, transversemomentum, and pseudorapidity are shown in Figures 4.14.1, 4.14.2 (ob-
tained using B0 → J/ΨK0

S ) and 4.14.5, 4.14.7 (for D∗+ → D0π+ decay). No uncertainty is given,
because presented numbers were obtained on a Monte Carlo samples not on a collision data. The sta-
tistical uncertainty are negligible, at the permille level.

It was also important to measure the downstream tracking efficiency using the samples that were fit-
ted with Kalman Filter and a quality cut on a χ2ndf was applied. Those tracks were also processed by a
clone killing algorithm to remove duplicates, which were reconstructed as long and downstream track
simultaneously. The performance numbers referring to those tracks are collected in Table 4.14.1(lower
half), and Table 4.14.2 (lower half) gives ghost rates. The performance numbers after these three steps
seem to be worse than before, as the processing steps applied also reject correct tracks, and the clone
killer is inefficient. One of the reasonswhy it happens, the clone killer sometimes falsely classifies down-
stream tracks as long tracks (for example when the Velo part is a ghost), which then gets removed from
the downstream statistics. Furthermore, clone killer prefers long tracks over downstream tracks.

Downstream tracking efficiency strongly depends on the momentum and transverse momentum of
the tracks. The explanation of the phenomenon can be based on factors such as the search windows do
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not cover the full region necessary to find all tracks. Therefore, for the low momentum tracks, search
windows are generally larger than for highmomentum tracks, which increases the number of hits within
the search window, thus increases the chances that the pattern recognition identifies the wrong hits.

In addition, the downstream tracks that were also reconstructed as long tracks are less prone to be
ghosts, which is why the ghost fraction actually increases after the Kalman Filter, the clone killer and
the ghost probability cut. However, it should be noted that in a physics analysis of a decay channel, a
strict cut is normally placed on the ghost probability variable of the downstream tracks, which reduces
the ghost fraction significantly.

Table 4.14.1: Reconstruction efficiency of downstream tracks on simulated samples of B0 →
J/ΨK0

S and D∗+ → D0π+ decays. The upper half are non-filtered tracks, the lower half is after
the clone killer, Kalman Filter and ghost probability cut. This efficiency includes the efficiency of
T-Seed reconstruction and efficiency of the LongLived Tracking algorithm. Due to a softer mo-
mentum spectrum, the efficiency is lower in the D∗+ → D0π+ sample.

filter decay type εTT+T εTT+T, p>5GeV εTT+T, fromB/D εTT+T, fromB/D, p>5GeV

No B0 → J/ΨK0
S 73.3% 80.1% 81.4% 85.4%

No D∗+ → D0π+ 71.3% 78.0% 76.8% 81.4%
Yes B0 → J/ΨK0

S 70.0% 76.7% 79.0% 83.2%
Yes D∗+ → D0π+ 67.3% 73.7% 73.1% 77.3%

Table 4.14.2: Ghost fraction of downstream tracks on simulated samples of B0 → J/ΨK0
S and

D∗+ → D0π+ decays. The upper half are non-filtered tracks, the lower half is after the clone killer,
Kalman Filter and ghost probability cut. This ghost fraction includes the ghosts produced in T-
Seed pattern Recognition and Long-Lived Tracking. Due to a softer momentum spectrum, the
ghost fraction is higher in the D∗+ → D0π+ sample.

filter decay type fraction of ghosts
No B0 → J/ΨK0

S 29.5%
No D∗+ → D0π+ 30.3%
yes B0 → J/ΨK0

S 39.2%
yes D∗+ → D0π+ 40.2%

134



Figure 4.14.1: Efficiencies to reconstruct downstream tracks as a function of momentum (top
row), transverse momentum (middle row) and pseudorapidity (bottom row). The left column is
for all downstream reconstructible tracks, the right column for all downstream tracks from a decay
chain of a B or D meson. The efficiencies are obtained on a simulated sample of B0 → J/ΨK0

S
decays.
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Figure 4.14.2: Ghost fraction in downstream tracks as a function of momentum (top left), trans-
verse momentum (top right) and pseudorapidity (bottom). The ghost fractions are obtained on a
simulated sample of B0 → J/ΨK0

S decays.

136



Figure 4.14.3: Efficiencies to reconstruct downstream tracks, after clone killing, Kalman filter-
ing and the cut on the ghost probability, as a function of momentum (top row), transverse mo-
mentum (middle row) and pseudorapidity (bottom row). The left column is for all downstream
reconstructible tracks, the right column for all downstream tracks from a decay chain of a B or D
meson. The efficiencies are obtained on a simulated sample of B0 → J/ΨK0

S decays.
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Figure 4.14.4: Ghost fraction in downstream tracks, after clone killing, Kalman filtering and the
cut on the ghost probability, as a function of momentum (top left), transverse momentum (top
right) and pseudorapidity (bottom). The ghost fractions are obtained on a simulated sample of
B0 → J/ΨK0

S decays.
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Figure 4.14.5: Efficiencies to reconstruct downstream tracks as a function of momentum (top
row), transverse momentum (middle row) and pseudorapidity (bottom row). The left column is
for all downstream reconstructible tracks, the right column for all downstream tracks from a decay
chain of a B or D meson. The efficiencies are obtained on a simulated sample ofD∗+ → D0π+

decays.
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Figure 4.14.6: Efficiencies to reconstruct downstream tracks, after clone killing, Kalman filter-
ing and the cut on the ghost probability, as a function of momentum (top row), transverse mo-
mentum (middle row) and pseudorapidity (bottom row). The left column is for all downstream
reconstructible tracks, the right column for all downstream tracks from a decay chain of a B or D
meson. The efficiencies are obtained on a simulated sample of D∗+ → D0π+ decays.
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Figure 4.14.7: Ghost fraction in downstream tracks as a function of momentum (top left), trans-
verse momentum (top right) and pseudorapidity (bottom). The ghost fractions are obtained on a
simulated sample of D∗+ → D0π+ decays.
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Figure 4.14.8: Ghost fraction in downstream tracks, after clone killing, Kalman filtering and the
cut on the ghost probability, as a function of momentum (top left), transverse momentum (top
right) and pseudorapidity (bottom). The ghost fractions are obtained on a simulated sample of
D∗+ → D0π+ decays.
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4.14.2 Comparison between Long-Lived Tracking algorithm and its predecessor

Theanalysis presentedwithin this section is dedicated to comparing the performance of the Long-Lived
Tracking algorithm and its predecessor called PatDownstream [40]. The corresponding performance
numbers are given in Tables 4.14.3, 4.14.4, and 4.14.5.

Figures 4.14.9 and4.14.10 show the efficiency andghost rates of downstream tracks reconstructed via
these two algorithms as a function of momentum, transverse momentum, and pseudorapidity. Those
plots visualize tracking algorithm performance that was obtained using a simulated sample of B decays
and no other processing was applied.

Figures 4.14.11 and 4.14.12 present the same quantities, after Kalman filtering and clone killer. It is
clearly visible, that the performance gain and the strong reduction of ghost rates were measured for the
new algorithm. It is presumed that the significant ghost rate reduction (about 16%) was achieved due
to the good performance of the T-Seed classifier, which was one of themajor goals of the author’s study.

Table 4.14.3: Comparison of reconstruction efficiency of downstream tracks made with Long-
Lived Tracking algorithm or PatDownstream, on simulated samples of B0 → J/ΨK0

S . This effi-
ciency includes the efficiency of PatSeeding and Long-Lived Tracking algorithm.

algorithm εTT+T εTT+T, p>5GeV εTT+T, fromB/D εTT+T, fromB/D, p>5GeV

Long-Lived Tracking 73.3% 80.1% 81.4% 85.4%
PatDownstream 68.3% 74.4% 77.1% 81.6%

Table 4.14.4: Comparions of reconstruction efficiency of downstream tracks made with Pat-
LongLivedTracking or PatDownstream, on simulated samples of B0 → J/ΨK0

S, after the Kalman
Filter and clone killer. This efficiency includes the efficiency of PatSeeding and PatLongLived-
Tracking. The efficiency decreases compared to Table 4.14.3 due to inefficiency of the clone killer.

algorithm εTT+T εTT+T, p>5GeV εTT+T, fromB/D εTT+T, fromB/D, p>5GeV

Long-Lived Tracking 70.0% 76.7% 79.0% 83.2%
PatDownstream 63.7% 71.3% 74.5% 79.2%

Table 4.14.5: Ghost fraction of downstream tracks on simulated samples of B0 → J/ΨK0
S for

PatLongLivedTracking and PatDownstream, once before and after the clone killer, Kalman Filter
and ghost probability (CKG) were applied. This ghost fraction includes the ghosts produced in
PatSeeding and PatLongLivedTracking (PatDownstream). The ghost fraction is higher after the
clone killer as tracks, also reconstructed as long tracks, are not present in that number.

algorithm fraction of ghosts fraction of ghosts after CKG
Long-Lived Tracking 29.5% 39.2%

PatDownstream 46.3% 52.1%
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Figure 4.14.9: Efficiencies to reconstruct downstream tracks as a function of momentum (top
row), transverse momentum (middle row) and pseudorapidity (bottom row), in red for Long-Lived
Tracking algorithm and in black for PatDownstream. The left column is for all downstream re-
constructible tracks, the right column for all downstream tracks from a decay chain of a B or D
meson. The efficiencies are obtained on a simulated sample of B0 → J/ΨK0

S decays.
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Figure 4.14.10: Ghost fraction in downstream tracks as a function of momentum (top left),
transverse momentum (top right) and pseudorapidity (bottom), in red for Long-Lived Tracking al-
gorithm and in black for PatDownstream. The ghost fractions are obtained on a simulated sample
of B0 → J/ΨK0

S decays.

4.14.3 Performance measured using collision data

The improvements introduced to the pattern recognition algorithm should be reflected in improve-
ments to the reconstruction of long-lived particles. To investigate this, the reconstruction of Ks and
Λ0 in minimum bias events 7 were analyzed.

4.14.3.1 Event selection

This analysis focuses on the algorithm’s relative event yield difference between the new algorithm and
the baseline. Thus the selectionwas taken from the standardLHCb software. The following list contains
an explanation of each cut applied to select the data that were used to reconstruct both Ks and Λ0:

• p(π1, π2 ∨ p) - minimal momentum of daughter particles;

• pt(π1, π2 ∨ p) - minimal transverse momentum of daughter particles;

7Theminimum bias samples are those which try to reproduce proton-proton collisions as close to the reality as possible,
with no bias from restricted trigger conditions.
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Figure 4.14.11: Efficiencies to reconstruct downstream tracks, after clone killing, Kalman filter-
ing and the cut on the ghost probability, as a function of momentum (top row), transverse mo-
mentum (middle row) and pseudorapidity (bottom row). The left column is for all downstream
reconstructible tracks, the right column for all downstream tracks from a decay chain of a B or D
meson. The efficiencies are obtained on a simulated sample of B0 → J/ΨK0

S decays.
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Figure 4.14.12: Ghost fraction in downstream tracks, after clone killing, Kalman filtering and the
cut on the ghost probability, as a function of momentum (top left), transverse momentum (top
right) and pseudorapidity (bottom). The ghost fractions are obtained on a simulated sample of
B0 → J/ΨK0

S decays.
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• χ2ndf of π ∨ p tracks - maximal χ2ndf of the daughter tracks;

• track type - the type of track that were taken into consideration;

• χ2ndf (KS ∨ Λ0) - maximal χ2ndf of the vertex fit;

• ΔM(π1 + π2||p) - the difference between reconstructed invariant mass of the mother particle
and its mass taken from the Particle Data Group (PDG) repository [135]. This invariant mass is
calculated by taking sum of 4-momenta vectors 8 of the two daughter particle tracks;

• ΔM(KS ∨ Λ0) - the difference between reconstructed invariant mass and the PDG mass after
vertex fit. The tracks has been properly propagated to the Ks or Λ0 vertex.

Table 4.14.6: Selection criteria for Ks and Λ0

cut variable KS Λ0

p(π1, π2 ∨ p) [MeV] >2000 >2000
pt(π1, π2 ∨ p) [MeV] >50 >100

track type Downstream Downstream
χ2ndf of π ∨ p <4 <4
χ2ndf (KS ∨ Λ0) <10 <10

ΔM(π1 + π2 ∨ p) [MeV] <100 <100
ΔM(KS ∨ Λ0) [MeV] <100 <100

The cuts for Ks and Λ0 are given in Table 4.14.6. The sample that was used to perform this analysis
consisted of about 100,000 events. Table 4.14.7 presents signal yield of Ks and Λ0 and the background.
In both cases, an increase in signal yield and background reduction (sample purity and yield) is visi-
ble. Figures 4.14.13 and 4.14.14 show the reconstructed invariant masses of a discussed particles. The
model for mass distribution is a single Gaussian with an exponential background. Although a more
complicated fit model would, in principle, be appropriate, e.g. a double Crystal Ball function, these fits
were very unstable and showed problems converging. To avoid these complications and have a consis-
tent mass model, a single Gaussian solution was chosen. As only ratios of event yields are considered,
the error from using a single Gaussian only largely cancels. In case of Λ0 decays the number of recon-
structed particles increase by 7% and the number of background events was approximately 4% lower in
favour of the new algorithm. More gains can be noted for the Ks decays reconstruction were the num-
ber of background events, when processed by the new algorithm, dropped by more than 11% and the
sample purity increased by 22%. It should be noted that these studies were only performed as the sanity
checks to confirm that the algorithm selecting tracks using computational intelligence can be better that
the one based purely on statistical approach 9.

84 vector is a generalization of the classical three-dimensional momentum vector to four-dimensional space-time. The
covariant form of this vector can be written as: p = (p0, p1, p2, p3) = ( Ec , px, py, pz)

9A number of full physics selections based on the new algorithm have been performed after the Run 2 concluded data
taking. Results showed that the modernised trigger code improved long-lived particles reconstruction capabilities
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Figure 4.14.13: Invariant mass distribution of reconstructed Λ0 → p+ + π− candidates. The left
plot present results generated using the baseline version of the Downstream tracking reconstruction
algorithm and the right plot is a similar graph for Long-Lived tracking algorithm. The red dashed
line is the signal modeled as a Gaussian distribution, the gray dashed line shows the background
and the straight blue line shows the combination.
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Figure 4.14.14: Invariant mass distribution of reconstructed KS → π+ + π− candidates. The left
plot present results generated using the baseline version of the Downstream tracking reconstruction
algorithm and the right plot is a similar graph for Long-Lived tracking algorithm. The red dashed
line is the signal modeled as a Gaussian distribution, the gray dashed line shows the background
and the straight blue line shows the combination.
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Table 4.14.7: Signal yield and background of reconstructed KS and Λ0 using minimum bias sam-
ples. ”Original” algorithm refers to the one before improvements, the ”new” consists of two Ma-
chine Learning classifiers.

version decay signal background S/B ratio [%] Δ signal [%]
original K0

S → π+π− 2129± 98 14308± 148 14.9 0
new K0

S → π+π− 2194± 96 12872± 141 17 3
original Λ0 → p+π− 820± 44 3316± 67 24.729 0
new Λ0 → p+π− 873± 44 3208± 66 27.2 6.5

4.14.4 Tuning of the Downstream tracking algorithm

One of the key algorithm’s parameters that has a strong influence on the pattern recognition perfor-
mance is a T-Seed classification threshold. As described in section 3.3.6, its value was chosen to select
more than 99% of true T-Seeds. This value corresponds to a very conservative classifier, which requires
having extreme confidence to classify a given track as a ghost. As a result, the amount of suppressed
background is reduced. Analyzing theROCcurve presented in Figure 4.10.3, one can conclude that de-
voting a tiny amount of signal data, the classifier can significantly reduce the background. This section
is dedicated to fine-tuning the classification threshold. The presented analysis is based on measuring
relative events yield for two channels,Ks and Λ0. The selection criteria were described in section 4.14.3.
The results obtained in various physics analyses as well as further simulation studies performed after the
new algorithm has been commissioned proved that this very conservative approach should be changed
for theRun 3 data taking period. On top of that itmay be very beneficial to remove all the seed segments
flagged as being a part of the long tracks from the input of the long-lived track reconstruction algorithm.

Table 4.14.8 presents the results of fine-tuning procedure. Those numbers were taken from the Ks

and Λ0 invariant mass fits, which are shown in Figures 4.14.15 and 4.14.16 respectively. Each of the
rows represents a different classification threshold value. It is clearly visible that increasing the value of
T-Seed classification threshold parameter allows significantly reduces the background while preserving
almost all signal events. One can conclude that increasing this value from 0.07 to 0.2 allows to suppress
18% more background.

To summarize this study, increasing the value of the classification threshold to 0.2 allows reducing
the background of about 26% while keeping almost the same number of signal events, measured in Ks

channel, with respect to the Long-Lived tracking predecessor.

4.14.5 Processing time

As the Long-Lived Tracking algorithm processing time depends significantly on a type of machine, that
is used to run it, and the event multiplicity it is hard to give an absolute unbiased number. On a simu-
lated signal sample for Run II on a single worker node at CERN, Long-Lived Tracking needs O(5ms)
to process an event. This time is not significant for the overall timing budget of HLT 2. Comparisons
using callgrind show a decrease in processing time compared to Long-Lived Tracking predecessor of
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Figure 4.14.15: Invariant mass distribution of reconstructed Λ0 → π+ + π− candidates. Each plot
corresponds to the different values of the T-Seed classifier threshold. The left upper plot presents
Lambda0 invariant mass for a baseline (threshold =0.07), upper right corresponds to threshold =
0.1, and the lower plots threshold 0.15 and 0.2 (right and left respectively). The statistical uncer-
tainties are correlated here because the identical sample is used
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Figure 4.14.16: Invariant mass distribution of reconstructed KS → π+ + π− candidates. Each plot
corresponds to the different values of the T-Seed classifier threshold. The left upper plot presents
Λ0 invariant mass for a baseline (threshold =0.07), upper right corresponds to threshold = 0.1,
and the lower plots threshold 0.15 and 0.2 (right and left respectively). The statistical uncertain-
ties are correlated here because the identical sample is used.
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Table 4.14.8: Evolution of the Long-Lived tracking algorithm Ks and Λ0 events yield for change
of the T-Seed classification threshold.

classification threshold decay channel signal background S/B [%] Δ signal [%] Δ background [%]
baseline 0.07

KS → π+ + π−
873 3208 27.21 0 0

0.1 863 3081 28.01 1.1 4
0.15 843 2920 28.87 3.4 9
0.2 823 2747 29.96 5.7 14.4

baseline 0.07

Λ0 → π+ + π−
2194 12872 17.04 0 0

0.1 2176 12220 17.81 0.8 5.1
0.15 2152 11435 18.82 1.9 11.2
0.2 2126 10542 20.17 3.1 18.1

about 45%.

4.15 Futurework

This section is dedicated to present ideas, that can be leverages to solve a similar types of problems
and due to the LongLived Tracking algorithm’s submission deadline were never implemented. One of
the project that can benefit from those ideas is Downstream Tracking reconstruction for the Upgraded
LHCb.

That section contains a collection of concepts, that author would want to try or implement during
the study on Downstream Tracking if he would have a time travel machine.

4.15.1 Recurrent Neural Network

The models that were implemented to classify T-Seeds and select tracks candidates use information
that represents entire tracks, such as a track fit quality or total momentum. None of the models that
were taken into consideration so far utilizes any additional information about the hits that constitute a
given track. The hypothesis is that those hits may provide some hint of whether a particular track is a
ghost. Moreover, the hits can be treated as a series and thus processed by the recurrent neural network
(RNN).Thehits representation producedby theRNNcanbe combinedwith the remainder of the track
describing features.

A recurrent neural network can be thought of as multiple copies of the same network, each passing
a message to a successor, and thus it is a promising model to approach a series problem. Figure 4.15.1
visualizes the idea of how the recurrent neural networks process the input sequential data.

From practical perspective, such a RNN is not be able to learn long range dependencies [26]. There-
fore, it is recommended tousemore robust implementationcalledLong-ShortTermMemory (LSTM)[82].

One possible enhancement to the recurrent neural network is leveraging the idea of attention mech-
anism. Attention mechanism is the method that allows to explicitly focus on the part of the data that
is relevant to the particular task. The explanation of how the model based on attention mechanism is
beyond the scope of this thesis, the detailed explanation of this concept can be found in [139], however,

153



Figure 4.15.1: Visualization of an unrolled recurrent neural network. xi may represent a i-th hit
that constitute a track. Figure taken from [109].

it is important that attention-basedmodels have been used successfully in a variety of tasksNatural Lan-
guage Processing (NLP) and sequence modeling tasks.

4.15.2 Focal loss

The imbalancedclassificationproblemoccurs veryoften in thefieldofHighEnergyPhysics. Theamount
of the background examples significantly exceeds the number of interesting signal events. There are a
number ofmethods on how to approach that kind of problem. Thus this section is dedicated to present-
ing the one based on amodification of a loss function. 10 Theproposed loss function is called focal loss
and given by [97]:

FL(pt) = −(1− pt)γ log(pt) (4.27)

where:

pt =

{
p when y is true
1− p otherwise

(4.28)

and y specify the grand-true class and p is a model’s predicted probability for class with label y = 1, and
γ is a hyper-parameter that define howmuch the well classified examples are diminished. Figure 4.15.2
presents the plot of the Focal loss versus probability of a true example being classified as a true one.

The idea of Focal loss was proposed to improve one stage image detection model. Image detection
is a type of problem in which the model needs to find a location (bounding box) of particular objects,
for instance, find a face on a camera footage. In that kind of problem, the majority of regions are empty,
and only a tiny number of them contain relevant objects. Thus this setup is very similar to the searching
for an interesting physical signals. The Focal loss adds a factor (1 − pt)γ to the standard cross-entropy
criterion. Setting γ > 0 reduces the relative loss for well-classified examples (pt > 0.5), putting more
focus on hard, misclassified examples.

10The other method that is usually applied is dataset re-sampling. Two main approaches to randomly re-sampling an
imbalanced dataset can be exclusively applied. One of them, called undersampling, drops examples from the majority class,
and the second one, called oversampling, duplicates examples from the minority class.
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Figure 4.15.2: Visualization of the Focal loss (FL) versus the probability of true class, obtained
for a different value of hyper-parameter γ. γ = 0 corresponds to the cross-entropy. Figure taken
from [97].

In order to use Focal Loss as an xgboost objective function, one needs to implement its first and
second derivative. Which can be done manually or using one of the automatic derivation packages like
Scipy [7].

4.15.3 Workflow Management System

One of the parts of the study that can be enhanced is a pattern recognition validation and performance
check. The current validation process requires a lot of manual interventions. The trained model needs
to be extracted, then deployedwithin a Brunel application, after that Brunel output (DSTfile) is used as
an input to the DaVinci which produces Ntuple. Those Ntuples can be used by the custom root scripts
to reconstruct the invariantmass of the particle decaying into long-lived daughters tomeasure its width.
Each of the listed above steps has to be executed painstakingly, which requires a lot of time and it is
prone to errors. This processing chain can be automated using software called Workflow Management
System.

That kind of tool organizes tasks into a Directed Acyclic Graph (DAG) 11, see an exemplary graph
that visualizes possible automation of the pattern recognition algorithm performance validation in Fig-
ure 4.15.3. The scheduler that is dedicated to executing tasks organized into the DAG runs those tasks
on an array of workers while following the specified dependencies. One of those programs, that can be
easily used within the LHCb environment is an open-sourced Apache Airflow [4].

11DAG is a graph (collection of vertices and connecting them edges) that is directed and without cycles. This means that
it is impossible to start from a given vertex vstart and follow any path (consistently directed sequence of edges) ends in the
starting node vstart.
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Figure 4.15.3: An example DAG that can be used to automate model performance checks.
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5
Emulation andMonitoring of the UpstreamTracker

RAWdata

This chapter is dedicated to present the emulation andmonitoring package for UpstreamTracker called
TbUT. To provide a full picture of the data emulation process, this chapter starts by introducing the
physics principles of signal formation. Within this section, the interaction of particles with matter and
review of the principles of particle detection using silicon devices will be also shortly discussed. The
TbUT package was designed to emulate all RAW Salt data processing algorithms, as well as to gener-
ate a number of performance and monitoring plots. This software was initially implemented in order
to process all RAW data collected during the UT testbeams experiments. The described software will
also play a crucial role in the future monitoring and calibration of the UT detector. The output of this
software will help to ensure the high quality of the collected data.

5.1 Interaction of Particles withMatter

When a charged particle traverse throughmatter, it interacts with the material what results in its energy
lose and multiple scattering. The energy deposition is caused mostly by inelastic collisions with atomic
electrons and elastic scattering from the nuclei of the absorbing material along the particle trajectory.
For particles which masses are well above the mass of an electron the mean loss of energy is described
by the Bethe-Bloch-Formula:

−
⟨
dE
dx

⟩
= Kz2

1
β2

Z
A

[
1
2
ln

2mec2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]
(5.1)

where:
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• dE
dx is energy loss of the particle usually given in eV

g/cm2

• K is a constant: 0.307MeVmol−1 cm2;

• Z and A are the atomic number and mass respectively (for silicon 14 and 28 respectively);

• c is the speed of light in vacuum;

• γ = 1√
1−β2

is the Lorenz Factor and β = v
c ;

• I is a medium average ionisation energy;

• δ(βγ) describes the density effect correction for high energy particles;

• Tmax is the maximum energy transferred to a free electron in a single collision, given by:

Tmax =
2mec2β2γ2

1+ 2γ me
M + (meM )2

(5.2)

The initial version of Formula 5.1 was proposed by Bethe [29] only three years after Schrodinger
postulated non-relativistic Quantum Mechanic. The quantity −

⟨ dE
dx

⟩
can be interpreted as stopping

power of a particularmaterial. One should note, at this point, that this dependency is represented by the
ratio of the atomic andmass numbers, and since the ratio is approximately constant for all elements, one
can conclude that, in fact, the energy lossweakly depends on thematerial type. Figure 5.1.1 presents the
stopping power for positivemuons in copper as a function of βγ. It is worthmentioning that expressing
the stopping power as a function of βγmakes the energy loss curve approximately universal for any type
of interacting charged particles.

For low energies term 1
β2 in Equation 5.1 is dominant and the stopping power decreases with increas-

ing energy, reaching minimumwhen (βγ) ≈ 3. A particle with an energy loss at the minimum is called
a Minimum Ionizing Particle (MIP).

It isworth noticing that for a chargedparticle traversing amaterial, the number of collisions occurring
and the amount of energy transferred in each collision is subject to statistical fluctuations. Formula 5.1
provides only the average value of energy loss, which due to the statistical nature of the process, may
vary from the actual value. For a relatively thick material, the number of collisions will be large enough
to justify modeling distribution of the energy loss by the Gaussian distribution [68]. Although for a
thinner materials, which are widely used in the current tracking detectors, the average energy loss is
small, so the large fluctuation in the deposited energy can be observed. This results in a largely asym-
metric charge distribution, which can be parametrized by the long-tailed Landau distribution shown in
Figure 5.1.2. This distribution is traditionally modelled by a Landau convoluted with a Gaussian to ex-
tract the value of generated charge (electron-hole paris), called the Most Probable Value (MPV). Since
we usually operate the silicon devices in the proportional mode, we assume that the generated charge is
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Figure 5.1.1: The stopping power −
⟨ dE
dx

⟩
as a function of βγ. The region that the Bethe-Bloch

formula describes is 0.1 ≤ (βγ) ≤ 1000 and is highlighted in red. Figure taken from [135].

proportional 1 to the energy deposited by a chargedparticlewithin its active volume. TheLandau-Gauss
convolution is given by:

f(x) =
1√
2π

τ
σnoiseσwidth

∫ x0−5σ

x0+5σ
Landau(x, τ, σwidth)

×Gauss(x, x0, σnoise)dx
(5.3)

where :
Landau(x, τ) =

1
πτ

∫ ∞
0

e−t ln t−
t·x
τ sin (πt)dt (5.4)

and τ is a Landau Most Provable Value (MPV), σwidth is a width of a Landau distribution and σnoise is a
Gaussian standard deviation. Landau Gauss convolution is calculated using numerical integration.

5.2 Operational principles of silicon detectors

As described in Chapter 1, several technologies are used for full event reconstruction at LHCb. How-
ever, to achieve the highest precision and resolution, silicon detectors are currently the best option.
That kind of detector uses aminimal amount ofmaterial which particles need to traverse to be detected.

1In recent years the various studies on thenewgenerationof radiationhard silicondevices led to the fabricationof sensors
(LGAD and iLGAD) that exploit charge multiplication using elaborate structures.
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Figure 5.1.2: A Landau distribution. This distribution has a long tail which decreases non expo-
nentially for large values of x. It is defined over the all set of positive real numbers and its mean
and variance are undefined.

The only limitation of using this technology is its cost. Therefore, they are placed where the highest
resolution is required, for instance, around the LHCb detector’s interaction point. Most of the semi-
conducting detectors are made of silicon. This is because silicon is the second most abundant element
on Earth and is widely used in industrial applications. Silicon has an atomic number of 14, so it has 14
electrons in three shells (2,8,4 arrangement). The electrons arranged in the outer shell are the valence
electrons. Due to this electron arrangement, within the crystalline lattice structure, each silicon atom is
surrounded by four neighbours, see Figure 5.2.1.

The periodic potential of the crystalline structure results in the formation of electron energy bands.
The energy bounds can be interpreted as a collection of the individual energy levels of electrons sur-
rounding each atom. The wavefunctions of the individual electrons are overlapped with those of elec-
trons enclosed to neighbouring atoms, and due to the Pauli exclusion principle, the electron energy lev-
els are prohibited from being the same so that one obtains a set of closely spaced energy levels, forming
an energy band.

At a temperature of absolute zero, the highest energy electrons lie in the valence band. Those elec-
trons are strongly bonded to the atoms and thus are not able to carry the charge. However, at the higher
temperatures, electrons also occupy higher energy states known as the conduction band. The energy
between the valence and conduction bands is called the band gap energy Eg. The value of the band
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Figure 5.2.1: Lattice structure of silicon. The building block of the lattice is formed by a central
atom bonded to four equidistant neighbors (indicated in gray). Figure taken from [130]

gap allows classifyingmaterials into conductors, semiconductors, and insulators, which is shown in Fig-
ure 5.2.2.

One of the most important features of semiconductors is their ability to change electrical conductiv-
ity by introducing impurity atoms, called dopants. These dopants replace atoms of the original material
at lattice sites. They typically have more (n-type donors) or fewer (p-type donors) valence electrons in
their outer shell, depending on the specific type of dopant.

Most semiconductor detectors are made of p − n junction, which manifests a diode characteristic.
Such a silicon device is created by connecting two components of opposite dopping in good thermody-
namical contact. The most important property of such a device is electrons’ phenomena diffusing into
the p region and holes into the n regionwhere they recombined. Consequently, an electric field gradient
is created, which eventually stops the diffusion process and establishes thermal equilibrium. Due to the
electric field, there is a potential difference across the junction. The changing potential region is known
as the depletion zone since it is almost fully depleted of all mobile charge carriers. This characteristic
can be utilized for radiation detectors. Electron-hole pairs that are generated in the depletion zone by
ionizing radiation will be separated by the electric field and can be detected if electrical contacts are
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Figure 5.2.2: Classification of metals, semiconductors and insulators according to their band gap
energy Eg. The Fermi level, denoted by the dashed line, is a hypothetical energy level which would
have a 50% probability of being occupied at thermal equilibrium. Figure adapted from [77]

connected to the device, which is shown in Figure 5.2.3.

5.3 TbUT Emulation Software

The TbUT package is a software developed entirely by the author, and similarly to all of the official
LHCb software, it is based on the Gaudi framework [23]. Gaudi identifies components with specific
purposes and well-defined interfaces, interacting with each other to provide the complete functional-
ity of an application. Gaudi provides to the application general-purpose components, like messaging
and configuration services, see Figure 5.3.2. The configuration is performed via the customized python
scripts. By design, the Gaudi framework decouples objects describing data from those describing algo-
rithms.

The software was designed based on the Object-oriented Programming paradigm. This paradigm
states that the software design is focused on data (also called object) rather than functions. An object
can be defined as a data field that has unique attributes and behavior [124].

Each of the TbUT components inherits from one of the following classes:

• Algorithms, these objects inherit fromGaudi::algorithm, which is an essential part of the Gaudi
application. They can read the input data, and via an appropriate tool process them, as well as
they are capable of storing a data for the next processing steps within the TES.

• Monitoringalgorithm, theseobject, similarly to theAlgorithms, inherit fromGaudi::algorithm.
Their job is to extract data from the TES and generate a set of monitoring histograms, which
suppose to visualize the performance of the sensor. This component is a key to make a proper
calibration.
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Figure 5.2.3: Visualization of principles of operating of silicon strip detector. The charged parti-
cle passing though a depleted detector creates electron-hole pairs that are separated in the elec-
tric field inducing a signal that is recorded by the dedicated electronics (panel a). Panels (b) and
(c) present the development of the space charge region at the boundary between p-type and n-
type silicon, which is enhanced by the application of a reverse-bias electric potential. Figure taken
from [16]

• Tools These objects inherit from the pure virtual interface IProcessingEngine, and they were de-
signed to perform the processing actions, for instance, pedestal removal.

• Serializable data this objects inherit from theGaudiKernel::DataObject and they are the created
by theTools. They can be stored inside the Transient Event Store (TES).

• Tool’s Factories these types of objects were implemented as a concrete instances of a Factory
Design Pattern. This concept was introduced in the Design Pattern book [67].

Thefirst algorithmwithin theTbUT is dedicated todecoding the rawdata acquiredby the acquisition
board, which is visualized in Figure 5.3.1. During this project’s lifetime, the software has to able to
process data acquired by the number of different DAQ systems, each of these producing the data in a
completely different format. To achieve that kind of flexibility the tool, that is responsible for reading
the input data was implemented using a Factory Design Pattern [67].

5.3.1 Pedestal Subtraction

Pedestals are the charge valuesmeasured by the read-out system in the absence of signal and noise. Each
of the read-out channels can have a different ADC value of pedestal, and each pedestal’s value depends
on such environmental conditions as temperature, humidity, and operating conditions, like applied bias
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Figure 5.3.1: The diagram presents the main components of the TbUT package and interactions
between them. The light blue components are algorithms, dark blue are tools, and the violet ones
represent serializable data. The direction of the arrows indicates whether the data is an input or
output to the algorithm.

voltage. To ensure proper pedestals are removed from the raw ADC data, prior to each data collection
run, the non-signal measurements (pedestal runs) are taken. Usually, pedestal data are quick to collect
since no trigger is required.

The pedestal subtraction algorithm has two phases. In first, the pedestal values are calculated. Dur-
ing the second one, the determined pedestal values are subtracted from the raw ADC data. Figure 5.3.3
presents Pedestal Subtraction algorithm sequence diagram. That kind of UML diagram [120] is dedi-
cated to depicts an interaction between objects in sequential order. These diagrams are widely used by
the enterprise and software developers to document and understand requirements for new and existing
systems.

5.3.1.1 Pedestal following

From themathematical point of view the calculation of the pedestal is a running average. In every train-
ing event then pedestal sum is updated. This update takes into account the previously calculated value
of the pedestal sum and the current ADC count. The pedestal sum is calculated for each channel sep-
arately. To be more precisely, the pedestal sum, psumi (n), for channel i and event n can be expressed as
follows:

Psumi (n+ 1) = Psumi (n) +
Δi(n+ 1)

N
(5.5)
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Figure 5.3.2: Object Diagram of the Gaudi architecture, figure taken from [23]

Where the Δi(n+ 1) is a event to pedestal correction. This correction is expressed as:

Δi(n+ 1) = ADCi(n+ 1)− Psumi (n) (5.6)

In Equation 5.5,N is the weighting factor set by default to 1024.
To increase the suitability of the pedestal, and to remove potential outliers that may bias the pedestal

value, the limit for correction is applied. Therefore the correction is given by:

Δi(n+ 1) =

{
Δi(n+ 1) |Δi(n+ 1)| < 15
15 · sign (Δi(n+ 1)) otherwise

(5.7)

where sign(x) is a function that extract the sign of a real number.
To determinate the pedestal values the pedestal sum should be normalized, so:

pi =
Psumi

N
(5.8)

The initial value of the pedestal sums is a mean value calculated for the first 100 pedestal events.

5.3.1.2 Pedestal subtraction algorithm

The second phase of the pedestal subtraction algorithm is removal of determined pedestal values from
the raw ADC data. This procedure can be expressed as follows:

ADCi = ADCRAW
i − pi (5.9)

where: ADCi is signal value after pedestal subtraction for event i, ADCRAW
i is a raw data and the pi is

the pedestal value. Each of this quantities are in the unit of ADC counts. Figure 5.3.4 presents two
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Figure 5.3.3: Pedestal Subtraction sequence diagram.

performance monitoring plots, the first one shows the raw data collected by the DAQ system, which is
an input to the TbUT, and the second one is the data after pedestal removal algorithm.

Figure 5.3.4: Exemplary Pedestal Subtraction Algorithm’s monitoring plots. Typical raw data
ADC values (left), Pedestal subtracted ADC values (right). The channels below 380 and above
480 were masked since they are not connected to any front-end chip.

5.3.2 Common mode subtraction

The next step within the TbUT processing chain is Common Mode Subtraction and the noise calcula-
tion. The noise, one floating-point number per channel, is then used to evaluate zero-suppression and
clustering threshold value for the clusterization algorithm described in the next section.
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The total noise affecting the signal measurement consists of two main components. The first one
affects every read-out channel independently. The second one is common to the group of consecutive
channels. This type of noise is called Common Mode, and it may originate from grand from loops in
the power supplies, or read-out strips might pick some environmental noise.

TheCommonModeSuppression algorithmconsists of twophases. Thefirst onewas implemented to
calculate the average pedestal-subtracted ADC value of the channels in 32-channel groups. This value is
calculated for each event independently. Using thismean value, a search for particle hits is performed for
each channel. All channels with hits aremasked, and a newmean value is calculated for each 32-channel
group. The channel is masked when its ADC value fulfils the following condition:

|ADCi(n)− CMScorri | > ασRMS
i (5.10)

where ADCi(n) is a pedestral-subtracted charge collected in channel n in event i, σRMS
i is a channel

ADCRootMean Square,CMScorri is a correction, and α is a tunable parameter, that specifies the required
distance between noise and signal. After the initial testbeam studies, this parameter was set to α = 4.
The previously calculated mean value is then used to correct the ADC values in all channels of the 32-
channel group.

The second phase of the CMS algorithm is calculation of the noise per channel n, according to the
following formula:

σ i =

√∑N
n=1(ADCi(n)− μi)2

N
(5.11)

where μi =
∑N

n=1 ADCi(n) is a mean ADC value per channel.

Figure 5.3.5 presents the one-dimensional projection of the data after pedestal and Common Mode
subtraction. It is clearly visible, based on the noise values, that the Common Mode removal step is
necessary to reduce the noise level and thus increase the Signal-to-Noise (S/N) ratio.

A few typical events after all corrections applied are shown in Figure 5.3.7. Here, no requirement is
made on the number of tracks. Strips with large ADC counts are indicative of the passage of a beampar-
ticle through the detector. The other channels show roughly Gaussian fluctuations about zero, typical
of incoherent detector noise. Signals generally stand out significantly above the noise. These examples
were selected to visualize a couple of cases that may occur, such as double strip clusters (event 14) and
multiple clusters per event (event 83).

5.3.3 Cluster finding algorithm

The final algorithm is executed to reconstruct clusters (or hits) using previously proceeded ADC values
and noise per channel, which plays the clusterization threshold. The additional algorithm’s input pa-
rameters are the value of the low and high thresholds. Clusters in the DUT are built up by searching for
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Figure 5.3.5: Projection of data after pedestal subtraction (left) and CMS (right)

a seed strip with a collected charge exceeding a high threshold value, that was evaluated as a multiply 2

of the noisemeasured on this channel. The outcome of this subroutine is a list of cluster seeds. The next
subroutine is dedicated to removing the seeds that belong to the same clusters. Such a situation occurs
when the cluster has more than one strip, and all of them have collected charges value higher than the
high threshold. Moving away from the seed strip, the adjacent side stripswith theADCcount exceeding
the low threshold are added to the cluster seed. The cluster reconstruction is terminated when a side
strip charge is below a low threshold value. Themaximum number of strips that can constitute a cluster
is limited to 5. When there aremultiple strips in the cluster, the position is computed using linear charge
weighting:

xcluster =
∑S

i=1 xiqi∑
i=1 Sqi

(5.12)

where xi and qi are the positions and charges of the strips in the cluster, and S is the number of strips
that constitute the cluster. Thus, the cluster position is represented by a floating point number.

1 Data : ADC da t a a f t e r Common Mode Supp r e s s i on (1 . . .N e v e n t s ) ,
2 c l u s t e r i z a t i o n t h r e s h o l d s ( one f l o a t i n g−po i n t number per channe l ) ,
3 two i n t e g e r v a l u e s to ob t a i n low and h igh t h r e s h o l d v a l u e s .
4

5 R e s u l t : v e c t o r o f r e c o n s t r u c t e d c l u s t e r s
6

7 f o r even t i n 1 . . .N do :
8 f i n d c l u s t e r s e ed s ;
9 remove s e ed s b e l ong i n g to the same c l u s t e r s ;

10 ex t end c l u s t e r s e ed s by add ing a d j a c e n t s t r i p s ;
11 c a l c u l a t e c l u s t e r p o s i t i o n
12 end

Algorithm 5.1: Cluster Creator algorithm

The analysis using the data reconstructed by this clusterization algorithm can be used to investigate
the quality of the collected data by the UT detector. The first example of a very important plot is a his-

2The multiplication factor was a tunable paramter, that was determined using a dedicated calibration procedure. Two
strategies were employed for this purpose. The first one relied on a signal-to-noise cut and the second one was based on the
observed noise hit rate. Both of them yielded a similar results.
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Figure 5.3.6: A few examples of a single events after pedestal and common mode removal.

togram presenting the distribution of the cluster charge. Based on it one can get physics quantities de-
scribing the sensor’s performance, the cluster charge data by fitted with the Landau Gauss convolution
model. The parameter of this fit allows determining the Most Provable Value and the width of the sig-
nal. Figure 5.3.8 presents a collection of cluster charge distribution histograms. Those histograms were
created on top of the data collected during the one of the testbeam. They were used to show the sensor
performance versus the bias voltage applied to them. Those studieswere conducted to investigate the ef-
fect of a drop in the collected charge when sensor irradiation increases, which was seen previously [19].
The collected charge drop may lead to decreasing the signal-to-noise ratio.

Another example of monitoring plot is the cluster size spectrum. That plot allows better understand-
ing of how the resolution of the sensors changes as a function of the angle between the incident particle
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Figure 5.3.7: Noise distributions after Common Mode Suppression for selected channels within
the beam region. The red curves show a Gaussian fit to the core of the distribution.

and the normal to the sensor. It can also be used to infer charge sharing properties of the sensor, which
in turn, has significant impact to improving the spatial resolution of a single hit. Figure 5.3.9 presents
a cluster size as a function of the sensor rotation angle obtained using data collected during the 2015
testbeam.
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Figure 5.3.8: Cluster charge distributions. The data are fit to a Landau convoluted with a Gaus-
sian resolution function, and the fit is shown (solid blue line). Figures taken from [11].
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Figure 5.3.9: Cluster size distributions. Figures taken from [11].
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Quality is never an accident; it is always the result of intelligent
effort.

John Ruskin.

6
UT testbeam analysis - measurement of the charge

sharing in planar silicon sensors

This chapter is dedicated to describing a selected analysis performed using the testbeam data collected
using prototypes of silicon microstrip sensors for the UT tracking detector. The chapter starts by pre-
senting the testbeam experiments’ general idea, followed by a section on an experimental setup. The
final section describes the study on charge sharing phenomena and the proposed correction.

6.1 Experimental setup

6.1.1 The beam

The tests were performed at CERNSPSNorth Area, see Figure 1.2.1. The beam consisted of secondary
particles produced by the interaction of high intensity 450GeV/c primary proton beamwith a fixed tar-
getmade of beryllium and lead. The beamhad average energy of 180GeV. The beam typically produced
four spills/minute. The spill lasted about 4 seconds, and it was intermittent by 40 seconds windowwith
no beam. For most of the data taking, the beam size was collimated down to about 0.5 cm in diameter.

6.1.2 Timepix3 telescope

The essential tool that allows making many silicon sensor performance studies is the TimePix3 tele-
scope, presented in Figure 6.1.1.

This device consists of 8 active planes of 300 μm thick p-on-n sensors bump bonded to the Timepix3
ASIC, divided equally between two arms. The position of each plane along the z-axis is adjustable,
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Figure 6.1.1: Layout of the Timepix Telescope mechanics, pixel planes and scintillators with re-
spect to the beam axis. Figure taken from [15]

typically the distance between each plate is set to be approximately 30 mm, and plates are rotated to an
angle of 9 deg in both x and y-axis to improve position reconstruction. There is a 200 mm gap between
two telescope arms, which is used to place Device Under Test (DUT), see photography 6.1.2 taken
during one of the testbeam experiments. TheDUT is housed inside a metal box designed to fit into the
gap and provides an airtight dry environment cooled via a Peltier device. The DUT was installed on a
motion stage allowing angular rotations, and x and y translations.

To allow the DUT acquisition to trigger two scintillators are placed upstream and downstream of
the telescope. The telescope acquisition system does not require any trigger signal since it works in a
so-called data-driven read-out mode in which the data package of each pixel hit is sent immediately af-
ter Time-over-Threshold (ToT) conversion (note, that the hit is sent out only if it passes an analogue
threshold, what allows to discriminate the noise hits). To synchronize DUT clusters with associated
Telescope tracks, the information about the trigger timestamp is added to the data recorded by the tele-
scope. To leverage the tracking information, the algorithm tomatch theUTclusterswith corresponding
telescope track was implemented.

6.1.2.1 TimePix3 Telescope Tracking

Tofind the positionwhere the particle interacts with theDUT sensor, the particle trajectory needs to be
reconstructed using the information provided by all Telescope sensors. This procedure starts by finding
clusters. The cluster is a collection of neighboring pixels in which the measured signal exceeds a certain
threshold, and such a measurement is called a hit. To add the hit to the cluster, its timestamp must
lie within the 100 nanosecond window surrounding the timestamp of the seed hit. The timestamp of
the cluster is a minimum of the timestamps associated with each of the hits belonging to the cluster.
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Figure 6.1.2: The photo of the Timepix Telescope and the DUT inside the box.

The cluster charge is a sum of charges of the constituent hits. The x and y positions of the cluster are
calculated using the center of gravity method:

{x, y}cluster =
∑n

i=0{x, y}iSi∑n
i=0 Si

(6.1)

where {x, y}i is the x or y coordinates of ith pixel and Si its signal.

The clusters are then used as input for the tracking algorithm, which is based on the timing infor-
mation of the clusters. The tracking algorithm starts by taking a cluster from the first plane and then
looks for the matching cluster on the second plane. The hits are considered matched when the maxi-
mal time difference between them is within ten nanoseconds window. These two clusters constitute a
track seed which is then extrapolated to the next plane, excluding the device under test, looking for a
cluster within a cone with an opening angle of 0.01 radians and the ten nanoseconds time window. The
procedure ends when all planes have been considered. Figure 6.1.3 shows four examples of Timepix3
tracks.
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Figure 6.1.3: Four exemplary tracks reconstructed in the Timepix3 telescope. Figure taken
from [117].

6.1.3 Read-out electronic

During all of the testbeam experiments conducted from 2015 till 2017, the SALT ASIC was not ready.
Therefore, the sensor was read-out by the Beetle chip, which is the ASIC used as a front-end chip in Velo
andTTduringRun 1 andRun 2. TheBeetle chip can read-out the signals from128 channels and returns
semi-Gaussian analog pules. The detailed description of the Beetle chip data processing can be found
in [102]. In contrary to the SALT ASIC, the Beetle chip has no digital signal processing module. Thus,
data have to be digitalized and processed by the external components. The analog data read-out by the
Beetle chip was digitalized by the Mamba board designed by INFN in Milan and produced by Nuclear
Instruments [3]. The processing of the digitalized data was done by the software described in chapter 5.

6.2 Testbeam studies and the results

In the course of the last five years, the LHCb UT Upgrade team has organized a number of testbeam
campaigns to test new prototyped sensors. Figure 6.2.1 presents the photography of a sensor that was
used during the testbeam with equipment which allowed to cool them and collect the data.

During this testbeams, the following detailed measurements were performed:

• Landau distribution as a function of bias voltage. This test scenario was executed to measure the
influence of radiation fluence on a Signal to Noise ratio (S/N). For each sensor, the data was
collected at bias voltages ranging from well below the full depletion region (about 50V) to the
region well above it (usually 500V).

• Cluster size vs. bias voltage and track angle. This study was performed to understand the effect
of charge sharing in high irradiated sensors.
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Figure 6.2.1: Photo of the D-type sensor that were studied during 2015 testbeam.

• Cluster charge vs. cluster size and inter-strip position. In this section, the team investigates the
dependence of the collected charge on the cluster size. With no radiation effects, one would
expect that the collected charge to be independent of the cluster size. However, radiation effects
can lead to a difference which was investigated.

• Cluster size and resolution vs. angle. Studies of the detector performance were also carried out
at angles ranging from normal incidence to 30 o (with respect to the normal to the sensor).

• Charge collection near the quarter-circle region. One type of sensor that will constitute the
UT sensor has a quarter-circle region where there are no strips. This study aimed to investigate
whether there is any drop in charge collected as a cluster approaches the quarter-circle radially.

The results of this studies lead to the following publications [11] [9] [10]. To get a broader picture
of the UT testbeam studies, one can also refer to these PhD thesis [98] and [89].

6.3 Cross-talk correction

One of the effects that may influence sensor’s performance, that was observed during testbeam, was an
asymmetric cross-talk between channel that was attributed to their capacitative couplings. This effect
canbemeasuredby studying the signal asymmetry between (N−1)-th and (N+1)th channel, whereN-
th channel is a cluster seed strip position (so called cluster centre strip). Theeffectwas studied separately
for odd and even channels since it was observed, that this cross-talk effect is stronger for even channels,
see Figure 6.3.1.
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Figure 6.3.1: The charge collection difference (ADC(N + 1) − ADC(N − 1)) as a function of the
strip position. The statistical uncertainty, which were calculated for each bin independently, are
shown as one standard deviation.

Toget a better understanding of the signal cross-talk effect on a collected data, the difference between
ADC(N − 1) and ADC(N + 1) as a function of a cluster charge was studied. Figure 6.3.2 shows that
this difference is strongly dependent on a cluster charge. Thus any proposed correction should take
this fact into consideration. The idea to correct this effect is to create a two-dimensional map with a
strip position and cluster charge as indices and a correction as a value. The correction can be modeled
using Gaussian distribution since it was empirically discovered that the charge difference is normally
distributed. Therefore the correction algorithm splits the cluster data into bins according to strip posi-
tion N and the cluster charge, then for each of the bin, the correction is calculated by fitting Gaussian
distribution to the charge differenceADC(N−1) andADC(N+1). Figure 6.3.5 present this correction
calculation procedure for cluster seed charge between 300 and 400 ADC, and Figure 6.3.3 shows the
entire 2D correction map.

Figure 6.3.2: The measured charge difference (ADC(N + 1) − ADC(N − 1)) as a function of the
cluster charge collected on channel N. The left plot shows the difference for even strips while right
plot for odd ones
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Figure 6.3.3: Cross-talk correction map. The color indicates value of the correction obtained from
the Gaussian fit to the charge difference (ADC(N+ 1)− ADC(N− 1)).

Figure 6.3.4: The charge difference (ADC(N+ 1)− ADC(N− 1)) after 2D correction as a function
of the cluster charge collected in channel N (left) and cluster charge (right).

After application of this correction the cross-talk was removed successfully, since the residual differ-
ence is below 2 ADC count, see Figure 6.3.4. All DUTs have similar odd–even cross-talk corrections.
The even/odd cross-talk correction was similar for all of the DUTs, but not identical. Therefore, each
sensor had a unique cross-talk correction to remove this bias.

6.4 Charge sharing

Charge sharing is manifested when a particle passing between two strips and generates charge cloud
encompassing them. In this case, the charge can be collected on both strips, see Figure 6.4.1. The theo-
retical explanation of this effect can be seen as a transverse diffusion of the holes (or electrons) during
the drift towards the strip implant [130].

179



Figure 6.3.5: The cross-talk correction procedure visualization. Left plots shows charge difference
for odd channels while the right plots presents same distribution for even channels. The data was
fitted with a Gaussian distribution. 180



Figure 6.4.1: Cartoon of the charge deposited by a particle passing through the silicon. The
charge, C{L,R}, is deposited on the strips left and right of the particle’s impact point x. On the far-
left strip some charge is measured as well due to capacitative coupling. Figure adapted from [138]

This phenomenon can be quantified via parameter η, proposed in [24], given by:

η =
Qleft

Qleft + Qright
(6.2)

The effect of charge sharing were analyzed with respect to the cluster inter-strip position and the
rotation angle. Each distribution was fitted with an error function model given by:

f(x; σ) = a
(
1− erf(

x− μ√
2σ

)

)
+ b (6.3)

where a, b are constants, μ is amean inter-strip position, σ is awidth and erf is theGauss error function
given by:

erf(x) =
2
π

∫ 0

x
e−t

2
dt (6.4)

This non-linear charge sharing model can be interpreted as a smeared step function in which the
width of the charge sharing (σ) equals the width of the Gaussian smearing. The full derivation of this
formula can be found in [138]. The purpose of this analysis was to measure the dependence of charge
sharing η versus the track angle. Different incidence angles were obtained by rotating the stage where
the DUT box was mounted around the y axis.

The data that were used within this analysis were collected during the May 2016 testbeam. This sec-
tion presented studies related to one selected unirradiated mini sensor produced by Hamamatsu Pho-
tonics [2]. These data were not used in any publications. The sensor is p+− on− n and has a thickness
of 320μm and a constant strip pitch of 190μm. The clusters that were considered during the presented
have to lie within the beam region and be matched with a telescope tracks. Moreover, the reconstruc-
tion quality of those matched tracks should also be satisfactory (χ2ndf < 10). Finally the cross-talk
correction described in section 6.3 was applied.

Figure 6.4.2 present the η distributions integrated overall connected and not masked channels of the
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mini sensor. Each subfigure is dedicated to present the η for a different particle incidence angle. The
charge sharing seems to be symmetric, thus no further correction was recommended.

To get a better understanding of the charge sharing, its dependence versus the cluster inter-strip po-
sition for various rotation positions around the sensor’s y-axis is shown in Figure 6.4.3. Figure 6.4.4
presents same distribution but with model 6.3 fitted to the data. One can find that the effect of clock-
wise and anticlockwise rotations around the y-axis is the same. The σ as a function of the particle inci-
dent angle have aminimum at zero degrees and is symmetrically distributed around theminimum. The
rotation around the y-axis was used to increase the charge sharing between neighbouring strips, which
can be quantified using the value of σ obtained from the fit. The overall behaviour of the η function is
exactly as we would expect. For the small rotation angles the curve is very close to the step function,
which corresponds to a very moderate charge sharing, i.e., particle must cross the sensor very close to
the mid-position between the strips to deposit charge on both strips and form multi-strip clusters. As
the rotation angle of the DUT sensor increases we observe that the section of the curve that exhibits
linear behaviour grows. Still, quite large strip pitch significantly confines the linear charge sharing re-
gion, that in case of the largest tested angle (10 ◦), extends in the interval± 0.2 about the inster-strip
position 0. Since the typical track angle expected at LHCb is approximately 8 ◦ one can expect very
moderate charge sharing, and thus, low rate of multiple-strip clusters. As a consequence, the single hit
spatial resolution registered at UT detector may be very close to the binary resolution.
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Figure 6.4.2: Distribution of a charge sharing η obtained for particles incident at a different angle.
Upper row 10◦ and −10◦, middle row −2◦ and 2◦, bottom row 0◦ - perpendicular to the x axis.
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Figure 6.4.3: Distribution of a charge sharing η versus inter-strip position obtained for particles
incident at a different angles. Upper row 10◦ and −10◦, middle row −2◦ and 2◦, bottom row 0◦ -
perpendicular to the x axis.
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Figure 6.4.4: Charge sharing η as a function of the cluster inter-strip position obtained for differ-
ent rotation angles around y axis. Upper row 10◦ and −10◦, middle row −2◦ and 2◦, bottom row
0◦ - perpendicular to the x axis. The black solid line is a charge sharing model 6.3 fitted to the
data.
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I’m smart enough to know that I’m dumb.

Richard Feynman

7
Summary andOutlook

This thesis discusses two projects, which were performed during the author’s work for the LHCb Col-
laboration.

The first onewas related to the design and improvement of the algorithmdedicated to reconstructing
long-lived particles, such as Ks or Λ hadrons in the LHCb experiment. This algorithm is used to recon-
struct the particles that decay outside of the Velo detector and depends on the input from the tracking
station situated downstream from the Velo. Thus, it is calledDownstream tracking. This reconstruction
algorithm’s time budget is minimal because it is executed as a part of a real-time LHCb trigger system.
However, due to the number of particles created during each beam crossing, the previous implemen-
tation of the tracking procedure a considerable amount of so-called ghost tracks. Those tracks are the
ones that do not represent a trajectory of a real particle. To significantly reduce such cases, two ma-
chine learning classifiers were trained and deployed. Within this project, a number ofmodels, including
Logistic Regression, kNN, Boosted Decision Trees, and deep neural networks, were tested. That kind
of enhancement of the tracking reconstruction has never been deployed before. Each of the presented
models was carefully tested, and its hyperparameters were optimized using various strategies, including
Bayesian Optimization. Within the process of model validation, two novel methods for model predic-
tion interpretation were proposed.

As a result of this work, the track reconstruction efficiency of theDownstream trackingwas improved
from 81.4% to 85.3 %, while the rate of misreconstructed tracks was lowered by a relative 18 %. Those
numbers were obtained using a simulated sample of B0 → J/ΨK0

s . These changes were integrated into
the LHCb software and are used in the official reconstruction of LHCb data. Also, the new algorithm
reduces the runtime of the pattern recognition by 45%, with respect to its predecessor.

TheDownstream tracking algorithmwas also tested using the real data. The performance of the algo-
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rithmwas evaluated via reconstruction of theKS → π+ + π− and Λ0 → p+ + π−. The new algorithm
allows reconstructing 6.5 % more signals than the previous algorithm’s implementation. Furthermore,
the tuning of the classification threshold value can decrease the background by 18% while sacrificing
only 3% of the signal.

The presented within this thesis Downstream reconstruction algorithm is conceptually similar to the
one that will be used to collect the data after the LHCbUpgrade. Within this thesis, a couple of further
enhancements were proposed. Some of them are related to the new neural network architectures and
one to the new loss function, which takes into consideration the imbalanced class problem.

The second part of this thesis was related to the design and implementation of the UpstreamTracker
raw data emulation and performance monitoring software platform. The result of this study an appli-
cation TbUT has been created. This software was essential for processing the data collected during the
testbeam experiments and obtained results were essential for a number of published papers by the UT
group. In the future, this software will be used to perform calibration of the UT processing algorithms
as well as for performance diagnostics of the UT detector. The final section presents a selected analysis
of the testbeam data.
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